SYMMETRIC DUAL NONLINEAR PROGRAMS

GEORGE BERNARD DANTZIG, E. EISENBERG
AND RICHARD WARREN COTTLE
SYMMETRIC DUAL NONLINEAR PROGRAMS

G. B. DANTZIG, E. EISENBERG*, and R. W. COTTLE

Consider a function $K(x, y)$ continuously differentiable in $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$. We form two problems:

PRIMAL: Find $(x, y)^0$ and Min F such that

$$F = K(x, y) - y^T D_y K(x, y), \quad D_y K(x, y) \preceq 0$$

DUAL: Find $(x, y)^0$ and Max G such that

$$G = K(x, y) - x^T D_x K(x, y), \quad D_x K(x, y) \succeq 0$$

where $D_y K(x, y)$ and $D_x K(x, y)$ denote the vectors of partial derivatives $D_{y_i} K(x, y)$ and $D_{x_j} K(x, y)$ for $i = 1, \ldots, m$ and $j = 1, \ldots, n$. Our main result is the existence of a common extremal solution (x_0, y_0) to both the primal and dual systems when (i) an extremal solution (x_0, y_0) to the primal exists, (ii) K is convex in x for each y, concave in y for each x and (iii) K, twice differentiable, has the property at (x_0, y_0) that its matrix of second partials with respect to y is negative definite.

F and G are related to the conjugate functions considered by Fenchel [6] (see also [9]) and to the Legendre transforms of K.

Special Cases.

A. If we set $K(x, y) = c^T x + b^T y - y^T A x$, we obtain von Neumann’s symmetric formulation of primal and dual linear programs: see [3] or [9].

PRIMAL: Find $x \succeq 0$, Min F such that $F = c^T x, A x \preceq b$

DUAL: Find $y \preceq 0$, Max G such that $G = b^T y, A^T y \succeq c$.

B. Symmetric dual quadratic programs [2] can be obtained by setting

$$K(x, y) = c^T x + b^T y - y^T A x + \frac{1}{2} (x^T D x - y^T E y) .$$

The dual quadratic programs of Dorn [4] result when $E = 0$.

C. If we set $K(x, y) = F_0(x) - \sum_{i=1}^m y_i F'_i(x)$, we obtain the nonlinear statements of duality by Wolfe [12] and Huard [7]. For y not sign restricted, the problems may be simplified to

Received January 23, 1964. Research supported by Office of Naval Research Contract Nonr-222 (83).

PRIMAL: Find \(x \geq 0 \) and \(\text{Min } F_0(x) \) such that
\[
F_i(x) = 0, \quad i = 1, \ldots, m.
\]

DUAL: Find \(x \geq 0, \ y \) and \(\text{Max } K(x, y) \) such that
\[
D_j K(x, y) \geq 0, \quad j = 1, \ldots, n.
\]

A "Weak" Duality Theorem.

With additional conditions on \(K(x, y) \) we can state a relation between solutions of the primal and dual systems.

Theorem 1. If \(K(x, y) \) is convex in \(x \), for each \(y \), and concave in \(y \), for each \(x \), then any (not necessarily extremal) solutions \((x, y)\) of the primal and \((u, v)\) of the dual satisfy the inequality
\[
F(x, y) \geq G(u, v)
\]
where equality holds only if \((x, v)\) is orthogonal to
\[
[D_u K(u, v), - D_v K(x, y)].
\]

Proof. By the assumptions of convexity, concavity, and differentiability
\[
K(x, v) - K(u, v) \geq (x - u)^T D_u K(u, v)
\]
\[
K(x, v) - K(x, y) \leq (v - y)^T D_v K(x, y).
\]
Subtracting and rearranging, we get
\[
[K(x, y) - y^T D_v K(x, y)] - [K(u, v) - u^T D_u K(u, v)]
\geq x^T D_u K(u, v) - v^T D_v K(x, y) \geq 0.
\]

Remark. The significance of Theorem 1 is apparent when in addition it is also true that \(F(x^0, y^0) = G(u^0, v^0) \) for some \((x^0, y^0)\) and \((u^0, v^0)\); in that case, \((x^0, y^0)\) and \((u^0, v^0)\) are extremal solutions of the primal and dual, respectively. This is illustrated in the theorem below.

