TENSOR PRODUCTS OVER H^*-ALGEBRAS

LARRY CHARLES GROVE
Throughout, A, B, and C denote (semi-simple) H^*-algebras whose respective decompositions into minimal closed ideals are $A = \sum A_a$, $B = \sum B_b$, and $C = \sum C_c$. It is assumed that A is a right C-module and B is a left C-module. We define a tensor product $A \otimes_0 B$ that is again an H^*-algebra, and show that it is isometric and isomorphic with an ideal in $A \otimes B \otimes C$. As a corollary, $A \otimes_0 B$ is strongly semi-simple if A, B, and C are each strongly semi-simple. The converse to the corollary is shown to be false. When A, B, and C are closed ideals in some H^*-algebra, with ordinary multiplication as the module action, then $A \otimes_0 B$ is shown to be isomorphic with the direct sum of all the one-dimensional ideals in $A \cap B \cap C$. When $A = L^2(G)$, $B = L^2(H)$, and $C = L^2(K)$, for suitable related compact groups G, H, and K, then the module actions are defined, and $A \otimes_0 B$ can be constructed. When $G = H = K$, it is shown that $A \otimes_0 B \cong L^2(G/N)$, where N is the closure of the commutator subgroup of G. A conjecture is stated that would generalize this result to the case where K is a closed subgroup of $G \cap H$.

Since $A \otimes_0 B$ will be represented in terms of ordinary tensor products $A \otimes B$ of H^*-algebras, the requisite facts concerning $A \otimes B$ are stated here (details may be found in [2]).

$A \otimes B$ is the Hilbert space completion of the space $A \otimes' B$ of all conjugate bilinear functionals T on $A \times B$ of the form $T = \sum_i a_i \otimes b_i$, where $T(a, b) = \Sigma (a_i, a)(b_i, b)$ (see [3]). We define $(a \otimes b)(c \otimes d) = ac \otimes bd$, and extend by linearity and continuity to multiplication on $A \otimes B$. Then

I. $A \otimes B$ is an H^*-algebra and each $A_a \otimes B_b$ may be identified with a closed ideal in $A \otimes B$.

II. $A \otimes B = \Sigma \otimes (A_a \otimes B_b)$ is the decomposition of $A \otimes B$ into minimal closed ideals.

III. $A \otimes B$ is strongly semi-simple (see [5], p. 59) if and only if both A and B are strongly semi-simple.

1. Tensor products.

Definition. $F_0(A, B)$ will denote the collection of all finite formal
splits of the form
\[\sum_{i=1}^{n} c_i(a_i, b_i), \]
with \(a_i \in A, b_i \in B, \) and \(c_i \in C; \) i.e. \(F_0(A, B) \) is the
free \(C \)-module generated by \(A \times B. \)

\(F_0(A, B) \) becomes an algebra and a pseudo-inner product space if
the operations are defined by the formulas:

\[
(c(a, b)) \cdot (c'(a', b')) = cc'(aa', bb'),
\]

\[
\lambda \sum c_i(a_i, b_i) = \sum (\lambda c_i)(a_i, b_i), \lambda \text{ complex, and}
\]

\[
(c(a, b), c'(a', b')) = (c, c')(a, a')(b, b')
\]

(the first and third must be extended by linearity). The positive
semi-definiteness of the pseudo-inner product follows from the fact that
\((c(a, b), c'(a', b')) = (a \otimes b \otimes c, a' \otimes b' \otimes c') \); the other properties required
of an inner product obviously hold.

