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SIMPLE QUADRATURES IN THE COMPLEX PLANE

PHiLiP J. DAvIs

Given a class S of functions thallf are Riemann integrable
on [0,1]. A quadrature formula | flx)dx = > .2, a; f(x,) is
called a simple quadrature for S if 0the x; are distinet and if
both the «; and the x, are fixed and independent of the par-
ticular function of S selected. It is known that if S is too
large, for example if S = C[0, 1], a simple quadrature cannot
exist. On the other hand, if S is sufficiently restricted, for
example the class of all polynomials, then simple quadratures
exist.

The present paper investigates further the existence of
simple quadratures. It is proved among other things that if
S is the class of analytic functions that are regular in the
closure of an ellipse with foci at”i 1, a simple quadrature
exists for the weighted integral S (1 —x®)'/2 f(x)dx provided

—1
we allow the abscissas x, to take on complex values.

1. Simple Quadratures., In [3], the author studied the follow-
ing question. Suppose that there has been given a fairly extensive
class S of real functions that are Riemann integrable on [0, 1]. Does
there exist a quadrature formula of the form

1 o
(1) |, fe)ds = S a, fla)
which is valid for all functions of the class S? The abscissas x; are
assumed distinet, and both the weights «; and the abscissas x; are
fixed and independent of the particular function of S selected. A
quadrature of the form (1) was called a simple quadrature to contrast
it with quadratures of the form

(2) |, s = tim 5 0., £(5,,)

n—o0 =1
which allow more freedom than (1) and have accordingly been more
frequently investigated. See, e.g., Szego [9], Chap. 15.

In [3], we found, broadly speaking, that if S is fairly small,
simple quadratures exist, while if S has too many functions in it,
simple quadratures do not exist. Thus, for instance, there exists a
simple quadratures for the class of all polynomials (of unkounded
degree), while there cannot exist a simple quadrature for the class of
continuous functions. See also Davis [7], Chap. 14, where this ques-
tion is treated in the framework of weak* convergence.
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814 PHILIP J. DAVIS

An interesting intermediate class of functions that possesses a
simple quadrature is the class B of entire functions that are finite
Fourier Transforms i.e., the class of functions f(z) that have a re-
presentation of the form

(3) £@) =\ ep()dt, p(teLl— o, 0], o fixed.
In the ecommunication literature, B is known as the class of bandlimited
functions. It is known, see, e.g. Boas [1] p. 220, that an f(2) in B
can be represented by means of the cardinal series

(4) f@) = 5 (— 1y f(2E) Snoz

== g oz — N

which is uniformly convergent in any bounded set in the complex
z-plane. Hence, integrating term by term, we find

(5) [ f@ds = 5 a. f)

where

(6) 2, = and an:(—l)uSI—Si—nax—dx.
g 0 gxX — NI

A similar argument shows that “simple” representations can be found
for B for all the usual linear functionals of numerical analysis such
as derivatives, etc.

Interesting necessary and sufficient conditions for S to allow a
simple quadrature have not yet been determined. In the present paper,
therefore, we shall investigate these matters further, considering
certain integrals of analytic functions and allowing the abscissas to
take on complex values. With this freedom, we shall show that simple
quadratures exist for double integrals of analytic functions, for certain
single integrals of analytic functions, and for certain inner product
integrals associated with Hilbert Spaces of analytic functions.

2. Simple quadratures with complex abscissas. Qur work is
based upon a device whose use in complex variable theory goes back
at least as far as Pompeiu [8], p. 165.

LEMMA. Let B be a bounded region in the complex plane. Then
we can find a sequence of circles C,: |z —z,| < 7,, n =1,2, -+ such
that

(1) each C, is contained in B

(2) the circles C, are monoverlapping
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(8) the circles C, exhaust the area of B:
(7) ;ﬂ:ri:aaﬂea of B.
Another way of putting (7) is that
(7) meas <B — nEJl Cn> = 0.

Such a sequence of circles will be called a complete packing of B.

Proofs of this lemma are easily given. The reader is referred to
the recent paper of O. Wesler [12] where a proof will be found.
Wesler also gives a simple geometrical proof, utilizing the Borel-Cantelli
lemma, of the interesting theorem, apparently due to S. Mergelyan,
that the sum of the circumferences of the circles in a complete pack-
ing is infinite: >, 7., 7, = co.

The existence of complete packings is not restricted to packings
by circles or to two dimensions.

LEMMA. Let C designate the cirvcle |z —z,| <r. If f(z) s
regular im C, then

(8) |, 7@ dedy = 71z

In this lemma, as in what follows, we have not attempted to put
the most general conditions on f(z2). The above conditions are sufficient.

