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This paper is concerned with the problem of finding condi-
tions on a solvable Lie group G and a closed subgroup H
which are sufficient for G/H to have topological structure of
a fiber bundle with compact base space and euclidean fiber (if
this is the case, we say that G/H has a euclidean fibering).
The main results are the following two theorems,

THEOREM 5.3. Let G be a connected solvable linear Lie
group, and H a closed subgroup which splits in G. Then G/H
has a euclidean fibering,

THEOREM 5.4, Let G be a connected solvable matrix group,
and assume that G is of finite index in its algebraic group
hull, Then for any closed subgroup H of G, G/H has a
euclidean fibering.

To the best of the author’s knowledge, these are the first
results on existence of such fiberings which do not require that
the isotropy subgroup H have a finite number of connected
components,

A solvmanifold is a Hausdorfi space X on which a solvable Lie
group G acts transitively. It is well-known that, if x€ X and H is
the subgroup of G leaving x fixed, then X is homeomorphic to the
coset space G/H. The problem investigated in this paper is that of
finding conditions on G and H which are sufficient for G/H to have
the topological structure of a fiber bundle with compact base space
and euclidean fiber, and such that the action of the structure group
on the fiber is equivalent to the action of a linear group. Such a
fibering will be called a euclidean fibering. We are led to suspect the
existence of euclidean fiberings by Mostow’s result of [4], in which he
shows that G/H is covered a finite number of times by the Cartesian
product of a compact solvmanifold and a euclidean space.

Our main results on euclidean fiberings are the two theorems quoted
above.

In addition to these results on euclidean fiberings of solvmanifolds,
we obtain in § 3 generalizations of some results of Togo on splittable
matrix groups (cf. [9], [10], [11]). Togo [10] has proved Theorem
3.1 for the case that H is a Zarigki-connected C*=-group over an
algebraically closed perfect field, and has given an example (p. 319
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in [11]) to show that the theorem is not generally true if HN N is
not connected.

The research in this paper was originally done for the author’s
doctoral dissertation at the Johns Hopkins University. The author
wishes to express his gratitude to Prof. G. D. Mostow for his advice,
encouragement and direction.

2. Notation and preliminaries. If G is a Lie group, we shall
always mean by ® the Lie algebra of G, and Ad will denote the
adjoint representation of G by automorphisms of ®; if H is a subgroup
of G, AdH denotes the image of H in AdG under Ad.

If G is a connected Lie group (we shall also say, equivalently,
that G is an analytic group), and H is a subgroup, H is said to be
full in G if no proper analytic subgroup of G contains H. H is said
to be uniform in G if G/H is compact, H being the topological closure
of H. It is shown in [3] that if G is nilpotent, and simply connected,
then there is a unique subgroup H in which the subgroup H is full,
and H may also be characterized as the unique analytic subgroup of
G in which H is uniform.

We shall often use without explicit reference the following fact:
Let G be a Lie group, H a closed subgroup, and F' a closed subgroup
invariant under inner automorphism by elements of H, and such that
FNnH is uniform in . Then HF ={h-f|hc H,fcF} is a closed
subgroup of G. Clearly HF is a subgroup, and to see that it is closed
we need only to observe that HF/H, being a continuous image of the
compact space F/F N H, is a compact, hence closed, subset of G/H, and
consequently the inverse image HF of HF/H in G is closed.

If o is a representation of the Lie group G, we say that a sub-
group H of G is p-reductive if o(H) is a reductive (i.e., fully reducible)
subgroup of o(G). It is known that a connected solvable matrix group
is reductive if and only if it is abelian and consists only of semisimple
matrices (a matrix is called semisimple if its minimal polynomial has
no repeated roots).

All linear transformations considered will be on vector spaces over
the real or complex numbers. A linear transformation z is said to be
unipotent if, for some integer %, (x — I)* = 0, I being the identity.
Any nonsingular linear transformation & may be written uniquely in
the form x = su = us, where s is semisimple and u is unipotent; s
and « are called respectively the semisimple and unipotent parts of =z,
or the Jordan components of «.