Let \(I'_1 \) be the ideal in \(F_0(A, B) \) spanned by the set of all elements
of the following forms:

1. \(c(a_1 + a_2, b) - c(a_1, b) - c(a_2, b), \)
2. \(c(a, b_1 + b_2) - c(a, b_1) - c(a, b_2), \)
3. \((c_1 + c_2)(a, b) - c_1(a, b) - c_2(a, b), \)
4. \(\lambda c(a, b) - c(\lambda a, b), \) and
5. \(\lambda c(a, b) - c(a, \lambda b) \)

for arbitrary \(a, a_i \in A; b, b_i \in B; c, c_i \in C; \) and complex numbers \(\lambda. \)

Let \(I'_2 \) be the ideal in \(F_0(A, B) \) generated by the set of all elements
of the forms:

6. \(c_1 c_2(a, b) - c_1(ac, b), \) and
7. \(c_1 c_2(a, b) - c_2(a, c_1 b) \)

for arbitrary \(a \in A, b \in B, \) and \(c_i \in C. \) Then let \(I' = I'_1 \vee I'_2 = I'_1 + I'_2, \)
the ideal generated by the set of all elements of the forms (1)–(7).

Proposition 1. \(I'_1 = \{ X \in F_0(A, B): (X, X) = 0 \}. \)

Proof. Straightforward computations show that \((X, Y) = 0 \) if \(X \)
is of one of the forms (1)–(5) and \(Y = c'(a', b'). \) Extending by linearity
we have immediately that \((X, Y) = 0 \) for all \(X \in I'_1, Y \in F_0(A, B). \)
Suppose then that \(X = \sum_{i=1}^{n} c_i(a_i, b_i) \) and that \((X, X) = 0. \) It must be
shown that \(X \in I'_1. \)

If \(\{ c_i \}_{i=1}^{n} \) is not linearly independent, then we may assume that
\(c_n = \sum_{i=1}^{n-1} \lambda_i c_i, \) and so
The expression in brackets is clearly an element of I_i, call it γ_i. Thus we have

\[
X = \sum_{i=1}^{n-1} c_i(a_i, b_i) + \left(\sum_{i=1}^{n-1} \lambda_i c_i\right)(a_n, b_n)
\]

\[
= \sum_{i=1}^{n-1} c_i(a_i, b_i) + \sum_{i=1}^{n-1} c_i(\lambda_i a_n, b_n)
\]

\[
+ \left[\left(\sum_{i=1}^{n-1} \lambda_i c_i\right)(a_n, b_n) - \sum_{i=1}^{n-1} c_i(\lambda_i a_n, b_n)\right].
\]

where $a_i = a_i$, $a_{i2} = \lambda_i a_n$, $b_i = b_i$, $b_{i2} = b_n$. Repeating the process as many times as is necessary we obtain

\[
X = \sum_{j=1}^{2^p} \left(\sum_{i=1}^{2^p-q(i)} c_i(a_{ij}, b_{ij})\right) + \gamma_1,
\]

where $\gamma_p \in I'_1$ and $\{c_{ij}\}_{i=1}^{n-p}$ is linearly independent. Then, for each fixed index i, by using an argument similar to the one above, we can write

\[
\sum_{j=1}^{2^p} c_i(a_{ij}, b_{ij}) = \sum_{k=1}^{2^{p-q(i)}} \left(\sum_{j=1}^{2^{p-q(i)}} c_i(a_{ijk}, b_{ijk})\right) + \gamma_{i, q(i)}
\]

where $\gamma_{i, q(i)} \in I'_1$ and $\{a_{ij}: j = 1, \ldots, 2^p - q(i)\}$ is linearly independent. As a result, we have

\[
X = \sum_{i=1}^{n-p} \sum_{j=1}^{2^{p-q(i)}} \sum_{k=1}^{2^{q(i)}} c_i(a_{ij}, b_{ijk}) + \gamma,
\]

where $\{c_i\}$ is linearly independent, $\{a_{ij}\}$ is linearly independent for each fixed i, and $\gamma \in I'_1$.

