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If A= (a;; is a fixed » X » complex matrix, then it is
well known that the Gerschgorin disks G; in the complex
plane, defined by

(1) Gi={z:|z—ai,il§ﬁlai,jl},léign,

=
are such that each eigenvalue of A lies in at least one disk,
and, consequently, the union of these disks,

(2) ¢=U6:,

which we call the Gerschgorin set, contains all the eigenvalues
of A. It is however clear from (1) that the radii of these
Gerschgorin disks depend only on the moduli of the off-diagonal
entries of 4. Thus, if

(3) Qy=B=0,5):b,i =0, 1=7=n, and
lbi,i| = ‘a/i;jl!lé/l:yjén} ’

then it is clear that the Gerschgorin set G contains all the
eigenvalues of each n X n matrix B in 24, It is natural to
ask how far-reaching this elementary theory is in bounding
the eigenvalues of 2.

To extend the above results slightly, let x >0 be any
vector with positive components, and let X(x)=diag(®:,%s,** +,2x).
Applying the above results to X (x)AX(x) shows that if

(1) G =i lr— a5 - S lasle = 4},

then the associated Gerschgorin set
(2) Gx) = | Gix)
1=1

again contains all the eigenvalues of each Bc 2, for every
x > 0. Thus, the closed bounded set

(4) G@)=NG6w,

which we call the minimal Gerschgorin set, also contains all
the eigenvalues of each Be 2.

One of the major results in this paper is that each boundary
point of G(£,) is an eigenvalue of some matrix B in 2,4,
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Thus, the minimal Gerschgorin set G(2,) can be thought of as being
optimal.l In the irreducible case, it is shown moreover that each
boundary point of G(£2,) is geometrically the intersection of » Ger-
schgorin cireles, which is closely related to a result of Olga Taussky
[7]. It is also shown (Corollary 1) in the irreducible case that the
minimal Gerschgorin set G(£,) contains # disks with positive radii.
Finally, an analogue of a result of Gerschgorin [5] is obtained for
disconnected minimal Gerschgorin sets.

It is worth pointing out that there are several other methods
[6, 8] for determining n nonnegative numbers o, which, like the radii
A,(x) in (1'), have the property that each eigenvalue A of any Be 2,
satisfies |N — @;,;| = o, for at least one ¢, and analogous minimal
Gerschgorin sets could be defined relative to these different methods.
However, a very interesting result of Ky Fan [3] tells us that if A
is irreducible, then there exists a positive vector y > 0 such that

(5) o= Ay, l=si=n.

Hence, in the interest of developing the smallest minimal Gerschgorin
sets for either the irreducible case (§2) or the reducible case (§3), it
is sufficient to consider only the minimal Gerschgorin set G(22,) defined
by the diagonal similarity transformations of (1'), (2'), and (4).

The author wishes to express his appreciation to Drs. A. S. House-
holder, Olga Taussky, and Bernard Levinger for several stimulating dis-
cussions on this topic.

2. The irreducible? case. In this section, we assume that the
n X n matrix A = (a;;) is irreducible.? For any (finite) complex
constant ¢, consider the real » X n matrix P(g) = (p,,;) defined by

pi,j:la’i,jyiijy 1—_<—:?/,.7§n,
Diyi = —|0 — a;,; ] 1=¢ =5 n.

(6)

Since the off-diagonal entries of P(o) are nonnegative, and P(o) is
irreducible because A is, then P(o) is essentially positive [2; 9, p.
257]. Thus, P(o) possesses a real eigenvalue v(o) which is uniquely
characterized by the property that if ) is any other eigenvalue of
P(0), then

(7) Rex < v(o) .

1 This was conjectured by Dr. A. S. Householder during the Summer Engineering
Conference (1963) in Numerical Analysis at the University of Michigan.
2 An n X n matrix A is irreducible if there exists no n X n permutation matrix

P such that PAPTz[g l};], where C and E are square nonvoid submatrices. Equiva-
lently, the directed graph of A is strongly connected. See, for example, [9, p. 20].
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Moreover, the eigenvector y corresponding to v(o) can be chosen to
have positive components, and v(o) satisfies the following inclusion
relationships [9, p. 261]

& min{(Gpos)fa) 50 5 max{(Erm)s)

for any x > 0, and

0 sl {(om) ] =0 o ()]

From the definition of the matrix P(o) in (6), it follows for any x > 0
that

(10) (3 poses) [ = 46%) = |0 = @l ,

which will be useful in conjunction with (8) and (9). Finally, we
remark that v(o) is a continuous function of o.

