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The object is to determine what theorems for single-valued
functions can be extended to which class of multi-valued
functions, It is shown that an arc cannot be mapped onto a
circle by a continuous, monotone multi-valued function when
the image of each point is an arc. On the other hand, the
arc can be mapped onto a nonlocally connected space by a
monotone, continuous function such that the image of each
point is an arc. Characterizations of nonalternating functions
analogous to the results in the single-valued theory are obtained,
and it is shown that an nonalternating semi-single-valued
continuous function on a dendrite is monotone., An analog of
the monotone light factorization theorem is obtained for semi-
single-valued continuous functions,

Some other results are: an open continuous function with
finite images maps a regular curve onto a regular curve, and
a continuous function with finite images maps a locally con-
nected, compact space onto a locally connected compact space.

A number of definitions for continuity have been proposed for multi-
valued or set-valued functions, and Wayman Strother studied the problem
of continuity extensively [10, 11, 12]. Also Choquet [2] has studied
upper and lower semi-continuous functions. Further, Berge, unlike most
authors, allows functions to be multi-valued in [1]. However, much of
the work that has been done on set-valued functions has been devoted to
the discovery of fixed point theorems ([3], [7] through [9], [11], [13],
and [15] through [17]). The purpose of this paper is to investigate
properties of multi-valued functions which are similar to the properties
of single-valued functions studied in G.T. Whyburn’s book, Analytic
Topology, [18].

We shall use the following topology on the set of closed subsets
of a space Y. Let

S(Y) ={ECY: E is closed and nonempty}.

Let S(Y) have the topology used by Michael [6]; i.e., if V,---, V,
are open subsets of Y, then the collection {V,, ---, V,> = {Ec S(Y):
ENV,#¢ for all ¢, andE c U, V;} is a basis for the open sets of S(Y).
We shall call this topology the finite topology. This is equivalent to
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682 RAYMOND E. SMITHSON

the topology used by Strother [3] and Frink [4]. Since we shall be
dealing extensively with subspaces of S(Y) we shall use <V, +--, V>
to be either a basic open set in S(Y) or a basic, relatively open set
in the appropriate subspace of S(Y). If ¥ ={V, .., V,}, then set
<%> - <V1; ) Vn>'

In this paper we shall assume that all spaces are Hausdorff.

Given a set-valued function F': X—Y with F(x) closed and nonempty
we define the induced function f on X into S(Y) by setting f(x) =
F(x) for each ¢ X. Note that f is single-valued, and f will always
denote the function induced by F' unless otherwise stated. Also we
shall always use upper case letters to denote multi-valued functions.

If A is a subset of X, then the symbols A and Ci(A) are used to
denote the closure of A, and the symbol A° is used to denote the
interior of A.

Henceforth, we assume that S(Y) has the finite topology, and that
F: X—Y is, unless otherwise stated, a function such that F(x) is in
S(Y) for each z in X.

1. Preliminaries. This section will be devoted mainly to
gathering known results that are needed in the development of
succeeding sections.

DEFINITION. A multi-valued function F: X—Y is called continuous
in case the induced function f: X—S(Y') is continuous.

NoratioN. If Ac X, then F(4) = U{F(x): xc Al}.

Now we have the following lemmas due to Strother [10].

LEMMA 1.1, A function F: X—Y is continuous if and only if
statements (1) and (2) hold.

1. If wye X, V is open in Y, and if F(x)NV#¢, then there
exists an open set U of X with x,€ U such that F(x)N\ V£¢ for all
xe U.

2. If x,eX and F(x))CV where V 4is open in Y, then there
exists an open set U containing x, such that F(U)C V.

LEMMA 1.2, Let Y be regular. If F:X—Y is continuous, if
{2} is a net in X converging to x,, and if y,€ F(x;) such that {y,}
converges to y,, then y,< F(x,).

LevMMA 1.3. Let F: X—Y be continuous, and let X and Y be
compact. Then F s closed; i.e., F(A) is closed in Y whenever A
18 closed in X.
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We also need the following lemma from Michael [6].

LeEMMA 1.4. If <Z 4s a collection of subsets of Y which is
disjoint (@ subcollection of S(Y)) and connected in the factor (finite)
topology and all (one) of whose elements are (is) conmected, then
U{E: Ee &Z} is connected.

Set 7 (Y) = {Ee S(Y); E finite}, 2(Y) = {E<c S(Y): E is compact}
and .7 (Y) = {E: F has at most » elements}.

Now we can apply the above results to obtain some further
lemmas. Lemma 1.5 is a variation of a theorem in Berge [1].

LEMMA 1.5. Let F be continuous and onto, and let X be compact.
Then Y 4s compact +f and only if F(x) is compact for each xe X,

Proof. Suppose Y is compact; then F(x) closed implies F(x)
compact. Suppose that F(x) is compact for each %, and let & be an
open cover of Y. Then for each # we obtain a subcover %, of F(x),
such that F(x) N V== ¢ for all Ve ¥,. Since F(x) is compact, there
is a finite subcover &7, of F(x) in ¥7,, and F(x)c (¥ ,>. The collec-
tion {7 .>:x€ X} is an open cover for f(X) in S(Y). Since f(X) is
compact, there is a finite subcover, say {¥"D, -+-,{¥""> of f(X);
hence the collection ¥, = |J, 7 ! is a finite subcover of Yand 7, c¥".

LeMMA 1.6. Let F be continuous and A a conmected subset of
X. Then, tf F(x) is connected for some xc A, F(A) is a connected
subset of Y.

Proof. Since F is continuous, f(A) is connected in S(Y), and for
some 2, I(x) € f(4) is connected. So by Lemma 1.4, F(A) = U {F(z):
x € A} is connected.

COROLLARY 1.7. If F' s continuous, if X ts connected, and if
there is an x€ X such that F(x) is connected, then F(X) is connected.
Hence Y ts connecled if F is onto.

COROLLARY 1.8. Let F be continuous. Then F(A) is connected
Jor every connected subset A of X if and only tf F(x) is connected
Jor each xe X,

Proof. Since {x} is connected, F(x) must be connected by hypoth-
esis. On the other hand, if A = ¢, then for any x¢ A, F(x) is con-
nected. So Lemma 1.6 applies.
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Another result from Michael’s paper [6] we need is the following.