Fix any pair $<i, j>$ of indices. By the Hahn-Banach Theorem and the Riesz Theorem there exist $a' \in A$ and $c' \in C$ such that

\[
\|c'\| = \|a'\| = 1, \quad \langle c_i, c' \rangle = d_i > 0, \quad \langle a_{ij}, a' \rangle = d_{ij} > 0,
\]

(c_i', c') = 0 if $i' \neq i$, and (a_{ij}', a') = 0 if $j' \neq j$. Since $F_p(A, B)$ is a pseudo-inner product space, the Schwarz inequality holds. Thus if we let $b' = \sum\{b_{ijk}: k = 1, \ldots, 2^{\nu(i)}\}$, we have

\[
|\langle X, c'(a', b') \rangle| \leq \langle X, X \rangle \langle c'(a', b'), c'(a', b') \rangle = 0.
\]

On the other hand,

\[
\langle X, c'(a', b') \rangle = \sum_{m, n, k} c_m c'(a_{mn}, a')(b_{mnk}, b') = d_i d_{ij} \|b'\|^2 = 0,
\]

so that $b' = 0$. If we now write
\[
\sum_k c_i(a_{ij}, b_{ijk}) = c_i(a_{ij}, \sum_i b_{ijk}) + [\sum_k c_i(a_{ij}, b_{ijk}) - c_i(a_{ij}, \sum_i b_{ijk})]
= c_i(a_{ij}, 0) + \gamma'_{ij},
\]
where \(\gamma'_{ij}\) is the expression in brackets, which is clearly an element of \(I'_i\), then we have

\[
X = \sum_i c_i(a_{ij}, 0) + \gamma',
\]
where \(\gamma' = \sum_i \gamma'_{ij}\), and so \(X \in I'_i\).

\(F'_0(A, B)\) is a pseudo-normed space, with \(||X||^* = (X, X)\). Let us denote by \(F'_0(A, B)\) its pseudo-normed completion, i.e. the collection of all Cauchy sequences from \(F'_0(A, B)\). Define a mapping

\[
\phi: F'_0(A, B) \to A \otimes B \otimes C
\]
as follows:

\[
\phi(\Sigma c_i(a_i, b_i)) = \Sigma a_i \otimes b_i \otimes c_i.
\]
It is immediate that \(\phi\) is a linear, homogeneous, multiplicative isometry, and that its range is dense. Thus \(\phi\) can be extended to an isometric homomorphism on \(F'_0(A, B)\) onto \(A \otimes B \otimes C\). Note that \(||XY|| \leq ||X|| \cdot ||Y||\) for all \(X, Y \in F'_0(A, B)\), since \(A \otimes B \otimes C\) is a Banach algebra. Thus the operations defined on \(F'_0(A, B)\) can be extended to \(F'_0(A, B)\), as usual.

Let \(I_1, I_2, \text{ and } I\) denote the closures, in \(F'_0(A, B)\), of \(I'_1, I'_2, \text{ and } I'\), respectively. It is obvious from Proposition 1 that \(I_1 = \{X \in F'_0(A, B): ||X|| = 0\}\), i.e. \(I_1\) is the closure of \((0)\). Thus \(I_1\) is a subset of every closed subspace of \(F'_0(A, B)\), which means, in particular, that \(I = I_2\). In other words, \(I\) can be described quite simply as the closed ideal of \(F'_0(A, B)\) generated by the collection of all elements of the forms (6) and (7).

DEFINITION. \(A \otimes_0 B\), the tensor product of \(A\) and \(B\), over \(C\), is the quotient algebra \(F'_0(A, B)/I\).