By an algebraic matrix group we shall mean a subgroup of GL(%, R)
(resp. GL(n, C)) which is the intersection of some algebraic variety in
E" with GL(n, R) (or in E** with GL(n, C)), GL(n) being embedded
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in euclidean space in the usual way. If H is a matrix group, the
intersection of all algebraic groups containing H is called the algebraic
group hull of H. If « and y are in GL(n), ¥ is called an adherent of
2 if y is in every algebraic group containing . In particular, the
Jordan components of 2 are adherents of z.

We shall say that the space X has a euclidean fibering if X is the
total space of a fiber bundle having a compact base space, euclidean
fiber, and a group whose action on the fiber is equivalent to the action
of a linear group.

The term I-invariant exp-set will be used as defined in [5], namely:
Let 1" be a group of automorphisms of a Lie group G, S be a subset
of G, and let dI” denote the group of automorphisms of ® induced by
I". Siscalled a /M-invariant exp-set if there exist linearly independent
subspaces &,, ---, S, of ®, each invariant under d/’, such that the
mapping s, + 8, + ++- +8,—exps,;-exps, -+ exps, is a homeomorphism
of &+ -+, =6 onto S (s; in &,). Thus the operation of /" on
S is equivalent to the operation of the linear group d/” on &. If H
is a subgroup of G and "5 is the group of inner automorphisms of G
by elements in H, we shall also call a ["g-invariant exp-set an H-
invariant exp-set.

Topological terms applied to matrix groups will always refer to
the euclidean topology induced on GL(n), not the Zariski topology,
unless otherwise stated.

3. Splittability of solvable groups. In this section, we consider
different definitions of splittability for solvable groups. We first define
splittability for linear groups.

DEFINITION. Let G be a solvable linear group, and H a subgroup.

(1) G is said to be Jordan-splittable if it contains the Jordan
components of each of its elements;

(2) G is said to be splittable if G = A+ N (semi-direct), where A
is a maximal abelian subgroup of semisimple elements of G, and N is
the subgroup of unipotent elements in G;

(8) H is said to split in G if there is a semi-direct decomposition
G=A-N as in (2), with H=(HN A)-(H N N) (semi-direct).

It has been shown by Togo in [9] that for connected linear groups,
(1) and (2) above are equivalent. We generalize this result in the
following theorem.

THEOREM 3.1. Let G be a connected splittable solvable limear
group, and H a subgroup of G with H N N connected, where N 1is
the subgroup of unipotent matrices in G. Then (1), (2), and (3) above
are equivalent conditions on H., Furthermore, if any of these are
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satisfied, them wmaximal reductive subgroups of H are conjugate by
inner automorphism from H N N.

Proof. It is obvious that (3) implies (2). Conversely, if H is
splittable, so that H = Az(H N N) (semi-direct), then A, is contained
in a maximal reductive subgroup A of G; since G is connected we have,
by the result in [9], G = A+ N (semi-direct), and Ay, = HN A, so H
satisfies (3).

Proof that (1) implies (2). Let H be the algebraic group hull of
H, and 2 a unipotent element of H, so 2 is an adherent of some
element y € H, Since # is a unipotent adherent of ¥, x is an adherent
of the unipotent part of y [1]; but H N N, being a connected group
of unipotent elements, is algebraic, so s€e HNN. Thus HNN =
HNN. Let M, be a maximal reductive subgroup of H containing the
maximal reductive subgroup A; of H, +=1,2. By Theorem 7.1 in
[7], there is ne HN N with «Mpn~ = M,; and H = M,- (H N N) (semi-
direct). Since A; = M; N H, and nec H, it follows that ndAn* = A4,,
and H=(HNM)-(HnN). We have thus shown that (1) implies (2),
and that (1) implies that maximal reductive subgroups of H are con-
jugate by inner automorphism from H N N.