The reason for introducing the function v(o) is brought out by
the following result.

THEOREM 1. Let A = (a,,;) be an irreducible n Xn matrix. Then,
o€ G, iof and only if v(o) = 0.

Proof. If oeG(2,), then, from (4), ¢ <€ G(x) for every x > 0, so
that for some j, 4;(x) — |0 — a;,;| = 0. Coupled with (8), (9), and (10),
we see that v(g) = 0. Conversely, if v(¢) = 0, then for every x > 0
there is a j such that

Ai(x) — [0 — a;;| 2 v(0) 2 0.

Thus, o€ G(x) for every x > 0, and evidently o € G(2,), which completes
the proof.

Several remarks are now in order. First, since G(2,) is a closed
bounded set, its complement G'(2,) is open, and G'(2,) is simply the
set of all complex numbers o such that v(¢) < 0. Denoting the boundary
of G(2,) by 8G(£2,), then 8G(2,) is defined as usual by

(1) 0G(2) = {o:0eGRING @)},

where G'(2,) is the closure of the complement of G(2,). From Theorem
1, we see that 8G(2,) can also be described as the set of all complex
numbers ¢ such that v(o) = 0, and such that there exists a sequence of
complex numbers {z;}5-, with lim;..2; = ¢ and v(z;) < 0. It would of
course be simpler if one could describe 8G(22,) solely by v(¢) = 0, but
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this is not in general true.?

The above discussion allows one to deduce a rather interesting
geometrical property of the boundary 0G(2,) of the minimal Gerschgorin
set. If 0€0G(2,), then v(o) = 0. Hence, there exists a vector y > 0
such that P(o)y = v(o)y = 0, so that from (10),

12) 10 —ai:| = A(y) foralll<i<mn.

In other words, o is the intersection of the % Gerschgorin circles
|2 — a;,: | = Ai(y).

With A = (a;,;) an irreducible % X » matrix, we now show as a
corollary to Theorem 1 that the minimal Gerschgorin set G(£2,) contains
at least n disks with centers a,,; and positive radii p,.

COROLLARY 1. Let A = (a;;) be an irreducible n X n matrix.
Then, there exists a vector p > 0 such that all complex numbers z
satisfying

(18) |2 — @i,

=

for some © are contained in the minimal Gerschgorin set G(2,).

Proof. From Theorem 1 and the discussion following it, any
complex number ¢ with v(o) > 0 is necessarily an interior point of
G(2,). Thus, it is sufficient to show that v(a;,;) > 0 for each 1 <7 < n.
For any o, there is a y > 0 such that P(o)y = v(0)y. Next, from the
definition of the matrix P(o) in (6), it is clear that the diagonal entry
P;,; of the particular matrix P(a;;) is zero, and all other entries in
that row of P(a;,;) are nonnegative. The irreducibility of A, implying
the irreducibility of P(a;,;), shows us that the <th component of
p(a;, )y = v(a;,;)y is positive, and as y > 0, we conclude that v(a;,;) > 0.
Consequently, each a,; is an interior point of G(£2,), and there neces-
sarily exists a vector p > 0 such that [z — a,,;| = p, for some ¢ implies
that ze G(2,), completing the proof. To be more explicit, one can
directly verify that choosing

(14) 0 = (@), l=iv=m,

gives such radii, and it is easy to construct examples where the radii
of (14) are best (i.e., largest) possible.

When A is an irreducible # X n# matrix, a result of Olga Taussky
[7] states that if A is an eigenvalue of 4, and X\ is a boundary point
of G(x) for some x > 0, then all the Gerschgorin circles pass through \:

(15) IN— @, | = 4(x) , 1=i=n.

2 The author is indebted to Dr. J. H. Wilkinson for having constructed a simple
counterexample.
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As a converse to this, we have

THEOREM 2. Let A = (a,;,;) be an arbitrary n X n matriz. If,
for some x > 0, 0 is a complex number with

(16) |0'—(1,k,k}=[1k(x), lékén,

then o is an eigenvalue of some Be R,, and hence o< G(2)).