\(A \otimes_0 B\) is a normed space (as is always the case when a pseudo-normed space is factored by a closed subspace). We proceed to identify it with an ideal in \(A \otimes B \otimes C\). Let \(D = \phi(I)\) and define a map \(\gamma: A \otimes_0 B \to (A \otimes B \otimes C)/D\) by the formula \(\gamma(X + I) = \phi(X) + D\). It is clear that \(\gamma\) is linear, and since \(\gamma(I) = \phi(0) + D = D\), \(\gamma\) is well defined; it is multiplicative since \(\phi\) is multiplicative. Finally, \(\gamma\) is an isometry. For if \(T = X + I \in A \otimes_0 B\), then

\[
||\gamma T|| = ||\phi X + D|| = \inf \{||\phi X + Z||: Z \in D\}
= \inf \{||\phi X + \phi Y||: Y \in I\}
= \inf \{||X + Y||: Y \in I\} = ||T||,
\]
since φ is an isometric homomorphism.

Since D is a closed ideal in the H^*-algebra $A \otimes B \otimes C$, $(A \otimes B \otimes C)/D$ is isomorphic and isometric with the closed ideal D^\perp, which we shall denote by E. We summarize the foregoing information in the next theorem.

Theorem. There is an isometric isomorphism from $A \otimes_0 B$ into $A \otimes B \otimes C$; its range is the closed ideal E which is the orthogonal complement of the closed ideal D generated by all elements of the forms

(i) $a \otimes b \otimes c_i - ac_i \otimes b \otimes c_i$,

(ii) $a \otimes b \otimes c_i - a \otimes c_i b \otimes c_i$.

Consequently, $A \otimes_0 B$ is an H^*-algebra; its minimal closed ideals can be identified with those minimal closed ideals $A_\alpha \otimes B_\beta \otimes C_\gamma$ of $A \otimes B \otimes C$ that are orthogonal to D.

Corollary. If $A, B,$ and C are strongly semi-simple, then $A \otimes_0 B$ is strongly semi-simple.

The following proposition provides means by which it is easy to construct examples for which the converse to the above corollary is false.

Proposition 2. If $A_\alpha \otimes B_\beta \otimes C_\gamma$ is a minimal closed ideal in E, then C_γ is of dimension one.

Proof. Choose a canonical basis $\{a_{ij} \otimes b_{kl} \otimes c_{mn}\}$ for $A_\alpha \otimes B_\beta \otimes C_\gamma$ (see [2]). Since $a_{ij} \otimes b_{kl} \otimes c_{mn} \in E$, it must be orthogonal to

$$a_{ij} \otimes b_{kl} \otimes c_{mp} c_{pn} - a_{ij} c_{pn} \otimes b_{kl} \otimes c_{mp}.$$

If the dimension of C_γ were greater than one, then it would be possible to choose $n \neq p$, and we would have

$$0 = (a_{ij} \otimes b_{kl} \otimes c_{mn}, a_{ij} \otimes b_{kl} \otimes c_{mn} - a_{ij} c_{pn} \otimes b_{kl} \otimes c_{mp})$$

$$= \|a_{ij}\|^2 \|b_{kl}\|^2 \|c_{mn}\|^2.$$

since $(c_{mn}, c_{mp}) = 0$. This, of course, is a contradiction.

Corollary. If C has no one-dimensional minimal ideals, then $A \otimes_0 B = (0)$.

2. **Examples.** Perhaps the easiest method of obtaining examples of H^*-algebras $A, B,$ and C related as above is to let $A, B,$ and C be
closed ideals in some H^*-algebra \mathcal{A}. The structure of $A \otimes_o B$, under such circumstances, is described in the next proposition.

Proposition 3. Suppose that A, B, and C are closed ideals in an H^*-algebra \mathcal{A}. If A and B are viewed as C-modules with ordinary multiplication in \mathcal{A} as the module action, then $A \otimes_o B$ is isomorphic with the direct sum of all the one-dimensional minimal ideals in $A \cap B \cap C$. The isomorphism is an isometry if and only if the identity of each one-dimensional minimal ideal in $A \cap B \cap C$ has norm one.