Proof that (2) implies (1). Suppose H = Az« (N N H) (semi-direct).
If A, is the algebraic group hull of Ay, then by Proposition 5.5 in
[1], H= 4;- (NN H) is algebraic, since NN H, being a connected
group of unipotent elements, is algebraic. If xe€ H, and 2 =s-u is
the Jordan decomposition for x, then u¢ H, so %, being unipotent, is
in NNnH= NnNH. Thus s =au" is in H, and it follows that H is
Jordan-splittable.

Definitions (1) and (2) are not equivalent unless H N N is connected,
as counterexamples of Togo show ([10], [11]). It is obvious, however,
that (3) always implies (2), and the first part of the proof did not use
the assumption that H N N is connected, so (2) and (3) are equivalent
for subgroups of connected splittable linear groups.

We now make analogous definitions for simply connected abstract
groups.

DEFINITION. Let G be a connected, simply connected solvable Lie
group, and H a subgroup.

(1) H is said to be Jordan Ad-splittable if AdH, the image of
H in the adjoint group of G, is Jordan-splittable;

(2") H is said to be splittable if H= Ay+-(H N N) (semi-direct)
where A, is an Ad-reductive subgroup of H, and N is the maximum
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analytic nilpotent normal subgroup of G.

(3") H is said to splitinG if G=A-N', H=(ANH)-(HN N')
(both semi-direct), where A is Ad-reductive and N’ is an analytic sub-
group of N normal in G.

For a suitable faithful representation of G, Def. 3 is equivalent
to Def. 3. We deal in this paper with spaces G/H where G is a
solvable linear group and H is a closed subgroup. When we refer to
H splitting in G it will always be in the sense of Def. 3.

Taking H = G in definitions (1'), (2'), we obtain equivalent condi-
tions on G. To see this, observe that if G satisfies (1), then AdG,
being Jordan-splittable, can be written AdG = A’ - AdN, where A’ is a
maximal reductive subgroup of AdG. Letting 2 be a complementary
subspace to ¢ in ® invariant under A’, it follows easily that & =
A + N (semi-direct), and that the analytic group A determined by U
is Ad-reductive, so G is splittable, Conversely, if G = A- N (semi-
direct), with A and N being as in Definition (2'), then AdG = AdA - AdN
(semi-direct), so by Theorem (3.1), AdG is Jordan-splittable.

We now prove a partial analogue of Theorem 8.1 for abstract
groups.

THEOREM 3.2. Let G be a connected, simply connected solvable
splittable Lie group, and H a subgroup of G containing no proper
analytic subgroup central in G. Assume that H N N is connected,
and that Ad(HN N) = AdH N AdN, where N is the maximum analytic
nilpotent normal subgroup of G. Then H satisfies (1') if and only
if it satisfies (2'), and in this case maximal Ad-reductive subgroups
of H are conjugate by immner automorphism from H N N.

Proof that (1) implies (2). Let < H. Since AdH is Jordan-
splittable, we can find §’, w € H with Ads’ semisimple, Adu € AdHN AdN,
and Adh = Ads’Adu = AduAds’. Since AdH N AdN = Ad(HN N), we
can assume u€ HNN. Now Ad(h*s'u)=e, so hs'u=z2c HN Z,
where Z is the center of G. Letting s = s'27%, we have & = su. Now
Ad(sus~u™) = e, so susu*eZN HNN, which is an analytic sub-
group of H central in G, and therefore reduces to the identity. Thus
su = us. A similar argument shows that s and % are unique, if we
require € H N N.

Let A, be a maximal Ad-reductive subgroup of H. Then Ad(Az)
is a maximal reductive subgroup of AdH. For suppose T is a maximal
reductive subgroup of AdH containing Ad(Az), and let t€T. There
is h € H with Adh =t; for any a € Ay, Ad(aha'h™*) = (Ada)t(Ada) 't~ =
e, so aha*h*e HNNNZ = (¢). Thus h commutes with all of Ay,
and Adh is semisimple, so h € Ay, and t€ Ad(Ay), whence T C Ad(Ap).

