Vol. 15, No. 3, 1965

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Vol. 324: 1  2
Vol. 323: 1  2
Vol. 322: 1  2
Vol. 321: 1  2
Online Archive
The Journal
About the journal
Ethics and policies
Peer-review process
Submission guidelines
Submission form
Editorial board
ISSN: 1945-5844 (e-only)
ISSN: 0030-8730 (print)
Special Issues
Author index
To appear
Other MSP journals
A generalisation of W-algebras

George A. Reid

Vol. 15 (1965), No. 3, 1019–1026

Using the theory of double centralisers due to B. E. Johnson, we define a QW-algebra as being a B-algebra, A, such that the algebra of double centralisers of each closed -subalgebra B is contained in a suitable related closed -subalgebra B00.

After obtaining explicit descriptions of the algebras of double centralisers of commutative and noncommutative B-algebras, we prove that in the general noncommutative case a W-algebra is a QW-algebra, and a QW-algebra is an AW-algebra, while in the commutative case the QW and AW conditions are equivalent.

We prove that if A is QW then so are its centre, any maximal commutative *-subalgebra, and any subalgebra of the form eAe for e a projection in A.

Mathematical Subject Classification
Primary: 46.60
Secondary: 46.65
Received: 27 August 1964
Published: 1 September 1965
George A. Reid