Proof. Choose a canonical basis $\{u^a_{pq}\}$ for \mathcal{A}. Then $\{a_{ij}\} = A = \cap \{u^a_{pq}\}$, $\{b_{jk}^a\} = B = \cap \{u^a_{pq}\}$, and $\{c_{mn}^a\} = C = \cap \{u^a_{pq}\}$ are canonical bases for A, B, and C, respectively and $\{a_{ij}^a \otimes b_{jk}^a \otimes c_{mn}^a\}$ is a canonical basis for $A \otimes B \otimes C$. If $a_{ij}^a \otimes b_{jk}^a \otimes c_{mn}^a \in E$, then, by Proposition 2, $c_{mn}^a = e^a$ is the identity of a one-dimensional minimal ideal. If $\alpha \neq \gamma$, then

$$a_{ij}^a \otimes b_{jk}^a \otimes e^a e^a = a_{ij}^a \otimes b_{jk}^a \otimes e^a = a_{ij}^a \otimes b_{jk}^a \otimes e^a \in D.$$

Similarly, if $\beta \neq \gamma$, then $a_{ij}^a \otimes b_{jk}^a \otimes e^a \in D$. Thus if an element of a canonical basis is to be in E it must be of the form $e^a \otimes e^a \otimes e^a$. Relatively straightforward computations show that each such basis element is orthogonal to D, and the proof is completed.

Suppose now that G, H, and K are compact groups, and that $\theta: K \rightarrow G$ and $\varphi: K \rightarrow H$ are continuous homomorphisms. Then $\theta(K)$ and $\varphi(K)$ are closed subgroups of G and H, respectively, $L^2(G)$ and $L^2(H)$ become modules over $L^2(K)$, with the module action defined by:

$$g \ast k(x) = \int_K g(x(\theta z)^{-1}) k(z) dz,$$

$$k \ast h(y) = \int_K k(z) h((\varphi z)^{-1} y) dz,$$

for all $g \in L^2(G)$, $h \in L^2(H)$, $k \in L^2(K)$, $x \in G$, and $y \in H$ (all integrations are with respect to normalized Haar measures). If we let $A = L^2(G)$, $B = L^2(H)$, $C = L^2(K)$, then $A \otimes_o B$ is a well-defined H^*-algebra. As was remarked in [2], $A \otimes_o B \otimes C$ can be identified with $L^2(G \times H \times K)$, and so, by the Theorem of §1, $A \otimes_o B$ can be identified with a closed ideal J in $L^2(G \times H \times K)$. At one extreme, suppose θ and φ map K onto the identities of G and H, respectively. It is not difficult to see that in this case $A \otimes_o B$ can be identified with $L^2(G \times H)$.

At what might be considered another extreme, suppose that G and H are closed subgroups of some compact group, that K is a closed subgroup of $G \cap H$, and that θ and φ are the inclusion maps. Define an equivalence relation on $G \times H \times K$ as follows: $(x, y, z) \sim (u, v, w)$
if and only if $F(x, y, z) = F(u, v, w)$ for all $F \in J$. Then $M = \{(x, y, z): (x, y, z) \sim (e, e, e)\}$ is a closed normal subgroup of $G \times H \times K$, and its cosets are the equivalence classes of \sim. All functions $F \in J$ are thus constant on the cosets of M, providing a mapping ψ from J to $L^2((G \times H \times K)/M)$. The map ψ is an isometric isomorphism and its image is an ideal. On the basis of the Tannaka Duality Theorem (see [4], p. 439) it seems reasonable to conjecture that ψ is surjective, so that $A \otimes_\sigma B$ can be identified with $L^2((G \times H \times K)/M)$. The conjecture has not been settled in general, but let us consider the very special case where $G = H = K$. Then, by Proposition 3, $A \otimes_\sigma B$ can be identified with the direct sum of all one-dimensional minimal ideals in $L^2(G)$, which in turn is isomorphic and isometric with $L^2(G/N)$, where N is the closure of the commutator subgroup of G. Since G/N and $(G \times G \times G)/M$ are isomorphic via the mapping $xN \rightarrow (x, e, e)M$, the conjecture is verified in this special case.