If A, and A% are maximal Ad-reductive subgroups of H, then
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there is n = Adu, with we HN N, such that n(AdAz)n = Ad(A%),
so Ad(uAzu~") = Ad(A%). Thus for any ac Ay, there is a’ € A, with
Ad(wau=a’) = e, so (uau'a’)e Z N H. Now any element of Z N H is
contained in every maximal Ad-reductive subgroup of H, so uau~'a’ € A,
and hence uau—'c A%y. It follows that wdu'cC A%, and, by maximality
of Ay, wAzu=t= A%. We have shown that maximal Ad-reductive sub-
groups of H are conjugate by inner automorphism from H N N.

To show that H is a semi-direct product of the form A% (H N N),
we observe that if » = s-u is the unique decompostion given above
for h, then since s is contained in a maximal Ad-reductive subgroup
of H, there is n€ HN N with nsn—*e€ Ay, so h = (nsn™) - (ns~'n'su)
is a decomposition of the desired form. Since Az N (H N N) is contained
in HN N N Z, which consists of the identity alone, the decompostion
is semi-direct.

Proof that (2') implies (1'). If H= Az-(HN N), then AdH =
AdAgz-Ad(HN N), and since Ad(H N N) is connected, it follows from
Theorem 3.1 that AdH is Jordan-splittable.

The definitions obtained by requiring that AdH satisfy (2) or (3)
are not in general equivalent with (2') and (3’) as stated, as simple
counterexamples show.

That the assumption Ad(H N N) = AdH N AAN is necessary for
the theorem to hold, is shown by the following example: Let G be
the simply connected Lie group whose Lie algebra is spanned by X, Y, Z,
with bracket relations [X,Y]|=27; [X,Z]= —-Y; |Y,Z]=0; let h =
exp(27rX)-exp Y, and let H be the cyclic subgroup of G generated
by h. Then AdH is a discrete group of unipotent elements, so H is
Jordan Ad-splittable, and H N N = (¢); thus if H were splittable in
the sense of (2'), H would be an Ad-reductive subgroup of G, which
is not the case.

4. A lemma on nilpotent groups. We prove here a generaliza-
tion of Case 2a in Theorem 2.1 of [5] which will be used to apply
the results of the preceding section to fiberings of solvmanifolds.

LEMMA 4.1. Let G be a connected, simply connected nilpotent
Lie group, R a fully reducible group of automorphisms of G (t.e.,
the group dR of induced automorphisms of & s fully reducible,
considering & as vector space), and H an analytic subgroup of G
invariont under R. Then there is a closed subset E of G, invariant
under R and homeomorphic to a euclidean space, such that the
mapping of E X H onto G given by (e, h) — e« h is a homeomorphism.

Proof. We prove the lemma first in the case that H is normal
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in G. Since © is invariant under dR, there is a complementary subspace
¢ in @ invariant under dR. Since 8=C+ 9, G=exp(€+ ). Let geG.
Then there is a unique element Xe® withg = expX,and X =Y, + Y,
with Y, e @, Y,€ 9. Let h =exp(—Y,) exp (Y, + Y,). By the Campbell-
Hausdorff formula, & = exp (Y, -+ @), where Q is a finite linear combina-
tion of terms of the form ad™ (Y, + Y,)-ad”Y,---ad’(Y,+ Y),).
ad™Y (Y, + Y,), with XY(p;, +¢) < dim®. Since adY(Y,+ Y,) =
[Y, Y,]e9, and adZ(D) D for all Ze®, we see that Qe D.