LEMMA 1.9. If ACY is closed, the following hold.
1. {EecS(Y): EC A} is closed.
2. {EeS(Y): ENA =+ ¢} is closed.

COROLLARY 1.10. If F 14s continuous, the set {x:yc F(x)} is
closed for each y.

Proof. The set {x:y<c F(x)} = fY{F(x): F(x) N {y}*¢} and the latter
is closed by part 2 of Lemma 1.9.

We call {x:y < F(x)} the inverse of y and write F"~'(y). Similarly,
for ACY we define

F-YA) ={x: F(x)N A +# ¢} .
Note that if A is closed, so is F~'(4).

NoTATION, We write E = AUB, A|B to denote a separation of
E, and we say that A and B separate E.

Note. In general, for ACY we need not have F(F~'(4)) = A.

We can generalize a lemma of Whyburn’s.

LeMMA 1.11. Let X be compact, Y regular, F: X—Y continuous,
and let Y,cY. If F(Y,)=AUB, A|B with F(A) and F(B)
intersecting the same quasi-component Q of Y, then there exists
Y, Y, such that F~(y,) intersects A and B.

Proof. Let A, = F(A)NY, and B, = F(B)NY,. Now, by hypoth-
esis A,NQ # ¢ and B,NQ #* ¢. Therefore, A, is not separated from
B,, so there is a net {y,} in A,, say, such that y,— ¥.€ B..

Now let #,€ F~(y,) N A for each @. This defines a net in F~(4,)N
A, and since X is compact {x,} has a limit point x, and thus a
convergent subnet x,—x,. By Lemma 1.2, y,c F(x,) so x,€ F~(y,).
Further, A|B implies that x,|B and so x,€¢ 4 or FYy)NA+¢.
Finally, y,€ B, implies that F~(y,)NB # 4.

Let X, Y, and Z be spaces and F;: X— Y, F,: Y — Z be set-valued
functions. The composition function F' = F,o F, is defined by F(x) =
Fy(F(x)) for each x€ X. Note that in this case F(x) may not be a
closed set. Also, if zeZ, then F~(z) = F'(F;'(z)). Consequently,
we write F'= F{'F';*., When X, Y, and Z are compact we have
the following result from [10].

LEMMA 1.12. If F: X—Y and F,: Y— Z are continuous and
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of X, Y, and Z are compact, then F = F,o F, is continuous.

Let F: X— Y and let A be a subspace of X. Then the restriction
of FF to A, F|A, is defined by F|A(x) = F(x) for all xc A. An
immediate consequence of Lemma 1.1 is:

LEMMA 1.13. Let F: X— Y be continuous and let AcX. Then
the restriction of F to A is continuous.

2. Monotone functions. In this section we generalize the
definition of monotone functions and investigate their elementary
properties.

DEFINITION. A continuous function F: X— Y is called monotone
if and only if F~%(y) is connected for each ye Y.
Another generalization of a lemma in Whyburn [18] is:

Lemma 2.1. If X is compact, Y regular, and F: X— Y 1is
continuous, then F is monotone if and only +f F~'(A) ts connected
whenever A is a connected subset of Y.

Proof. If F~(A) is connected for each connected set in Y, then
F-Yy) is connected for each y€ Y and hence F' is monotone.

On the other hand, suppose that F' is monotone and that A is a
connected subset of Y. Further, suppose that F—%(4) = CUD with
C|D. Both F(C) and F(D) meet A, and A is a quasi-component of
itself. Thus, by Lemma 1.11, there exists a y € A such that F~(y)N
C+¢ and F-Y(y)ND += ¢, a contradiction, as F is monotone. Hence
F~'(A) is connected.

Whyburn shows the following properties are preserved by monotone,
continuous, single-valued functions, the property of being, (1) a
unicoherent continuum, (2) a hereditarily locally connected continuum,
(3) a regular curve, and (4) a rational curve. However, the following
examples show that these properties fail to be preserved by continuous,
monotone, multi-valued functions, even when fairly stringent conditions
are placed on the set F(x), i.e., we may require F(x) to be a locally
connected continuum for each x€ X and have X a locally connected
continuum, but still not have Y locally connected. See Example 6.

ExampLE 1. Let X and Y be any two spaces. Define F(x) =Y
for each wxe X, Clearly F' is continuous and Y need not possess any
property that is not shared by all spaces. Thus we see the necessity
of placing restrictions on the sets F'(z).
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ExamMpLE 2. Let X be the closed interval [(0, 0), (0, 1)] in the
plane, let Y be the circle that is tangent to the x-axis at = 2 and
the line y =1 at (2, 1). Denote the points of X by their y-coordinate,
and in Y let the closed arc (z, ) — (2, 0) — («’, ¥) be denoted by yv/',
where we denote the point (%, ¥) by v and (', ¥) by %'. Then define
Fby Fi0)=(2,0), Fy) =9y, 0<y<land FQ) =Y. It is easily
seen that F' is continuous. In fact f is a homeomorphism and F' is
monotone. However, X is unicoherent and Y is not.

ExAampLE 3. Let X = [(0, 0), (0, 1)] as above and let Y be the
unit square and its interior with corners (1, 0), (2, 0), (1, 1), and
(2,1). Let the closed horizontal lines [(1, ¥), (2, y)] be denoted by ¥
where y is the common y-coordinate. Again identify the points of X
with their y-coordinate.

Then let F(y) = §J. Here again f is a homeomorphism. In fact
F' is monotone and the inverse of a single-valued continuous function
of Y onto X. Further, X and F(x) are locally connected continua for
each z. Also, X and F(x) are hereditarily locally connected and
hereditarily unicoherent, but Y is neither, and Y is neither rational
nor regular, but X is both.

ExampLE 4. Let X =[0, 1], and Y the area between and includ-
ing two concentric circles C;, and C,. Let C,, 0 < a =<1, be the circle
that has the same center as C, and C,, and with radius r, = ar, +
1 — a)r, where r,, r, are the radii of C,and C,, respectively. Define
F by F(x) =C,. Then F is monotone, continuous and F(z) is a
locally connected continuum for each z, and if ®, # x,, F(x)NF(x,) =
é. Yet X is unicoherent and Y is not.