Proof. Writing (06 — a,,,) = |0 — a,,, | exp (1¢;), let the matrix
B = (b,,;) be defined by

(17) bk,k = Qp, 1y 1 é k é n; bl;,j = la'kyj | exp (/wsk)’ k 7+ jr 1 é k;j é n.

Thus Be 2,, and (16) can be written equivalently as
18) Zn‘x br,i%; = % , 15k n.
F=1

As x > 0 then o is an eigenvalue of B, and thus o€ G(2,), which
completes the proof.

The importance of this theorem lies in its application in the
following

COROLLARY 2. If A = (a;,;) is an irreducible n X n matrix and
v(@) =0, then o is an eigenvalue of some matrix BeR,. Thus,
every boundary point o< 8G(R2,) of the minimal Gerschgorin set ts
an eigenvalue of some matriz Be 2,.

Proof. If A is irreducible, and ¢ is a complex number such that
y(o) = 0, then there exists a vector y > 0 such that P(o)y = v(o)y = 0.
From (10), it follows that

4y =0 — a,,;] foralll<i=n.

Thus, applying Theorem 2, ¢ is an eigenvalue of some matrix Be 2,.
From the discussion following Theorem 1, we know that v(s) =0 is a
necessary condition that ¢€6G(2,). Thus, we conclude that each
boundary point of minimal Gerschgorin set is an eigenvalue of some
matrix Be £,, which completes the proof.

In terms of finding inclusion regions for eigenvalues of matrices
B in 2,, Corollary 2 tells us that the minimal Gerschgorin set G(2,)
is optimal.

In analogy to the discussion following Theorem 1, the boundary
8G(x) of the Gerschgorin set G(x) of (2') can be described as the set
of all complex numbers ¢ for which there exists an integer 7,1 < j < n,
such that |6 — a;,;| = 4;(x), and there exists a sequence of complex
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numbers {z;}5., with lim;_. 2; = ¢ for which |z; — a,,;| > 4,(x) for all
1=<¢=n With this, we now give sufficient conditions for a complex
number o to be a boundary point of the minimal Gerschgorin set.

THEOREM 3. Let A = (a;,;) be an trreducible n X n matriz. If
0€0G(x), x>0, and |0 a,,;| = 4,(x) for all 1 £1 = n, then o € 0G(2,).

Proof. Since x > 0, it follows from |¢ — a;,;| = 4;(x), 1 =< 7 £ n,
that v(o) = 0. Next, as o€ 08G(x), there exists a sequence of complex
numbers {z;}5-, with lim;.. 2; = ¢ for which |z; — a,,;| > 4;(x) for all
1 =<1 =mn. Hence,

0> max{4(x) — |z; — a,,.|}.
12150

But as x > 0, we deduce from (8) and (10) that

0 > max {4,(x) — [2; — a;,; |} = v(z;)
1Zi=n
for each 5 > 1. Thus, ¢€8G(2,), which completes the proof.

COROLLARY 3. Let A = (a;,;) be a nonnegative irreducible n X n
matriz. Then, its spectral radius p(A) is a boundary point of the
minimal Gerschgorin set G(2,).

Proof. By the Perron-Frobenius theory of nonnegative matrices
(see [8] or [9]), there exists a vector x > 0 such that Ax = p(4)x,
and p(4) > a;; for all 1 =7 =<mn. It follows that —(0(4) — a;,;) +
d(x) =0 for 1 =47=<n, and we conclude from (6) and (10) that
P(o(A))x = 0, whence v(0(4)) = 0. Next, it is obvious that for any
é>0,

[0(A) + 6 —a;;] = p(A) +0 —a;; > 4(x) foralll<i=<mn.

Thus, we see that o(A4)e€dG(x). Applying Theorem 3, we conclude
that p(A4) € 8G(2,), which completes the proof.

3. The reducible case. If the n X n matrix A = (a,,;), first con-
gidered in §1, is reducible, we cannot geometrically characterize each
boundary point of G(£2,) as the intersection of # Gerschgorin circles.
Nevertheless, we can prove

THEOREM 4. Let A = (a;,;) be an arbitrary n X n matriz. Then,
every boundary point of G(2,) is an eigenvalue of some matrix Be Q,.