Consequently Y, + Q<€ 9, and » € H. Thus, we have g = (exp Y )h =
¢+h, with ec E = exp®. To show uniqueness, we suppose e, = €,+ h,
with e, e;cexp @, h, h,€ H. Then e, = e;h.hi" = e,h’, so exp (loge,) =
exp (log ¢,) - exp (log #’). Again using the Campbell-Hausdorff formula,
we have exp (log e,) - exp (log ') = exp (log e, + Y), where Y€ . Then
exp (log ¢,) = exp (log ¢, + Y), whence log ¢,=loge,+ Y, s0 YeHNE=
(0), and consequently e, = ¢,, h; = h,.

The map of (E x H)— G given by (¢, h) — ek is continuous, by
continuity of group multiplication; let 7w denote the projection (as
vector space) of & onto € given by n(Y, + Y,) = Y,, where Y,€@,
Y,e 9. Since 7 is linear, it is continuous. It is clear from the
construction that, to obtain the representation e¢-% for an element
g€ @G, we define ¢ by ¢ = exp (7(log g)). Since log, m, and exp are
continuous, ¢ depends continuously on g, and hence h = e¢~'g does also.
Thus ¢: (e, h) — eh is a homeomorphism. That E is homeomorphic to
euclidean space follows from the fact that exp: € — E is a homeo-
morphism.

In the case that H is not normal in G, let H, be the normalizer
of H in G, and define inductively H,., to be the normalizer of H; in
G(1=1,2,---). For some integer K, H, = G. That this is true is seen
by observing that for all 7, H; is connected, so either dim H; > dim H,_,
or H,= H, ,. But if H,= H, , then the &/9, part of adD; has no
nonzero eigenvector corresponding to the eigenvalue zero, and this
contradicts the nilpotency of &. Therefore, dim H; > dim H,_,, so
Hy = G for some K < dimG.

Since H;_, is normal in H,; (letting H,= H), H;, = E;- H, ,, by
the first part of the proof, where E; is a euclidean subspace of H,
invariant under R (clearly H, is invariant under R for all 7). Then
the map of By X B, X -+« X B, x H— G given by (eg, +--, e, h) —
ex*ex_,+++ el can be factored into

Ex X Ex ;X oo X B, X H)— (Eg X +++ X E, x H)
—(BHg X oo X By Xx H)— ¢+ — (He X He )— G,

each of which is a homeomorphism, and, letting F = EgE._,--- E,,
the image of Ex X Ex_; X +++ X E, under this map, we see that E is
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homeomorphic to euclidean space, and is closed in G, since E x (id.) is
closed in E x H.

It is clear from the construction that E is an R-invariant exp-set.

5. Applications to fiberings of solvmanifolds. Before consid-
ering more general types of solvmanifolds, we wish to single out
one special case, in which the fibers are permuted transitively by a
reductive subgoup of G.

THEOREM 5.1. Let G be a connected splittable solvable linear
group, H a closed subgroup which splits in G, and assume H N N s
connected. Then G/H has a euclidean fibering such that the fibers
are permuted transitively by a reductive subgroup of G.

Proof. Let G=A-N, H= (HnA)-(HN N) be the simultaneous
semi-direct decompositions of G and H. A/H N A, being a connected
abelian group, may be written as the direct produect of a toroidal group
and a vector group. Let P denote the inverse image in A of the
toroidal group, and let V' denote a complementary subgroup to P in
A, so V is a vector group, and an A-invariant exp-set, and A = P-V
(direct).

By Lemma 4.1, there is an Ag-invariant exp-set E such that
N=E-(HNN), since HN N is analytic. Now we may write G =
P-V-E-(HNN), or letting W={v-¢e|lvec V,ec £}, G=P- W-(HNN),
H=(PNnH)-(HNN), where PN H= Ay, and W and HN N are
Ag-invariant exp-sets. By Lemma 4.1 in [5], it follows that G/H is
a fiber bundle over P/H N P, which is a toroidal group, with fiber W,
which is a 'euclidean space, and the group P permutes the fibers
transitively.