In Whyburn [18] it is shown that the image of a simple arc
under a continuous, monotone transformation is again a simple are,
and similarly for a simple closed curve. However, in the case of
multi-valued functions neither of these results holds. Example 5 is a
counterexample for the former, and the function that maps each point
of the circle onto the entire unit interval serves nicely as a counter-
example for the latter. We shall, however, subsequently show that
the unit interval cannot be mapped onto the circle by a continuous,
monotone, multi-valued function F, for which F(x) is a simple arc for
each . (Here and in the following F(x) may be degenerate, i.e., a
point.)

ExaMPLE 5. Let I be the unit interval. Let I, I, and I, be
copies of I. Form Y by erecting I, perpendicular to I, at 1/4 and by
erecting I, prependicular to I, at 3/4 (the 0 of I, is identified with 1/4
in I, and the 0 of I, is identified with 3/4 in I). Define F:I— Y by
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F(0) =10, 1/4]U L, F(1/4) = L, F(1/2) = L U[1/4,3/4]UL, F(3/4) = I,
and F(1) = I,U[3/4, 1] (where intervals are subsets of I, unless other-
wise stated). For other points in I, F is defined by ratios. The
function F' constructed in this manner is monotone and continuous.
Also F(z) is an arc for each eI, Note that the range of F is a
space with two branch points and that F' is also nonalternating (see
§3) but not open.

EXAMPLE 6. A construction similar to that of Example 5 can be
used to define a continuous, monotone function with F(x) an arc for
each £ on the unit interval onto the following nonlocally connected
planar space. The space consists of the union of the following subsets
of the plane: {(%, 0):0 =<2 =<1}, {(0, »): 0=y = 1}, and {(1/n, ¥): » = 2,
0=y=1}L

DEFINITION. A continuum X is called a multi-arc in case there
exists a continuous, monotone, set-valued function F on the unit
interval onto X, such that F(x) is a simple arc for each z in the
interval. (Here F(x) may be degenerate, i.e., a point.)

DEFINITION. A continuum X is called circularly reducible if and
only if there exists a continuous, monotone function F' from X onto
the ecircle, such that F(x) is a simple arc for each x € X (F'(x) may be
a point).

ReMARK. By extending the construction in Example 5, it can be
shown that any dendrite with a finite number of branch points is a
multi-are. Note, however, that Example 6 shows that not all multi-
arcs are locally connected, and that Example 3 shows that the disc is
a multi-arc.

From Wallace [14] we have:

DEFINITION. A continuous function F: X — Y is anarthric if and
only if for each y€Y no x€ X — F~y) separates F'~'(y).

Then from the definition of monotone and anarthric we obtain

LeMMA 2.2. Let X be a totally ordered, compact, connected space,
and let F: X — Y be a continuous function on X into Y. Then F
18 anarthric if and only +f F 1is monotone.

Also from [14] we have

THEOREM (Wallace): Let X be compact. A mnecessary and
sufficient condition that o function F on X be anarthric ts: If
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X = MUN, where M and N are continua meeting in a cutpoint x,
and K is any continuum meeting M, then F(M N K) = F(M) N F(K).

COROLLARY 2.3. The circle is not ¢ multi-are.

Proof. Suppose F: [0, 1]— C is a monotone continuous function
on the unit interval onto a cirele such that F(x) is an arc for each
2€[0,1]. By Lemma 2.2 F is anarthric. Thus if x€ (0, 1) we have
by the theorem F'(x) = F([0, «]) N F([x, 1]). Also F([0, x])U F(z, 1])=
C and F(x) is a subarc of C. Thus either F([0, 2]) or F([x, 1]) is
equal to C for otherwise their intersection would not be connected.
Hence we may assume that there exists an 2’ such that F([0, 2']) =
F(x') and F([z, 1]) = C. Let =, = sup {z: F([0, z]) = F(z') and F([x,
1D =C}. If ye F(x,) — F(x'), and if U is an open set containing ¥
which does not meet F(x'), then FF~Y(U) is an open set containing x,
which does not meet {x: F([0, ]) = F(«')}. This contradicts the choice
of %, Hence F(x,) = F(«') and F([x, 1]) = C. Note F([x,1]) =C
implies that x,= 1. Now if % > #, F([0,«]) = C since x, is the sup
{z: F(x, 1]) = C and F([0, 2]) = F(x') = F(x,)}. Thus for ye C — F(x,)
there is a decreasing sequence {x,} such that z, — x, and y <€ F(x,) for
all ». But this implies that x,€ F~y) since F~Yy) is closed, a
contradiction.

We can derive more corollaries to Theorem 2.3.

COROLLARY 2.4. A hereditarily unicoherent multi-arc is not
circularly reducible.

Proof. Suppose that « is circularly reducible, and that F,: X —C
is a continuous, monotone function on X onto the circle C such that
Fx) is a simple arc for each x< X. Since X is a multi-are there
exists a continuous, monotone function F, on the unit interval I onto
X such that Fy(r) is a simple arc for each »€ I, Then by Lemma 2.1
the function F' = F,oF, is continuous and monotone, and F' maps [
onto C. Now let M be an arc contained in X. Then F,|M is
continuous. Further, if ye C, either F;’(y)NM = ¢ or F;'(y)NM is
connected since X is hereditarily unicoherent. Therefore F,|M is
monotone. Hence F(M)== C. Further, if Mc I, F(r) is at most an
arc, and hence, FyoF(r)s C. Note that F,cF(r) is connected. Con-
sequently, F' is a continuous, monotone function on I onto C such that
F(r) is a simple arc for each r e I, this is a contradiction. Hence the
result holds.

COROLLARY 2.5. A hereditarily wunicoherent, arcwise connected
continuum s not circularly reducible.
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Proof. We sketch the proof of this result. Let X be an
hereditarily unicoherent, arcwise connected continuum. First observe
that the set {F(z): x € X} has maximal elements, where F: X—C is a
monotone function on X onto C such that F(x) is an are. If 2, z”
are such that F(x') and F(x") are maximal, then F(x’)ﬂF(m") # ¢ and
F('YyUF(x")+ C. From Corollary 2.4, if we have Xy, Xy + v, @, such

that F(z), F(x,), -+, F(x,) are maximal, then U F(x;) == C. Then the
fact that X is compact is used to complete the proof

3. Nomnalternating functions. The purpose of this section is
to generalize the definition of nonalternating functions to set-valued
functions and to derive some characterizations of such functions.