Proof. From Corollary 2, we can assume that A is reducible.
There exists an % X n permutation matrix P such that PAP” is in its
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normal reduced form [4, 9]:

(—Rm R1,2 Rl,N
0O R,, -+ R,,

(19) PAP" =| | \: ,

0 0 RN,N

where each square submatrix R, ;, 1 =4 < n, is either irreducible or
a 1 X 1 null matrix. Since row sums are invariant under such permuta-
tion transformations, we see from (19) that the Gerschgorin radii
A(x) for any submatrix E; ;, 1 =j = N, are not increased by diminishing
the components x; associated with submatrices R, ,, k > j. Thus, the
minimal Gerschgorin set G(2,) is just the union of the minimal
Gerschgorin sets G(2, ) determined from the matrices R;,;:

(20) G(2) = U 6@, -

If R;; is a1 x 1 null matrix, then G(2;, ) consists of the sole point
z = 0, and clearly zero is then an eigenvalue of Ae®2,. If R;; is
irreducible, then 9G(2;, ) is characterized by the result of Corollary 2.
From this, it follows that every point of G(2,) is an eigenvalue of
some Be 2,, which completes the proof.

4. Disconnected minimal Gerschgorin sets, Gerschgorin [5]
showed that if #n,(<n) disks of the Gerschgorin set G(x), obtained
from the % X » matrix A, are disjoint from the remaining % — »,
disks of G(x), then these n, disks contain exactly n, eigenvalues of A.
The proof of this result (see [8, p. 287]), basically a continuity argument,
extends easily to the case where the minimal Gerschgorin set G(2,) is
disconnected. First, let G;(2,) denote the disjoint closed connected
components of G(£2,):

1) G(2) = U G2, lsmsn.

Further, let the order r; of each G;(£,) be defined as the number of
diagonal entries a,,; of A(or any Be2,) in G,2,). By replacing the
off-diagonal entries a;,; by «aa,,; for all ¢ # j, where 0 = a =1, and
letting « increase to unity, it is readily seen that 1 < »; < n. With
this notation, we give the following result, whose proof is omitted.

THEOREM 5. For the set of n X n matrices 2,, let the Gi(2,),
1 <7 < m, be the disjoint closed connected components of the minimal
Gerschgorin set G(2,). Then, each G2, (of order r;) contains
exactly r; eigenvalues of the matriz B for any Bef,.
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5. The extended set O,. If S(2,) is the set of all eigenvalues
of all Be 2,, then the results of Corollary 2 and Theorem 4 show us
that

(22) 0G(2,) & S(Q) S G .

In the next section, we shall give examples where 0G(2,) = S(2,)CG(2,),
so that S(2,) need not be the entire set G(2,).

Let us expand the set 2, as follows. Letting @, denote the set
of all » X » matrices B = (b;,;) such that

(23) bi,i:ai,iyléién;'bid] é lari,jlyiij’1§i9jén,

then it is obvious tha;t 2, QA. If S(.@A) analogously denotes the
eigenvalues of all Be2,, then we prove

THEOREM 6. Let A be an arbitrary nxn matriz. Then, S(2,) =
G(Qy), i.e., every ze G(R,) 18 an eigenvalue of some matrizx Be Q,.

Proof. The expression (20) in the proof of Theorem 4 shows us
that we may assume, without loss of generality, that A is irreducible.
If ze G(2,), then v(2) = 0 by Theorem 1, and there exists a vector

x > 0 such that
(23") Ai(x) = |2 — a;,; | = v(z), 1<i=<n.

Let the n X n matrix B = (b;,;) be defined by

(24) b= 1=1=mb,;,=pma,;,1+J5,1=1,j=n,
where
(25) i = {4i(x) — v()}/ 4i(x) , l1=si1=n.

Then, 0 = s, = 1,1=t1=mn, and as |b;;| = |a;,;| for all ¢ j, then
Bef,.
Utilizing the expressions of (23'), (24), and (25), it follows that

(26) 2= busl = (5 busl ) [, 1S i <

From Theorem 2, z is evidently an eigenvalue of some matrix C e 2,
which is surely contained in £,, completing the proof.

6. An example. To illustrate the results of §2, consider the
n X n irreducible matrix A, given by
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Uy Gy 0
a2,2 a2;3
@7) A, = \\ ,
O an—«lyn
a’nxl anyn
where
(27’) la’l,2 Ugyg = *° an,ll =1.