REFERENCES

UNIVERSITY OF MINNESOTA AND DARTMOUTH COLLEGE
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON
Stanford University
Stanford, California

J. DUGUNDJI
University of Southern California
Los Angeles, California 90007

R. M. BLUMENTHAL
University of Washington
Seattle, Washington 98105

*RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
AMERICAN MATHEMATICAL SOCIETY
CALIFORNIA RESEARCH CORPORATION
SPACE TECHNOLOGY LABORATORIES
NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
by typewritten (double spaced). The first paragraph or two must be capable of being used separately
as a synopsis of the entire paper. It should not contain references to the bibliography. No separate
author's resumé is required. Manuscripts may be sent to any one of the four editors. All other
communications to the editors should be addressed to the managing editor, Richard Arens, at the
University of California, Los Angeles, California 90024.

50 reprints per author of each article are furnished free of charge; additional copies may be
obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and
December. Effective with Volume 13 the price per volume (4 numbers) is $18.00; single issues, $5.00.
Special price for current issues to individual faculty members of supporting institutions and to
individual members of the American Mathematical Society: $8.00 per volume; single issues $2.50.
Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6,
2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

* Basil Gordon, Acting Managing Editor until February 1, 1966.
David R. Arterburn and Robert James Whitley, *Projections in the space of bounded linear operators* .. 739

Robert McCallum Blumenthal, Joram Lindenstrauss and Robert Ralph Phelps, *Extreme operators into C(K)* .. 747

L. Carlitz, *A note on multiple exponential sums* 757

Joseph A. Cima, *A nonnormal Blaschke-quotient* 767

Paul Civin and Bertram Yood, *Lie and Jordan structures in Banach algebras* 775

Luther Elic Claborn, *Dedekind domains: Overrings and semi-prime elements* ... 799

Luther Elic Claborn, *Note generalizing a result of Samuel’s* 805

George Bernard Dantzig, E. Eisenberg and Richard Warren Cottle, *Symmetric dual nonlinear programs* .. 809

Philip J. Davis, *Simple quadratures in the complex plane* 813

Edward Richard Fadell, *On a coincidence theorem of F. B. Fuller* 825

Delbert Ray Fulkerson and Oliver Gross, *Incidence matrices and interval graphs* .. 835

Larry Charles Grove, *Tensor products over H*-algebras* 857

Deborah Tepper Haimo, *L2 expansions in terms of generalized heat polynomials and of their Appell transforms* 865

I. Martin (Irving) Isaacs and Donald Steven Passman, *A characterization of groups in terms of the degrees of their characters* 877

Donald Gordon James, *Integral invariants for vectors over local fields* 905

Fred Krakowski, *A remark on the lemma of Gauss* 917

Marvin David Marcus and H. Mine, *A subdeterminant inequality* 921

Kevin Mor McCrimmon, *Norms and noncommutative Jordan algebras* 925

Donald Earl Myers, *Topologies for Laplace transform spaces* 957

Olav Njstad, *On some classes of nearly open sets* 961

Milton Philip Olson, *A characterization of conditional probability* 971

Barbara Osofsky, *A counter-example to a lemma of Skornjakov* 985

Sidney Charles Port, *Ratio limit theorems for Markov chains* 989

George A. Reid, *A generalisation of W*-algebras* 1019

Robert Wells Ritchie, *Classes of recursive functions based on Ackermann’s function* .. 1027

Thomas Lawrence Sherman, *Properties of solutions of nth order linear differential equations* .. 1045

Ernst Snapper, *Inflation and deflation for all dimensions* 1061

Kondagunta Sundaresan, *On the strict and uniform convexity of certain Banach spaces* .. 1083

Frank J. Wagner, *Maximal convex filters in a locally convex space* 1087

Joseph Albert Wolf, *Translation-invariant function algebras on compact groups* .. 1093