DEFINITION. A function F: X — Y is called nonalternating if and
only if for any pair v, ¥.€ F(X) there does not exist a separation
X — F~y) = AU B such that y,e F(A)NF(B).

ExAampPLE 7. Let X = [0, 1] and define F: X— X by F(@) = {0},
F(x) = [0, 2(x — 3)] for © > % and F(x) = [0, 2(3 — x)] for * < 4. Then
F' is continuous and nonalternating, but not monotone. Further, this
serves as a counterexample to theorems which are true for single-valued
functions [18, pp. 138-140].

DEFINITION. A multi-valued function F: X — Y is called semi-

single-valued (s.s.v.) if and only if F(x,)NF(x,) #* ¢ implies that
F(x,) = F(x,).

A very small change will allow us to get the counterpart to
Theorem 2.1 [18, p. 138].

THEOREM 3.1. Let F: X-—Y be continuous. Then F 1is non-

alternating if and only tf for each y e Y, and each quasi-component
Qof X—Fy), FHF@)NX—Fy) =@

Proof. Suppose that F' is nonalternating and that @ is a quasi-
component of X — F-Yy) for ye Y. Then, if

re F(FQ)N(X — Fy) — Q

there exists a separation X — F~(y) = AU B such that x€ A and QCB,
as @ is a quasi-component. However, this implies that F(A) N F(B) #
$, as x € F~(F(Q)) implies F(x)NF(Q) = ¢ which implies there exists
an 2’ € Q such that F(x) N F(2') # ¢. This is contrary to the assump-
tion that F' is nonalternating. If F is not nonalternating, there exist
points ¥, ¥.€ Y, and a separation X — F~(y,) = AU B such that y,¢
F(A)NF(B). Let xe A with y,€ F(x) and let @ be the quasi-component
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of X — F~(y,) containing x. Since y,€ F'(B), there exists #' € B such
that y,<€ F(2'). Hence,

e FHF@)YNX—Fy) —Q,

and the condition fails.
We also obtain

THEOREM 3.2. Let F: X— Y be continuous, and let yc Y. Let
Q be any quasi-component of Y — {y}. Then if F~YQ)N(X — F~y))
is contained in a quasi-component of X — F~Yy), F is nonalternating.

Proof. Let y, ¥,€Y, and let Q be the quasi-component of ¥ — y,
which contains y,. Then, since

F7y)N(X — F(y))CFH(QN(X — F(yy),
the hypothesis implies that for any separation
X—-FYy)AUB, A|B,

FYy)N(X — F~%y)) is contained in A or in B. Thus, F is non-
alternating.

DEFINITIONS. Denote the set of all points that separate ¢ and b
by E(a, b). Then call a, b conjugate in case E(a, b) = ¢. Then, if
is neither a cutpoint nor an end point, the set containing « and all
points which are conjugate to 2 is called a simple link. Finally, a
cyclic element of X is either a cutpoint, an end point, or a simple
link.

DEFINITION. A connected space is called semi-locally-connected
(s.l.c.) at a point x in case x has arbitrarily small neighborhoods whose
complements have only a finite number of components. If X is s.lc.
at each of its points, it is called s.l.c.

Using a result of Wallace [14] we can generalize a result on single-
valued functions in [18] to multi-valued functions.

THEOREM (Wallace). A function F: X—Y on a continuum X
wnto o continuum Y is anarthric if and only if for any subcontin-
wum H of Y and any subcontinuum K of X such that KNF-Y(H) =
PUQ, P|Q, there exist points pe P, q€ @, such that p and q are
conjugate.

THEOREM 3.3. Let F': X— Y be continuous and semi-single valued,
and let X be a semi-locally-connected, metric continuum and Y a
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metric continuum. Then F is nonalternating if and only if the
Jollowing hold.

(i) F 1s anarthrie,

(i) F s nonalternating on each cyclic element of X.

Proof. Suppose that F' is nonalternating. Let y€ Y, and suppose
there exists a point € E(a, b) — F~*(y), where a, b FF~(y). Now
y & F(p), thus (F(a) UF®)NF(p) = ¢ since F is semi-single-valued.
Moreover, there exists a separation X —p= AUB, A|B, with ac A
and be B. Let y' € F(p). Then, there exists a separation A’, B’ of
X — F~Y(y') such that ae A’ and be B’, which implies that F(A')N
F(B') #+ ¢. This contradicts the hypothesis that F' is nonalternating.
Thus, (i) holds.

In order to show (ii) holds, let £ be a true cyclic element of X
(i.e., a simple link). Let F(F)—= E'cY, and let y, 4, € E'. If £ —
F-y)NE = AUB, A|RB such that y,€ F(A)NF(B), then by [18, IV,
3.22 and 6.81], there exists a separation of X — F-Y(y,) = A'UB, A'|B,
with y,€ F(A')NF(B'), a contradiction.

Suppose (i) and (ii) hold. Let yeY. If X — F%y)=AUB,
A|B, and if x,€¢ A, x,€¢ B such that F(z)NF(x,) # ¢, then by the
result of Wallace there exist 2; and x; which are separated by F—(y)
and which are contained in the same cyclic element, but this contradiets
(ii). Thus F' is nonalternating.

COROLLARY 3.4. Amny nonalternating semi-single-valued fnnction
on a dendrite ©s monotone.

Proof. 1If a, be F~'(y) then by (i), E(a, b))cF~y), and E(a, b)
is a simple arc from a to b.

4. Composite functions and factorization. In this section some
of the properties of composite functions are investigated and a factori-
zation theorem is obtained.

DEFINITION. A function F: X — Y is called open in case whenever
U is open in X, F(U) is open in Y.

Let X, Y and Z be compact spaces, and let F, F,, and F, be
continuous functions such that F: X — Z, F,. Z— Y and F = FpoF,,
F:X—-Y.