THEOREM. Let B be a bounded region of the complex plane and
let the circles C,: |z — 2z, | <, (n=1,2, -+-+) constitute a comfplgte
packing of B. Then, if f(z) ts regular in B and continuous in B,

(9) || r@dedy = = 5 73 5@,
Proof. In view of (7'),

(10) HB f@)dudy = 5 SSO F()dady.

An application of (8) now yields (9).

Notice that (9) gives us a simple quadrature that is wvalid for
double integrals of analytic functions. There are infinitely many such
simple quadrature formulas, each one corresponding to a different
complete packing of the region B. Note also that in view of (7) and
the boundedness of the sequence {f(z,)}, the series in (9) converges
absolutely. But in view of the divergence of >, 5., 7,, the convergence
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in (9) cannot be too rapid, and serious numerical applications are more
than likely excluded.

The special selection of B as the unit circle leads to the following
corollary.

COROLLARY. Let C,:|z—2z,|<r, (n=1,2,---) be a complete
packing of the unit cirele. Then, 1f f(z) s regular in C and conti-
nuous tn C,

(11) £0) = X 7 £(z,).

Formula (11) may be regarded as a “simple” representation of the
functional L(f) = f(0) in terms of point functionals.
If we select f(z) = 1/(w — 2), then (10) leads to

12) i s T
w A ow—2,

This is Wolff’s example of a convergent series of fractions that can
be continued analytically into the region of the apparent poles! (Wolff
[13]). Choosing f(z) = ze* leads to 0 = 3,7, 77, €, which is an
absolutely convergent, nontrivial representation of 0 as a sum of
exponentials. This should be contrasted with the more familiar Dirichlet
series where this sort of behavior does not occur.

There is an amusing consequence of this method. As anyone knows
(who has played with his change on a bar), it is not possible to find
a complete packing of a circle by a finite number of circles other than
the trivial identity packing. Proofs are easy to devise, but from our
present point of view, this fact emerges as a consequence of inter-
polation by polynomials in the complex plane! For, suppose that C,:
lz—2, <7, k=1,2,---,n were a complete packing of the unit
circle. Then, as in (11),

(13) £0) = 3 71 /@),

and this must certainly be true for all polynomials f. If z,---, 2,
are distinet from 0, let f(z) be that polynomial which vanishes at
2, +++,2, and for which f(0) = 1. This leads to the contradiction
1 =0. If one of the z,, say z, is 0 let f(2) be that polynomial that
vanishes at z,, ---, z,, and for which f(0) = 1. Then, 7} = 1, the trivial
case.

Formula (9) can be generalized as follows: Let C.:lz —z,| <7,
be a complete packing of B. Then, if f(2) and g(z) are regular in B
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and continuous in B,

'}FSS £(2)9@) dudy = 2 7 f(2) 9

1 & PsRRN 6 £11 "
(14) —2—2; @) g @) + —— 3(2‘)2 Zﬁf (2.)9"(z1)
1 1244 "
+ g Sy T + -

Proof. We have,

flz) = mz; S "(z) (2 — z)" , 9G) = i 9™ (@) (2 — 2,)" ,

m! m=0 m!

uniformly and absolutely convergent in the closure of C,. Now, in
view of the fact that

Sgo,c (2 — 2)"(z — z,)" dady = —

we obtain from term by term integration,

= Sg F@ @ dedy = 12 FE)IED + 7 Fe) 7
T O 2

" " 7'!2 " T ...
3(2,)2 F'(z) 9" (z0) + 1B (=) 9" (=) +

3. The use of triangles. Another type of “simple” interpolation
formula can be obtained by employing a triangle.

THEOREM. Let T be a triangle whose wvertices are at w,, W, W,
and whose area s A. Let C,:. |z —z,| <7, be a complete packing
of T. Then, if f"(z) ts regular in T,

(15) Sfw,) + S (w,)
(w1 - w2) (wl - wa) (wz - wl) (wz - wa)
S(ws) _ 1
* (ws - wl) (ws - wz) B A "Z (zh

Proof. Under the above conditions on f, we have the identity

_1_ 1" — f(w)
+ f(wz) + f(wa)

(W, — w,) (W, — wy) (wy; — wy) (w3 — w,)
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See Davis [6].
Now write SS f@)dxdy = i SS f"(z)dxdy and proceed as before.
T Oy

k=1

4. The use of ellipses. When a weighted (real) integral of an
analytic function can be shown to be equal to the double integral of
its analytic continuation, then complete packings may be employed to
produce a simple quadrature.

Let B be selected to be an ellipse. The ellipse will be normalized
as follows. ¢,, (0 > 1), will designate the ellipse whose foci are at z =
+ 1 and whose semi-axes are respectively

_ 1 —1 __1_ _ -1
am a=Z+0e7), b=2(0—p7).

THEOREM. Let C,:|z—2z,| <7, m=1,2,--+) be a complete
packing of the ellipse €,. If f(2) is regular im the closure ¢, then

(18) |7 — oy payan = 220t — 0 Sy f(z).