By direct computation, we find that 4,(x) = | a;,;41 | /@, 1 S 050 — 1,
and /4,(x) = |a,,|lx/®,. Thus,

(28) 11 Ax) = |yt =+ + G| = 1

for all x > 0. If 0€8G(2,), then v(o) = 0, and there exists a vector
y > 0 such that

(29) o0 — a;;| = Ay, 12i=n.

Hence, taking the product over all ¢+ and using (28), we conclude that
(30) ]i[|0-_ai,i1:1.

Conversely, it is readily shown that any ¢ for which (30) is valid is
necessarily a boundary point of G(2,). Thus, we conclude that all
boundary points of G(2,) lie on an algebraic curve of degree at most
2n. To carry our example further, let us assume that the diagonal
entries of A, of (27) are given by

(31) Ay, = eXp <2L7’(%____1_)_> , 1 < k <n.

Then for o = r exp (16), (30) reduces simply to
(32) " = 2cosnb ,

which is a higher order lemmniscate. The minimal Gerschgorin set for
the particular matrix A, of (27), (27’), and (31), is shown below. For
comparison, the boundary of the “usual” Gerschgorin set for A,
corresponding to the particular case |a,,| = || = || = |y, | =1
and the choice a; =1 in (2), is indicated by dotted lines,
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— T~
// \\
/ \
P + <
/ ~N
/ \
/ \
|
l' T
\ /
\ /
S Nte
\ /
\ /
\\\,‘//

To illustrate the results of §4, we again consider the matrix A,
determined by (27) and (31), but now the off-diagonal terms of (27)
are of modulus 0 < @ < 1. Referring to the figure above, it is apparent
that the minimal Gerschgorin set G(2,) for A, is disconnected, with
four disjoint connected components, each of order unity. Although
G(2)) is disconnected, it can be shown, for « sufficiently close to unity
and all n =4, that every Gerschgorin set G(x), x > 0, is always
connected. The point of this remark is that the minimal Gerschgorin
set G(2,) can sometimes isolate eigenvalues of B¢, which cannot
be isolated by the Gerschgorin sets G(x).

Let us again consider the matrix A4, of (27), subject to (27'). Since

(33) det (4, — D) = 1T @5 — V) — (—1)Gyillag +++ s,
it follows that if A is any eigenvalue of any Be £, , then
(34) T a0~ 2] =1,

But from (30), we know that (34) precisely describes the boundary
0G(2,,) of the minimal Gerschgorin set for A,. Thus, no interior
point of the minimal Gerschgorin set can be an eigenvalue of any
BeQ, in this case. Using the notation of §5, we have therefore
shown for the matrices 4, of (27) that

(35) 0G(2,,) = S(2,,) .

Finally, it is interesting to point out that for the special case
n = 2 of (27), which is the general 2 x 2 case, (30) and (34) reduce
to the well known oval of Cassini considered by Brauer [1] and others.
Thus, in the 2 X 2 case, the minimal Gerschgorin set G(£,) is precisely
the oval of Cassini.



MINIMAL GERSCHGORIN SETS 729

BIBLIOGRAPHY

1. A. Brauer, Limits for the characteristic roots of matrices II, Duke Math. J. 14
(1947), 21-26.

2. Garrett Birkhoff and Richard S. Varga, Reactor criticality and mon-negetive
matrices, J. Soc. Industrial Appl. Math. 6 (1958), 354-377.

3. Ky Fan, Note on circular disks containing the eigenvalues of a matriz, Duke Math.
J. 25 (1958), 441-445,

4. TF. R. Gantmakher, Applications of the Theory of Matrices, Intersecience Publishers,
New York, 1959.

5. 8. Gerschgorin, Uber die Abgremzung der FEigenwerte einer Matrix, Izv. Akad.
Nauk. SSSR, Ser. Mat. 7 (1931), 749-754.

6. Marvin Marcus, Basic theorems in matrix theory, Applied Math. Series 57,
National Bureau of Standards, U.S. Government Printing Office, Washington, D.C.,
1960.

7. Olga Taussky, A recurring theorem on determinants, Amer. Math. Monthly 56
(1949), 672-676.

8. Olga Taussky, Some topics concerning bounds for eigenvalues of finite matrices,
A Surveys Numerical Analysis, edited by John Todd, MeGraw-Hill Book Co., New
York, 1962; 279-297.