Lemmas 4.1 and 4.2 are extensions of results which hold for
single-valued functions. The proofs are straightforward and are
omitted.

LeMMA 4.1, If F, is single valued:
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(i) F open implies that F, is open;

(ii) F monotone implies that F, is monotone;

(iii) F mnonalternating implies that F, is nonalternating.
In addition to this we can obtain:

LEMMA 4.2. The following statements hold.

(i) F, F, open tmplies F is open;

(ii) F,, F, monotone implies F is monotone;

(iii) F, monotone and s.s.v., and F, nonalternating imply F 1is
nonalternating.

We now turn to the problem of factoring functions. First we
have the known Theorem A, Whyburn [18, pp. 141-142], which is
stated below. (Note that Theorem A holds for any compact Hausdorff
space, as well as for metric spaces.)

DEFINITION. A function F: X — Y is called light in case F~(y)
is totally disconnected for each yec Y.

THEOREM A. Let g be a single-valued, continuous function from
X onto Y. Then there exist a space Z and continuous functions g,,
gy 9:X—Z, 9. Z— Y, such that g, is monotone, g, is light, and
g = 9,°0;.

We can extend this theorem to semi-single-valued functions, but
first we need the following lemma.

LEmMMA 4.3. Let &#CS(X), and let &7 have the finite topology.
Define o function F: &¥ — X by F(S)=S8 for all Se &¥. Then F
18 cOntinuous.

Proof. Let U be an open set contained in X. If S€.¢” and
SNU=# ¢, the set <U, X>={Se.”:SNU=+ ¢} is an open set in .&*
such that F(S)NU = ¢ for all SedU, X>. If ScU, then <U> =
{Se.s#: Sc U} is an open set in &” such that F(CUY)c U. Thus, by
Lemma 1.1, F' is continuous.

Note. If & is a decomposition, then F~*(x) = {S} where x€ S,
and if F: X— Y is semi-single-valued, then .&¥ = {F(x):xc X} is a
decomposition.

THEOREM 4.5. Let F': X— Y be continuous and semi-single-valued.
Then there exist a space Z and continuous functions F), F, with
F: X— Z single-valued, Fy: Z— Y, F = F,oF,, and such that F) is
monotone, and F, is light.
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Proof. Let f be the induced single-valued function on X into
S(Y). Then fIX)={F(x):2€ X} is a decomposition of Y. Then by
Theorem A there exist a space Z and continuous funetions f;, f; such
that f, is monotone, f, is light, and f = fiof;. Let F'* be the function
of Lemma 4.3, Then set F, = f, and F, = F'*of,. Thus, F, is single
valued and monotone and, from the remark following Lemma 4.3, F,
is continuous and light., Finally, F = F,oF,.

Finally, with Lemma 4.1 (i), we get:

COROLLARY 4.6, If F: X— Y 1s semi-single-valued, continuous
and open, then there exist continuous functions F,, F, such that F|
18 single-valued and monotone, and F, 1s light and open, and such
that F' = FyoF,.

5. Semi-single-valued functions. Let F: X— Y be a semi-
single-valued continuous function from X onto Y, and define the
collections @ = {F(2): x€ X}, and P={F~Yy):ycY}. That P and @
are decompositions into disjoint closed sets follows from the definition
of a continuous, semi-single-valued funection.

Let ¢: Y —@ and p: X— P Dbe the projections of Y onto @ and
X onto P, respectively. Define F* on P onto Y by F*¥D) = F(x) for
DeP and z€ D, and define /' on X onto @ by f'(x) = F(x). Note
that /' and f are essentially the same but @ as a decomposition has
the quotient topology rather than the finite topology. When F' is the
inverse of a single-valued function, we have by Theorem 5.10 [6],
that the quotient and the finite topologies are equivalent. We shall
generalize this result in Corollary 5.3. Finally, define f*: P—@Q by
D) = F(x) for De P and z€ D.

TeHEOREM 5.1. If X and Y are compact, the decompositions P
and Q are upper semi-continuous. Further, P and Q are Hausdorf
in the quotient topology.

Proof. Let V,, V, be disjoint open subsets of ¥ such that F(x,)C
V., and F(x,)CV,. Then, for 1=1,2, Y — FFYY — V;) is an open
set containing F(x;) which is contained in V; and which is the union
of members of Q. Similarly, if F-%(y,) # F~'(y,) are in P and if U,
and U, are open and disjoint with F~(y,)C U;, then X — F'F(X — U)),
i=1,2, are the required open sets. This shows that P and Q are
upper semi-continuous, and Hausdorfl in the quotient topology.

THEOREM 5.2. The functions F* and f' are continuous when P
and @ have the quotient topology.
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Proof. Since F¥D) = F(p~%(D)) for De P, Theorem 5.1 implies
that F'* is continuous. Also f' = qoF and hence is continuous by
Lemma 1.12.

Now we obtain a generalization of Theorem 5.10 [6].

COROLLARY 5.3. If X and Y are compact and F: X—Y is a
semi-single-valued continuous function, then the finite and quotient
topologies agree on Q = {F(x):xc X}, and f and f' are equivalent
Sunctions.

Proof. The function F'* is the inverse of a single-valued function.
Hence, Theorem 5.10 [6] applies.

THEOREM 5.4. The function f*: P— Q is a homeomorphism onto,
when X and Y are compact.

Proof. That f* is a single-valued function which is 1 to 1 and
onto follows immediately from the fact that F is semi-single-valued.
That f* is continuous follows from f* = qoF* Theorem 5.2 and
Corollary 5.3.

We associate with each multi-valued function F: X — Y the induced
function f on X into S(Y) and we can define a function F'* on f(X)
into Y by F*(f(x)) = F(x). Then FF = F*of. We consider briefly the
relationships between F, f and F'* and the properties of being
monotone, open, and nonalternating. A typical question is: “Does F
monotone imply that f is monotone, and conversely?’ Simple examples
show that f monotone does not imply that F' is monotone, and Example
8 shows that the converse fails.