We now prove a lemma on fiber bundles which we shall need later.

LEMMA 5.2. Let B be the total space of a fiber bundle with base
space X, fiber F, X F,, and group G, where F, F, are topological
spaces on which the Lie group G operates, and the operation of G
on F, x F, is given by g+(f, ) =@+ f,9+f). Then B is the total
space of a fiber bundle with fiber F, and group G, whose base space
Y is itself a fiber bundle with base space X, fiber F,, and group G.

Proof. We can regard the space B as the quotient space of the
space

T1=jg{(xyf1,fz,j)lxe Uj;flanfzer}
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by the relation

R (x, fo, fo DR, fL, f1 B) if =2,
Ji=g@) - f1, fi= g(®)-fa,

since G operates componentwise on F, X F,; here {U,;} is the family
of coordinate neighborhoods on X, and g¢,;(x): U,N U;— G are the
coordinate transformations.

Let Y be the fiber bundle with base space X, fiber F), group G,
coordinate neighborhoods {U,} and coordinate transformations g,;, whose
existence and uniqueness up to equivalence is proved in Theorem 3.2
in [8], and let +;: U; x F,— p~(U;) be the coordinate functions,
where p: Y — X is the projection. Y may be regarded as the quotient
space of

TZ :jy,{(xyflyj)lxe Uj’fleFl}
by the relation
R.: (z, fu, DR, f1, k) if 2 =2, fI = g.(2) 1.

Denote by ¢, the map of 7T, onto B given by mapping a point
into its R,-equivalence class, and by ¢, the map of T, onto Y given
by mapping a point into its R,-equivalence class, so ¢, and g, are open
and continuous.

Define n: B— Y by n(q.(x, f1, f5, 7)) = @i, fi1, 7). 7 is well-defined,
for if gy, fi, f2 J) = (@', fi, i, k), then z=2a', fi = g,i()-f, so
9, 1, 7) = q(«', f1, k). It is clear that 7 is open and continuous,
since ¢, and ¢, are both open and continuous.

Let V; = p~%(U;), so {V;} is an open covering of Y, and define ¢;:
Vix Fy—n=Y(V;) by @i(y,f.) = ¢.(¥7(¥), f2, 5). Since p(q:(v5(¥),[2 7)) =
p8:(v7(Y), 3) = p() € U;, piV; X Fy) cw(V;). To see that ¢; is onto,
observe that if b = q\(x, fy, fi, k), then b = q,(x, g, (%) + f1, 9::(®) - 2, 2),
80 b = (i, g:.(®) « f1), 95(x) « f2, 7). The openness and continuity of
@; follow from that of g, and ;™.

To show that @; is one-to-one, suppose that oy, f) = @', f2).
Then q,(v7'(¥), f2 3) = @:(v5'(¥'), f2,7), hence f,=fY, and ;' (y) =
+»7Y(y’). Since 4; is one-to-one, ¥y = ¥, so @; is one-to-one.

We have thus shown that B has a fibering of the desired type,
and we need only show that G is the group of the bundle. Suppose
ye V;N V,, and consider f; = @i}, @;,(f). Since @iy, f) = oy, f7)
we have q,(v;'(¥), f2, §) = ¢.(v’®), fi, k), or, denoting 7' (y) by (=, f),
vi') by (@, ), o, fi, [5, 9) = @@, 1, 13, k), s0 fy = g,j(%) - fo. Since
g.;(®) € G, the lemma is proved.
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We now apply our previous results to prove two theorems on the
existence of euclidean fiberings.

THEOREM 5.3. Let G be a commected solvable limear Lie group,
and H a closed subgroup which splits in G. Then G/H has a euclidean

fibering.