9. Richard S. Varga, Matriz iterative analysis, Prentice-Hall Inc., Englewood Cliffs,
New Jersey, 1962,

CASE INSTITUTE OF TECHNOLOGY AND
CALIFORNIA INSTITUTE OF TECHNOLOGY






PACIFIC JOURNAL OF MATHEMATICS

EDITORS
H. SamELsoN J. Ducunpil
Stanford University University of Southern California
Stanford, California Los Angeles, California 90007
R. M. BLUMENTHAL RicHARD ARENS
University of Washington University of California
Seattle, Washington 98105 Los Angeles, California 90024

ASSOCIATE EDITORS
E. F. BECKENBACH B. H. NEUMANN F. WoLF K. YosipA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY

CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF TOKYO

UNIVERSITY OF CALIFORNIA UNIVERSITY OF UTAH

MONTANA STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA UNIVERSITY OF WASHINGTON

NEW MEXICO STATE UNIVERSITY * * *

OREGON STATE UNIVERSITY AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON CALIFORNIA RESEARCH CORPORATION
OSAKA UNIVERSITY SPACE TECHNOLOGY LABORATORIES
UNIVERSITY OF SOUTHERN CALIFORNIA NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
by typewritten (double spaced). The first paragraph or two must be capable of being used separately
as a synopsis of the entire paper. It should not contain references to the bibliography. Manu-
scripts may be sent to any one of the four editors. All other communications to the editors should
be addressed to the managing editor, Richard Arens, at the University of California, Los Angeles,
California 90024.

50 reprints per author of each article are furnished free of charge; additional copies may be
obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and
December. Effective with Volume 13 the price per volume (4 numbers) is $18.00; single issues, $5.00.
Special price for current issues to individual faculty members of supporting institutions and to
individual members of the American Mathematical Society: $8.00 per volume; single issues $2.50.
Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6,
2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.



Pacific Journal of Mathematics

Vol. 15, No. 2 October, 1965
Patrick Robert Ahern, On the generalized F. and M. Riesz theorem. . .. ....... 373
A. A. Albert, On exceptional Jordan division algebras...................... 377

J. A. Anderson and G. H. Fullerton, On a class of Cauchy exponential
R 7 405

Allan Clark, Hopf algebras over Dedekind domains and torsion in

H-Spaces. ... e 419
John Dauns and D. V. Widder, Convolution transforms whose inversion

functions have complex r001S . . ..o, 427
Ronald George Douglas, Contractive projections on an Ly space ............ 443
Robert E. Edwards, Changing signs of Fourier coefficients . ................. 463
Ramesh Anand Gangolli, Sample functions of certain differential processes on

SYMUMEIFIC SPACES . . o o oo i et e e e e e e e e e e e e e e e e e e e e e e e e 477
Robert William Gilmer, Jr., Some containment relations between classes of

ideals of a commutative Fing .............c.c.ueuuiineeeenniinneeennn. 497
Basil Gordon, A generalization of the coset decomposition of a finite

GUOUD « o oottt e 503
Teruo Ikebe, On the phase-shift formula for the scattering operator. ......... 511
Makoto Ishida, On algebraic homogeneous spaces ......................... 525

Donald William Kahn, Maps which induce the zero map on

Frank James Kosier, Certain algebras of degree one. . ... ..
Betty Kvarda, An inequality for the number of elements in
lattice POINES . .. ..o

Jonah Mann and Donald J. Newman, The generalized Gibb
regular Hausdorffmeans...........................

Charles Alan McCarthy, The nilpotent part of a spectral op
Donald Steven Passman, Isomorphic groups and group ring
R. N. Pederson, Laplace’s method for two parameters . . ...

Tom Stephen Pitcher, A more general property than domin
probability measures ................c.c. i,

Arthur Argyle Sagle, Remarks on simple extended Lie alge

Arthur Argyle Sagle, On simple extended Lie algebras over

characteristic Zero. . ...,
Toru Saitd, Proper ordered inverse semigroups .. .........
Oved Shisha, Monotone approximation ..................
Indranand Sinha, Reduction of sets of matrices to a triangul
Raymond Earl Smithson, Some general properties of multi-

JURCLIONS e e e e e ettt et
John Stuelpnagel, Euclidean fiberings of solvmanifolds . . . .
Richard Steven Varga, Minimal Gerschgorin sets . . .......
James Juei-Chin Yeh, Convolution in Fourier-Wiener trans



	
	
	