ExAMPLE 8. Let X be the rectangle with corners (0, — 1), (1,
—1), 1, 1) and (0, 1) together with its interior. Let Y be the unit
interval. Let (%, y)€ X and definer, =% (1 — %), r.= 4 (1 + 2). Then
define 2, =r(1 — |y, =7+ |yl G —7), zz=7,— |y[(r,— %) and
2, =7, + |yl @A —r) with r;,, 2,€ Y. Define F: X— Y by F((x, y)) =
[2y 2:]U[%, 2. Then F is monotone and continuous but f is not
monotone.

However, if F' is semi-single-valued, we have

THEOREM 5.5. If F: X —Y s a semi-single-valued, continuous
function from X onto Y, then F is monotone if and only if f is
monotone.

Proof. If yeY, then there exists a unique S in F(X) such that
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yeS. Thus FYy) = {x: F(x) = S} = f~%(S). So F-y) is connected
if and only if f~%(S) is connected.

THEOREM 5.6. The following statements hold.

(1) F wmonotone tmplies F'* is monotone.

(ii) F open implies F'* is open.

(iii) If F s semi-single-valued, F open tmplies f is open.
(iv) F nonalternating implies F'* 1is nonalternating.
Further, we may state a partial converse to (i), (ii) and (iv).

THEOREM 5.7. If f is monotone, then
(i) F* monotone implies that F is monotone; and
(i) F* nonalternating tmplies that F 1is nonalternating.

THEOREM 5.8. If f is open, F'* open implies F is open.

6. Open functions. The purpose of this section is to show that
certain results in Whyburn [18] on open mappings can be generalized
to semi-single-valued functions and in some cases to arbitrary multi-
valued functions. In this section all spaces will be separable, metric

spaces.

REMARK 1. The definition of terms used in this section are those
of Whyburn [18].

REMARK 2. If X is compact, then a collection of subsets G of X
is continuous if and only if it is continuous in the limit sense.

THEOREM 6.1. Let F: X— Y be a continuous, semi-single-valued
Sunction of X onto Y. If F s open, then the collection {F~Y(y):
y € Y} is continuous in the limit sense. Conversely, 1f X is compact,
and if the collection {F~(y): y€ Y} is conttnuous, then F is open.

Proof. By Theorem 5.6, F' open implies f open and since F is
s.8.V., f{F(x)) = F(y), y< F(x). Thus, the first statement follows
from the theorem for single-valued functions [18, Theorem 4.31, p. 130],
and minor modifications of the proof in [18] will yield a proof of the
converse.

COROLLARY 6.2, Let X be compact and let F' be as in Theorem
6.1. Then F is open if and only if the collection {F~*(y):yecY} is
Ccontinuous.

We can also generalize a theorem due to Eilenberg, [18, p. 138].
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THEOREM 6.3. Let F: X—Y be continuous, semi-single-valued,
and onto. Then F is open if and only if for each sequence {y,:
n=1, <} in Y such that lim y, = y,, lim F~(y,) = F~(y,).

Proof. Suppose that F' is open, and that {y,} is a sequence in ¥
such that lim y, = 9,. In view of Theorem 6.1 we need only show

that F—l(yo)”ﬁ lim inf FF-Y(y,) = ¢. If xe F(y,), if U is an open set
containing #, and if U N F~%y,) = ¢ for infinitely many %, then F(U)
is an open set containing y, such that y, ¢ F(U) for infinitely many =,
a contradiction to lim y, = ¥,.

Now suppose that lim y, = y, implies lim F~Yy,) = F~(y,), and

let U be open in X. If F(U) is not open in Y, there exists y,e¢ U
and a sequence {y,}CY — F(U) such that lim y, = y,. Now y,€ F(U)

implies that there exists an ¢ F-%(y,) N U, and from the hypothesis
Un FYy,) # ¢ for all but finitely many #. Thus y,€ F(U) for all
but finitely many n, a contradiction. Hence F' is open.

The proof of the following lemma is straightforward and is omitted.
Note that in many of the following results the restriction to separable
metric spaces is unnecessary.

LEMMA 6.4. Let F: X— Y be continuous and onto. Then QC X

18 an tnverse set if and only if F(AN Q)= F(4) N F(Q) for each
Ac X,

LEMMA 6.5. Let F: X— Y be continuous and open. If QC X 1is
an inverse set, then F restricted to @ is open.

Proof. Let V be open in @. Then there exists an open set U
in X such that V=@ N U. Then, by Lemma 6.4, F(V)=F(UN Q)=
F(U) N F(Q), which is open in F(Q) since F(U) is open.

In order to establish the next result we need a theorem of
Michael’s [6, Theorem 2.5.1].

THEOREM B. If X s regular, and BC S(X) is compact, then
U{E: E e B} is closed.

THEOREM 6.6. Let F: X— Y be onto and continuous. Then, if
Ac X is conditionally compact:

(i) F4) = F(A);

(i) F(A) — F(A)C F(A — A).
Further, if F is an open function, and A s an open set,

(i) b(F(4)) C F(b(4))
where b(A) denotes the boundary of A.
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Proof.

(i) Let AcC X be conditionally compact. Then, by Theorem B,
F(A) is closed. Hence F(A)c F(A). Also F(A)c F(4A) since F is
continuous.

(ii) From (i), F(A) — F(A) = F(A) — F(A)c F(4 — A).

(iii) With A open and F open this is immediate from (ii).

LEMMA 6.7. Let U, U, U, be open sets such that U= U,U U,
If U,NU, =9, then b(U) = b(U) U b(U,).

Proof. If xeb(U), then xe U, or xc U,and x¢ U, U U,. There-
fore x e b(U) or x€b(U,). On the other hand ¢ b(U,) implies 2 ¢ U;
and x¢ U, U U,. Thus 2€b(U).

THEOREM 6.8. Let X and Y be continua, and let F: X—Y be
continuous, open and onto. Then:

(i) If X is a curve of order less than or equal to n, and if
F(x) contains at most m points for each xc X, then Y is a curve
of order less than or equal to nm;

(ii) If X is a regular curve and if F(x) is finite for each ux,
then Y 1is a regular curve;, and

(iii)) If X is a rational curve and F(x) countable for each ux,
then Y is a rational curve.

Proof.