Proof. Let N denote the analytic subgroup of unipotent elements
of G, let Az be a maximal reductive subgroup of H such that H =
Az-(HNN), and let A be a maximal reductive subgroup of G con-
taining Az, so G=A-N, A= HNA. If we denote by F the
minimum analytic subgroup of N containing H N N, then H is contained
in the normalizer of F', and the subgroup HF is closed in G, since HF/H =
F/F N H is compact. HF splits in G, since HF = Ap-(HN N)F =
Ay - F (semi-direct), and HFF NN = F.

Let A, be the minimum analytic subgroup of A containing A,
and the maximum compact subgroup of 4, and let V be a subgroup
of A complimentary to Az. Then V is a vector group, A= A,-V,
and G=A;-V-N. Letting S= V-N, we have HS = A;-S (semi-
direct), HS is closed, AzS/Ax = S/S N Az = S is euclidean, and G/HS =
Ay+S/Az-S is homeomorphic to A;/Ay, which is compact.

Now G/H is a fiber bundle with base space G/HS, fiber HS/H,
and group HS, acting on HS/H by left translation. Since HS/A, =
ALS/Ay is euclidean, and hence solid, we can reduce the group of the
bundle to Ay, acting on HS/H by left translation. (Theorem 12.5 in [8]).

Letting E be an Ag-invariant exp-set such that N = E.F (the
existence of F is proved in Lemma 4.1), we obtain HS = Az - V-E .- F =
V-E-F-Ap. Let Ay operate on V X E X F X Ay by a(v,e, f,a') =
(ava™t, aea™, afa™?, aa’), so the homeomorphism of HS onto
V x E x F x Ag is equivariant with respect to the action of A, on
HS, by left translation, and on the product space as defined above.
The map of HS/Honto V X E x (F+-Ay/H) given by sH — (v, e, hH),
where s =v-e-h, veV, ec E, he F- Ay, is clearly a homeomorphism,
also equivariant with respect to the action of Ajg.

Thus the fiber HS/H of the bundle whose total space is G/H is
homeomorphic to the Cartesian product of a euclidean space V x E,
and the compact connected nilmanifold F'- Az/(FNH)-A, = F/FNH,
and the group Az of the bundle acts componentwise. Applying Lemma
5.2, we thus obtain the stated result, that G/H is a fiber bundle with
compact base space and euclidean fiber, and the action of the group
is equivalent to the action of a linear group. Proof of the theorem
is complete.

In case the eigenvalues of the elements of Ad(Ajy) are all positive,
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we can obtain Mostow’s result of [4] that the fibering is trivial.

COROLLARY. If the eigenvalues of the elements of Ad(Ag) are
positive, then G/H =Y x E’', where E' is a euclidean space, and Y
28 compact.

Proof. The action of the group Az on the fiber E'(=V X E) is
equivalent to the action of Ad(Az) on the tangent space G’ of E' at
the identity. Taking a basis in &’ with respect to which the matrices
of Ad(Ay) are diagonal, and letting A denote the minimum analytie
subgroup of diagonal matrices with positive eigenvalues containing
Ad(Ay), we observe that A operates naturally on @'. Defining
Ma)(exp e;) = exp (ale;)), for ac A, e, @, (€, being the subspaces of
& which make F’ an Aj,-invariant exp-set), we see that A defines an
operation of A on E’, and the action of Ay is equivalent to the action
of a subgroup of A, so we may regard A as the group of the bundle.
A is euclidean, and hence solid, so, by Theorem 12.5 in [8], we may
reduce the group of the bundle to the identity. Thus G/H=Y x E’.

The theorem just proved made assumptions about both G and H.
By making a somewhat stronger assumption on G, we are able to
drop all restrictions on H, except that it be closed.

THEOREM 5.4. Let G be a connected solvable matriz group, and
assume that G is of finite index in its algebraic group huwll. Then
Jor any closed subgroup H of G, G/H has a euclidean fibering.