Proof. We shall show that for all f(z) regular in the closure of
&, we have the identity

(19) | f@dsay = 2 o7 | (@ = o p@)do.

The quadrature formula (18) will then follow by writing

oo

(20) |\, r@dady = 5[] f@dady.
gp n=1 n
To show (19), introduce the Tschebyscheff polynomials of the 2nd
kind
(21) U, 2) =1 — 2 "*sin[(n + 1) arccosz], (n =0,1, ---).

These polynomials are doubly orthogonal. We have, first of all, the
real orthogonality

(22) SH(Z/?f)”2 U, (@) 2/m)" Uy(x) (1 — 2w = 0,,,.
—1
But, if ¢,, are the normalizing constants defined by
(23) Crp = 2( n+ 1 >1/2 <p2n+2 . [0_27;—2)_1/2 ,
T

and if
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(24) Pi(R) = ¢, U, ),
then we also have the complex orthogonality
(25) ||, Py pi@ dady = 5....
gp

If f(z) is regular in the closure of ¢, then the complex Fourier
expansion

(26) f (@)

[l

(1§, s@r@dny oo
03""6 S L @ U, () dxdy> U,(2)

Il

>
n=0
>
n=0
converges uniformly and absolutely in closed subregions of ¢,. But
the real Fourier expansion of f(x)

@ @ =352 (] 1@ U0 - )" ds) U@

also converges uniformly in [— 1, 1]. Hence, by the uniqueness of
the Fourier coefficients, it must follow that

+1

f@)U (@) X —a*)de = Ci,pgg f@) Us(@)dwdy m =0,1, ---.

Selecting n = 0, and observing that Uyx) =1, we obtain (19) from
(28) and (23).

As an example of an expansion of type (18), write f(x) = e*~.
Then, (see, e.g. Watson [10], p. 79)

S+l (1 . x2)1/2 e?dy = TCL (w)
—1 w ’

where
1 1 /71 3 1/1 T
Il(w)~-2—w+—2—!—(—2-w> +—3!—<Ew) +

is the modified Bessel function of the first order. Hence, if |2 —2,] <
Yo, =12, -+ i3 a complete packing of ¢,, we have, for all w,

(29) Il/(;;v) — 2(p2 . ‘0~2)—l ngl‘ /',.?neznw'
Some further identities that relate to the Tschebyscheff polynomials

U.(z) should be noted. Writing f(2)U,(z) for f(z) in (19), we obtain

@) L - o97|| @U@y = 2| 1 - wprreUwis.
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Hence, from (28), and then from (20),

6y | F@U@dsdy = 252 (00— o) ([ 1@ TG dedy
= 73,1 F@) U, (z).

The particular selection of f(z) = U,(2) in (31) yields
G2 || v.@U@ddy = T (o — o) || UL T, @dady
€p €p

=7 5 riU,E)Une) = (0 = 0™

The first term leads to a complex, but not Hermitian, orthogonality of
the polynomials U,(z), while the 3rd is a point-wise orthogonality.

As a sideline, an inequality for analytic functions ecan be obtained
from (19).

THEOREM. Let f(z) be analytic in the cirele C,: |z| = r, r > 1,
Let f be real on the real axis and satisfy

(33) Re f(z) = 0, zeC,.
Then,

) k0 zZ S (1 — a?)if) = Y7 =1 r).
vVr—1 T Jo r

Proof. The circle C, contains the ellipse €, where »=(1/2)(0+p™),
and the ellipse, in turn, contains the circle C,:|z| < s, where s =

1/2) (0 — p™) =vr* — 1. Now,
77 £(0) = ggo F@)dady = SgorRe F@)dady = SS Re f(z)dzdy
— Re ggspf@dxdy = L -0 | a-ayrreds
> SSGSRe F(2)dady = Reggos F(2)dady = 75 £(0).

Other packings of the ellipse ¢, by circles lead to other inequalities
for the middle term of (34). See also Davis [6], p. 28.

ExamMpLE. Let 0 < w < w/2 be fixed. The function f(z) = e**,
2z = & + 1y, is real on the real axis, and Re f(z) = ¢¥"cos wy = 0 for
zeC, with r = 7r/2w. We have » > 1. Hence, for
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0<w< 7?2, 1 = 2Lw) 21/1_(1“’_)2 )
2w \* w T
e
T
Equality holds for w = 0, and the 2nd inequality, of course, is obvious

from the Maclaurin expansion of I(w)/w.
The identity (28) leads to a simple quadrature for inner products

of the type SS f ) g(z) dedy and which holds under certain regularity
B
conditions.