(i) Let yeY, and let V be an open set containing y. Since F
is onto, there exists an xe€ X such that yeF(x). Let F(x) =
Wy -+, Y}, k<m. Suppose y =y, Then there exist open sets
V, V' of Y such that y,eV, {y,, o,y V" and VNV =¢.
Rurther there exists an open set U containing « such that F(U)c VU V'’
and such that b(U) contains at most » points (as X is a curve of
order less than or equal to ). Let V.= F(U)NVand V,=FU)NV'", V,
and V, are open and disjoint. Thus, by Lemma 6.7, 5(F(U)) o(V) U (V).
Therefore by Theorem 6.6, b(V,) Cb&(F(U)) < F(B(U)) and this latter
set contains at most nm points. Thus V, is the required open set
containing ¥.

(ii) A proof similar to the proof of (i) will establish (ii).

(iii) Let €Y, and let V be an open set containing y. Pick an
2z € X such that ye F(x). Since F(x) is countable, we may assume
that F() C VU (Y — V). Since X is rational, there exists an open
set U containing X such that F(U)c VU (Y — V), with bU)
countable. By part (iii) of Theorem 6.6, b(F(U))c F(b(U)) and
F@®(U)) is countable. Then F(U)N V is an open set containing ¥
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with countable boundary. This last since
EWU) =u(VNFU)UIY — V)n FU),

by Lemma 6.7.
Following Whyburn’s proof [18, p. 147, 7.4], we can prove

THEOREM 6.9. Let X be compact and let F: X — Y be continuous,
open and onto. If A is a connected open set in Y, and if Q is any
quast-component of F~Y(A), then AC F(Q).

COROLLARY 6.10. Let X and Y be locally conmected, compact
spaces, F: X — Y open and onto, and let A be any closed set in Y.
If C is any component of Y — A, then F-YC) has only a finite
number of components and each of these maps onto all of C under
F.

Proof. It follows from the hypothesis that any quasi-component
of FF-(C) is also a component of F~*C). Then if F~*(C) has an
infinite number of quasi-components, a sequence constructed by choosing
one element from each quasi-component must have a limit point.
However, each quasi-component is open; hence no subsequence can
converge to the limit point, a contradiction. Finally, C is open so
Theorem 6.5 implies that C C F(Q) for any quasi-component Q@ < F—*(C).

ProposITION 6.11. Let F: X— Y be open and onto, and let Y be
connected. If X, is an inverse set in X which is open and closed,
then F(X)) =Y.

Proof. Since X, is an inverse set and F is open, F(X,) and
F(X — X,) are disjoint open sets whose union is Y. Therefore,
F(X) =Y.

REMARK. Let F: X— Y be continuous. If C is a subset of Y,
then F~%(C) need not be an inverse set. However, if F' is an s.s.v.
function, we have:

LEMMA 6.12. Let F: X— Y be an s.s.v. function. If CCY,
then F'—YC) is an inverse set.

Proof. If xe F'FF~YC), then F(x) N F(F*C)) # ¢. Thus there
exists an 2’ € F~(C) such that F((x) N F(«') # ¢. Then since F is s.s.v.,
F(x) = F(x'). Therefore, F(x) N C # ¢, and hence x € F'~*(C). Conse-
quently, F-%C) is an inverse set.

THEOREM 6.13. Let X be compact, and let F: X— Y be a con-
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tinuous, open semi-single-valued function on X onto Y. Let C be any
compact, connected set in Y. Then for any component K of Q =
F~-YC), it follows that C C F(K).

Proof. Since F is s.s.v., F~{Q) is an inverse set in X by Lemma
6.12. Hence, by Lemma 6.5, F' restricted to @ is open and the result
follows by applying Theorem 6.9 to F' restricted to Q.

Note. Single-valued open, continuous functions map nodal sets
onto nodal sets (4 is nodal in case AN X — A is at most a single
point), but Example 3 is a counterexample to this result for s.s.v.
mappings. In fact, in Example 3, F' is the inverse of a continuous
single-valued function.

7. Quasi-monotone functions. In this section X and Y are
compact and connected, and F: X — Y will always denote a continuous
function of X onto Y,

DEFINITION. A function F'is called quasi-monotone in case for
each continuum Y,C Y with nonvoid interior, F~*(Y,) has only a finite
number of components C, and Y, F(C,) for each component C, of
F~Y,. Note that any monotone function on a continuum is quasi-
monotone.

REMARK. If ¢ is a continuous single-valued function on a compact,
connected, locally connected space X, then ¢g(X) is also compact,
connected and locally connected. However, when F' is multi-valued
this may not be the case, so it is sometimes necessary to assume that
Y as well as X is compact, connected, and/or locally connected.

The proof of Theorem 7.1 is very much like the proof of the
corresponding theorem for single-valued functions [18, p. 152, Th. 8.1]
and is omitted.

THEOREM 7.1. Let X and Y be locally conmected continua, and
let F: X— Y. Then F is quasi-monotone if and only if for each
component C of the inverse of any connected open set V of Y, VC
F(C).

COROLLARY 7.2. Ewvery open function on a locally connected
continuum onto a locally connected continuum is quasi-monotone.

Proof. Corollary 6.10 implies that the hypotheses of Theorem 7.1
are satisfied.
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THEOREM 7.3. If X and Y are locally connected continua, and
of F is light, then F is quasi-monotone if and only if F is open.

Proof. If F is open, then F'is quasi-monotone by Corollary 7.2.
Suppose that F is quasi-monotone, let U be open in X, and let y ¢
F(U). If xeUnN F~Yy), then since F is light there exists a connected
open set U’ U such that x¢ U’ and (U’) N F~(y) = ¢. Let Q be the
component of ¥ — F(b(U')) containing ¢, and let C be the component
of F-YQ) containing . Then Cc U’ since CNHU’) = ¢, and by
Theorem 7.1, @ C F(C). Then QcC F(C)c F(U')c F(U) and Q is an
open set containing y. Thus F(U) is open.

THEOREM 7.4. Let X, Y and Z be locally connected, and let
F=FpF, F. X—Z, F,: Z— Y with F, and F, continuous and onto.
Then:

(i) If F is quasi-monotone and F, is single-valued, F, is quasi-
monotone; and

(ii) If F, and F, are quasi-monotone, F' is quasi-monotone.