A Strong Duality Theorem.

Under certain assumptions, we can show that if one of the systems can be extremized, the two systems possess a solution in common. (References on duality, in addition to those mentioned above, are [11], [5], [1].)

Theorem 2. If \((x^0, y^0)\) is an extremal solution for the primal where \(K(x, y) \) is twice differentiable and \(- D_{yy} K(x^0, y^0)\) is positive definite, then \((x^0, y^0)\) satisfies the dual constraints with \(F(x^0, y^0) = G(x^0, y^0) \). If, in addition, \(K(x, y) \) is convex in \(x \), for each \(y \), and concave in \(y \), for each \(x \), then
Min \(F(x, y) = F(x^0, y^0) = G(x^0, y^0) = \operatorname{Max} G(x, y) \).

Proof. By a result of John [8, Theorem 1], see also Kuhn and Tucker [10], there exist "multipliers" \(v_0 \geq 0 \) (scalar) and \(v \geq 0 \) (m-vector) such that \((v_0, v) \neq 0 \), \(v^T D_y (x^0, y^0) = 0 \), and

\[
\begin{align*}
v_0 D_y F(x^0, y^0) + D_{yy} K(x^0, y^0) v & \geq 0 \\
(y^0)^T [v_0 D_y F(x^0, y^0) + D_{yy} K(x^0, y^0) v] & = 0 \\
v_0 D_x F(x^0, y^0) + D_{xy} K(x^0, y^0) v & \geq 0 \\
(x^0)^T [v_0 D_x F(x^0, y^0) + D_{xy} K(x^0, y^0) v] & = 0 .
\end{align*}
\]

Replacing \(F \) by its definition, \(K(x, y) = y^T D_y K(x, y) \), yields

\[
\begin{align*}
(1) & \quad D_{yy} K(x^0, y^0) (v - v_0 y^0) \geq 0 \\
(2) & \quad (y^0)^T D_{yy} K(x^0, y^0) (v - v_0 y^0) = 0 \\
(3) & \quad v_0 D_x K(x^0, y^0) + D_{xy} K(x^0, y^0) (v - v_0 y^0) \geq 0 \\
(4) & \quad (v_0 x^0)^T D_x K(x^0, y^0) + (x^0)^T D_{xy} K(x^0, y^0) (v - v_0 y^0) = 0 .
\end{align*}
\]

Multiplying (1) by \(v^T \geq 0 \), (2) by \(v_0 \), and then subtracting, we obtain

\[
(v - v_0 y^0)^T D_{yy} K(x^0, y^0) (v - v_0 y^0) \geq 0 .
\]

But since the matrix \(-D_{yy} K(x^0, y^0) \) is positive definite, we have \(v - v_0 y^0 = 0 \). Relations (3) and (4) yield

\[
\begin{align*}
(5) & \quad v_0 D_x K(x^0, y^0) \geq 0 , \\
(6) & \quad (v_0 x^0)^T D_x K(x^0, y^0) = 0 .
\end{align*}
\]

Moreover, since \(v^T D_y K(x^0, y^0) = 0 \), we have

\[
(7) \quad (v_0 y^0)^T D_y K(x^0, y^0) = 0 .
\]

But \(v_0 > 0 \) for otherwise \(v = v_0 y^0 = 0 \) and \((v_0, v) = 0 \), a contradiction. Dividing (5), (6), and (7) by the positive scalar \(v_0 \) produces relations which imply that \((x^0, y^0) \) satisfies the dual constraints as well as the equation \(F(x^0, y^0) = G(x^0, y^0) \). The final assertion of the theorem is an application of Theorem 1.

REFERENCES

University of California, Berkeley

Bell Telephone Laboratories, Inc.

Holmdel, New Jersey
Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced). The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. No separate author’s résumé is required. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens, at the University of California, Los Angeles, California 90024.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. Effective with Volume 13 the price per volume (4 numbers) is $18.00; single issues, $5.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $8.00 per volume; single issues $2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

* Basil Gordon, Acting Managing Editor until February 1, 1966.