LEMMA. Let 4> p*> p > 1, and suppose that g(z) is regular in
€4 Let
(35) 9(z) = >, b,pi(2)

n=0

be the expansion of g in Tschebyscheff polynomials of the second
kind. Then, the related function

(36) he) = 3 6.0 )pE @)
18 regular in €,,2, and for all f(z) regular in &, we have
60 || rem@ddy = 2 4 -2y fe)d.

Proof. Note that ¢, C ¢, Ces e, Since g(z) is regular in ¢,
we have

(38) lim sup | b, [* < % X
Since

A 1 1/n B .
(39) lim (=) " = 0",

it follows that

i b, ("~ o o
40 lim su ( i =E .00 =_t |
“0 P, 27T e
Therefore h(z) is regular in ¢,,:, the series (36) converging absolutely
and uniformly in closed subsets of ¢,,2.
Now we have

n—oo

@) || r@a@dray = 50, {| 7@ pTG dady

z b,
PIRIN Hp @) T.@) dady.

Il
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On the other hand,

@) 2" T=a hie) fayda = 2| /T £(o) 5,61t Ipi(o)do

e

=50 2 T e
n=0 cn,p T J-1

5 Egl VI = F f@)U,(2)de.
n=0 C T J-t

7P

Applying (28) to the last integral there is obtained
@ 2 VT b f@de = 58, c, || 0T @dody.
n=0 €p

Comparing (41) with (43) we obtain (37).
The relevant identities and convergence theorems for the

Tschebyscheff polynomials U,(x) can be found in Szego [9], p. 59
(4.1.7), p. 238, (9.1.4.).

If we define a linear transformation 7, by means of
(44) Tig) = hlz) = 2, ch, b, p; (2),
then we can write (37) in the form

#5) || r@g@avdy = 2" vI=+ r@)To@ds.

LEMMA. Let f(z) be regular in &, and let g(z) be regular in &,
where 4 > 0° > p > 1. Then,

o || reom@da = 2| r@T.@ddy.
0 (0" — ™) e

Proof. Since f(z) is regular in g, and since 7T,(g) is regular in
€42, the product f(z)T.(g(2)) is also regular in &, Hence, by (19)
(with the f(z) of this equation set equal to the present f(2)T.(g(?)),

@) 2" VI=F fTends = ——2— || r@T.@@)day .
T (' — 07 Je

Combining (45) with (47) we obtain (46).
We can now obtain the following simple quadrature.
THEOREM. Let C,:lz—2z,| <7, n=12--- be a complete

packing of the ellipse .. Let g(z) be regular in &,, where 4 > p* >
0> 1. Then, for all f that s regular in &,
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(48) ||, r@i@dody = 5 o f,
where
(49) %z—g%;mmmmmw

Proof. Under the above conditions, (46) holds.
Now write SS f@T(g@@)dxdy = >, 7 SSO f(@)T(¢9)dxdy and ap-
ply the 2nd Lemmg of §2. *

This representation should be contrasted with that given in (14).
The higher derivatives are no longer present.

5. The use of lunes. If B is selected as the area common to
two circles we may obtain a simple quadrature formula for another
class of analytic functions.

Let B designate the common part of the two circles

|lz—o0i*=14+oc*and |z + 0t =1+0%50>0,1=1"— 1.
These circles both pass through z = 4= 1 and their centers are at z =

ot and z = — 0% respectively.

THEOREM. Let C,: |z—z,| <7, n=12,--- be a complete
packing of the lune B. If f(z) is regular in B and has zeros at
2=+ 1 and z = — 1, then,

(50) || Fee = £ 5 LT 04 4,

Proof. We have already established (see Davis [6]) that if g(z) is
regular in B,
P 1— 2
(b1) SS g(R)dxdy = o S 9(x) ———dw.
B -1 o'+ x*
In view of the above conditions on f(z), the funetion

fR) @+ o)

9(@) = =
will be regular in B. Hence,
(52) o1 SS M dedy = Si—lf(;(;)dx.
B 1 — 2 -1

The simple quadrature (50) now follows by writing SS g(x)dxdy =
B
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S ﬁong(z)dxdy.

6. Final remarks. In (18) and in (50), we have seen how simplequa-
1

dratures (with complex abscissas) may be found for S 1 — 2®)"*f(x)dx
and for (1 — o) f(x)de. Regarding these integrals as linear fune-
1

tionals on f, we can pose the following question. For what ilnear
functionals L is there a simple representation of the form

(53) L(f) = 2 f (2.)

which is valid for every function f of a space F' of functions that are
regular in a fixed region B? If an expansion of type (53) were
demanded for all linear functionals in F*, then we are inquiring
whether or not the point functionals L,(f) = f(z,) form a basis for
the dual space F'*, convergence being taken in the weak* sense of
(53). Information on either of these problems, derived from the theory
of normed linear spaces or from the theory of functions, would be
welcome.
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