Proof.

(i) Let V be an open connected set in Y, and let C be a com-
ponent of F;%(V). Let C' be a component of F~*V) contained in
F(C). Then, since F, is single-valued, F(C')CC, and since F
is quasi-monotone, V C F,0F'(C’) = F(C). Therefore, V < F,(C), as
FpoF(C')C F)(C), and F, is quasi-monotone by Theorem 7.1.

(i) Let V be an open connected set in Y. Let C be a component
of F(V), and let @ be a component of F;*(V) such that C contains
a component of F7 Q). Then, since F, is quasi-monotone, @ < F,(C).
Further, F, quasi-monotone implies that VC Fy(Q). Thus VC
FyoF(C) = F(C).

THEOREM 7.5. Let X and Y be locally connected and let F: X— Y
be s.s.v. Then F is quasi-monotone if and only if there exists a
locally connected continuum Z, a continuous monotone function F,
of X onto Z and a conlinuous, light, open function F, of Z onto Y
such that F = F,oF,.

Proof. 1If such a Z, F,, and F, exist, then F' is quasi-monotone
by Corollary 7.2 and by Theorem 7.4, Part (ii). If F' is quasi-monotone,
then by Theorem 4.5 there exists a continuum Z, and a monotone,
single-valued function F', of X onto Z, and there exists a continuous,
light function F, of Z onto Y, such that ¥ = F,oF,., By Theorem
7.4, F, is quasi-monotone and therefore, by Theorem 7.3, F', is open.
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Finally, combining the results of Theorem 7.3, the fact that
monotone functions are quasi-monotone, and Theorem 7.5, we have the
following result for semi-single-valued functions.

THEOREM 7.6. A topological property of locally connected continua
18 invariant under quast-monotone, semi-single-valued functions f
and only if it is invariant under both monotone and light, open,
semi-stngle-valued functions.

8. Local properties and functions with finite images. In
previous sections we have exhibited examples of functions that did not
preserve local properties. We saw that even if F(x) was an arc for
each x, the image of the unit interval need not be locally connected.
The purpose of this section is to show that if F(x) is finite for each
x€ X, then local properties may be preserved. The main theorem is
this: If F' is defined on a locally connected metric continuum X onto
a metric continuum Y, and if F(x) is finite for each x, then Y is
locally connected.

NOTATION. Designate the number of points in F(x) by N(F(x)),
and if N(F(x)) < n for all », then write N(F') < n. N(F) = n means
that N(F') = »n and there is at least one x such that N(F(x)) = n. If
F(x) is finite for each «, write N(F') < «. Finally, N(F') = » means
N(F(x)) =n for all ze X,

LeMumA 8.1. Let F: X— Y be continuous with N(F') < «, If
K is a connected subset of X, then F(K) has at most n components,
where n = min N(F(x)). If C is a component of F(K) and if zc K,
then F(x) N C #= ¢.

Proof. Let C be a component of F(K) and let x€ K. Suppose
Fz)NC =¢. Define K, ={wc K: F() NC = ¢} and k,={x e K: F(x) N
C+¢). Clearly K, K,+# ¢ and K= K, U K,. Also K,c F~{C) and
so K,NK,=¢. If xeK,NK, then F(z) NC # ¢ and x¢c K, implies
there is an «'¢ K, such that F(x') N C + ¢, a contradiction. Hence
F(zx) N C +# ¢. Finally since n = min N(F(x)), € K, there can be at
most n components of F(K).

PropoSITION 8.2. Let F: X— Y be open, continuous, and onto
with N(F') < co. Then the following statements hold:

(i) X locally compact implies Y locally compact;

(ii) X locally connected implies Y locally connected.

Proof. Both proofs are done at once. Let ye Y and xze X such
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that ye F(x). Let F(x) ={y,vy, *+-,¥:}, and let V,, V,, .-+, V, be
disjoint open sets containing ¥, ¥, **-, ¥, respectively. Then there
exists an open set U with U compact (or U connected) such that
F(O)c Uk, V;, and F(U)N V; # ¢ for all j. Then since F is open,
F(U) and hence F(U) N V, is open. Further, F(U)c U:, V.. Thus,
when U is compact, F(U) N V, is compact and (i) is proved. Moreover,
when U is connected, F(U) has exactly k¥ + 1 components C;, each of
which is open. If C, is the component of F(U) containing ¥, then
C,c V, and C, is connected. Hence Y is locally connected.

We now state one of the main results of this section.

THEOREM 8.3. Let X and Y be compact metric spaces and let
F.: X— Y be continuous and onto with N(F) < . If X 4s locally
connected, then Y 1is locally conmnected.

Proof. We shall show that ¥ has property S. Let ¢ > 0. Let
xe X and F(x) = {y,, -+, ¥:}. There exist open sets V,, -++, V, in ¥
with d(V;) < ¢ for each 4, and V; N V; = ¢, ¢+ J, such that y, € V;
for each ¢. Since X is compact and locally connected, there exists an
open connected set U, containing 2 such that F(U,) c UL, V,. Thus,
by Lemma 8.1, F(U,) has k components each of which has diameter
less than . We obtain such a U, for each z and extract a finite
subcover U, +-+, U, .. Then, if F( U.,) has components Cj, «-+, Cj ,,
the collection {C;;:4 =1, +-+,q,7 =1, --+, n;} is a finite cover of Y by
connected sets of diameter less than ¢, Hence, Y has property S and
is locally connected.

COROLLARY 8.4. Let X be a locally connected, metric continuum,
Y a metric space, and let F: X — Y be continuous. If N(F') < oo,
and min N(F(x)) = n, then F(X) 148 the union of at most n locally
connected, metric continua.

ProposiTION 8.5. If F: X— Y is a continuous function with
N(F'y = n and if C is a component of F(X), then F'*: X — C defined
by F*(x) = F(x) N C is continuous with N(F*) =< n — r, where r is
the number of other components of F(X).

Proof. Since C is a component of F(X) there is an open subset
of Y which contains C and does not meet any other component of F(X).
By Lemma 8.1, F(x) N C = ¢ for all xe X. Thus the result follows
by Lemma 1.1.
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