Proof. Let H' be the intersection of G with the algebraic group
hull of H, so H' has a finite number of connected components. Denote
by H° the identity component of H’, by H* the intersection of H
with H°, and let FF = H-H° so F/H’ being contained in the finite
group H'/H®, has a finite number of connected components, and F is
closed in G. H* N[H° H]is uniform in [H°, H], since [H°, H] is the
minimum analytic group containing [H, H]C H*. Thus H*-[H°, H']
is closed, and normal in H°. The factor group H/H*.[H®’ H'], being
abelian and connected, is the direct product of a toroidal group and
a vector group. Let T be the inverse image in H° of the toroidal
group, so H°/T is a vector group, and T/H *, being a fiber bundle over the
compact base space T/H*-[H®, H°] with compact fiber H*-[H°, H'|/H*=
[H°, H'Y/H* N [H" H, is compact.

We note that, since H°/H* is a fiber bundle with euclidean base
space H°/T and compact fiber T/H*, by Corollary 1.6 in [8], H/H* =
F/H is homeomorphic with the product space (H°/T) x (T/H%*).

HT, being a finite extension of T (since HHNT = H/H* is
finite), is closed in G, and has a finite number of connected components,
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so HT = K- E, where K is a maximal compact subgroup of HT and
E, being a K-invariant exp-set, is euclidean (cf. [5], [6]). Observe
that K leaves T invariant under inner automorphism, since 7T =
HT N H° so there is a K-invariant exp-set Vin H° with F=V-E. K=
V-HT.

Since F' is Jordan-splittable and F' N N is connected, N being the
group of unipotent matrices in G, F' splits in G, so FN is closed and
normal in G. Then G/FN is a connected abelian group, so is a direct
product of a toroidal group and a vector group. Let G, be the inverse
image in G of the toroidal group, so G/G, is euclidean and G,/FN is
compact.

Since F'= V- HT, and HN N is connected, by Lemma 4.1 we can
write FFN= W'.-V.HP, where W' is a K-invariant exp-set com-
plementary to F N N in N.

Now G,/H is a bundle with compact base space G,/F'N, fiber FN/H,
and group F'N acting by left translation on FN/H. Noting that
FNIK=W'-V-E-K/[K~ W' x V X E, we see that FFN/K is solid,
and we can reduce the group of the bundle to K acting on FN/H by
left translation. Letting W= W’.V, we see that if ge FN and g =
w -t is the unique decomposition with we W, te€ HT, then the map
gH — (w, tH) is a homeomorphism of FFN/H onto W x HT/H, and this
map is equivariant with respect to the action of K, where K acts
componentwise on W & HT/H, by inner automorphism on W and left
translation on HT/H. By Lemma 5.2, G,/H is a fiber bundle over a
compact base space X with euclidean fiber and compact group K,
whose action on the fiber is equivalent to the action of a linear group.

G/H, being a bundle over the euclidean space G/G, with fiber G,/H,
is homeomorphic to the product bundle (G/G,) x (G,/H), by Corollary
1.6 in [8]. It is easily seen that G/H is thus a bundle over X with
euclidean fiber (G/G,) x W, and group K acting componentwise, where
K acts trivially on G/G, and by inner automorphism on W. Proof of
the theorem is complete.

The proof of Theorem 5.4 included an investigation of the factor
space of H°/H*, which can also be applied to H'/H, where H’ is the
minimum subgroup of finite index in the algebraic group hull of H,
and containing H. If H is the algebraic group hull of H, then H/H
is homeomorphic with the cartesian product of H'/H with a finite set
S, having the diserete topology, and each component is homeomorphic
to H'/H, which is the cartesian product of a compact space C and a
euclidean space E. Since the space C x S is compact, and H/H ~
(C x S) x E, we have thus proved the following special result:

THEOREM 5.5 Let G be a solvable algebraic matrixz group, and



EUCLIDEAN FIBERINGS OF SOLVMANIFOLDS 717

H any closed subgroup whose algebraic group hull is G. Then G/H ~
C X E, where C is a compact space and E is euclidean.
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