A SUBDETERMINANT INEQUALITY

Marvin David Marcus and H. Minc
A SUBDETERMINANT INEQUALITY

MARVIN MARCUS1 AND HENRYK MINC2

Let A be an n-square positive semi-definite hermitian matrix and let $D_m(A)$ denote the maximum of all order m principal subdeterminants of A. In this note we prove the inequality

$$(D_m(A))^{1/m} \geq (D_{m+1}(A))^{1/(m+1)}, \quad m = 1, \ldots, n - 1,$$

and discuss in detail the case of equality. This result is closely related to Newton’s and Szász’s inequalities.

Let $A = (a_{ij})$ be an n-square positive semi-definite hermitian matrix with eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n \geq 0$. We introduce some notation. For $1 \leq m \leq n$ let $Q_{m,n}$ denote the set of all $\binom{n}{m}$ sequences $\omega = (\omega_1, \cdots, \omega_m)$, $1 \leq \omega_1 < \omega_2 < \cdots < \omega_m \leq n$. Let $A[\omega | \omega]$ denote the m-square submatrix of A whose (i,j) entry is $a_{\omega_i \omega_j}$, $i,j = 1, \cdots, m$.

THEOREM. If A is a positive semi-definite hermitian matrix then

$$\max_{\alpha \in Q_{m,n}} (\det (A[\alpha | \alpha]))^{1/m} \geq \max_{\omega \in Q_{m+1,n}} (\det (A[\omega | \omega]))^{1/(m+1)}, \quad m = 1, \ldots, n - 1.$$

Equality holds for a given m if and only if either A has rank less than m or $A[\omega^0 | \omega^0]$ is a multiple of the identity, where the sequence $\omega^0 \in Q_{m+1,n}$ is one that satisfies

$$\det (A[\omega^0 | \omega^0]) = \max_{\omega \in Q_{m+1,n}} \det A[\omega | \omega].$$

There are two classical results that are closely related to the inequalities (1). These are Szász’s inequalities and the Newton inequalities. Szász proved that [1, p. 119]

$$(\prod_{\alpha \in Q_{m,n}} (\det (A[\alpha | \alpha]))^{1/(m)})^{1/m} \geq \left(\prod_{\omega \in Q_{m+1,n}} (\det (A[\omega | \omega]))^{1/(m+1)} \right)^{1/(m+1)}.$$

Newton’s inequalities [1, p. 106] state that if $E_m(A)$ is the mth elementary symmetric function of the nonnegative numbers $\lambda_1, \cdots, \lambda_n$ then

Received August 27, 1964.

1 The research of this author was supported by N. S. F. Grant G. P. 1085.

2 The research of this author was supported by U. S. Air Force Grant No. AF-AFOSR-432-63.
However,

\[E_m(A) = \sum_{\alpha \in \mathcal{P}_{m,n}} \det(A[\alpha | \alpha]) \]

and hence (4) can be written

\[
\left(\sum_{\alpha \in \mathcal{P}_{m,n}} \det(A[\alpha | \alpha]) \right)^{1/m} \geq \left(E_{m+1}(A) \right)^{1/(m+1)}.
\]

Notice that (3) compares the geometric mean of the principal subdeterminants of order \(m \) with the geometric mean of the principal subdeterminants of order \(m + 1 \). Also (6) makes the same kind of comparison for the arithmetic means of these quantities. The result (1) compares the maxima of the two sets of subdeterminants.

To prove the theorem we state and prove a preliminary lemma.

Lemmas. If \(A \) is a positive semi-definite \(n \)-square hermitian matrix then

\[
\max_{\alpha \in \mathcal{P}_{m,n}} \det(A[\alpha | \alpha]) \geq (\det(A))^{m/n}, \quad 1 \leq m \leq n.
\]

Equality holds if and only if either the rank of \(A \) is less than \(m \) or \(A \) is a multiple of the identity matrix.

Proof. We use some properties of the compound matrix of \(A \), denoted by \(C_m(A) \). The essential facts concerning \(C_m(A) \) are [1, pp. 17, 24, 70]:

1. \(\det(C_m(A)) = (\det(A))^{(n-1)/m} \) (Sylvester-Franke theorem);
2. if \(A \) is positive semi-definite hermitian, so is \(C_m(A) \);
3. the characteristic roots of \(C_m(A) \) are the \(\binom{n}{m} \) products
 \[
 \prod_{i=1}^{m} \lambda_{\omega_i}, \quad \omega \in \mathcal{Q}_{m,n}.
 \]

We want to prove that

\[
\max_{\alpha \in \mathcal{P}_{m,n}} \det(A[\alpha | \alpha]) \geq (\det(A))^{m/n}.
\]

If we apply the Hadamard determinant theorem [1, p. 114] to \(C_m(A) \) then we conclude from (i)

\[
\prod_{\alpha \in \mathcal{P}_{m,n}} \det(A[\alpha | \alpha]) \geq \det(C_m(A)) = (\det(A))^{(n-1)/m}.
\]
If for every \(\alpha \in Q_{m,n} \), \(\det (A[\alpha | \alpha]) \) were strictly less than \((\det (A))^{m/n} \) then from (9) we would conclude that

\[
\text{(10)} \quad (\det (A))^{(n-1)/(m-1)} < ((\det (A))^{m/n})^{n} = (\det (A))^{(n-1)/(m-1)},
\]
a contradiction. Thus (8) holds. If (8) were equality suppose first that not all \(\det (A[\alpha | \alpha]), \alpha \in Q_{m,n} \) are equal. Then from (9) we would obtain the same contradiction (10). Thus for equality to hold in (8)

\[
\det (A[\alpha | \alpha]) = (\det (A))^{m/n}
\]
for all \(\alpha \in Q_{m,n} \). This means that all the main diagonal elements of \(C_m(A) \) are equal. If this common value is 0 then \(A \) has rank at most \(m - 1 \). If the common value is nonzero then (9) is equality throughout and as we know from the case of equality in the Hadamard determinant theorem \(C_m(A) \) is a multiple of the identity. Thus from (iii) we know that the characteristic roots

\[
\prod_{i=1}^{m} \lambda_{\alpha,i}, \quad \alpha \in Q_{m,n}, \quad m < n,
\]
are equal. But then it follows that \(\lambda_1 = \cdots = \lambda_n \) and hence \(A \) is a multiple of the identity, completing the proof of the lemma.

To prove the inequality (1) we apply the lemma to submatrices. Let \(\omega^0 \) be a sequence in \(Q_{m+1,n} \) for which

\[
\text{(11)} \quad \det (A[\omega^0 | \omega^0]) = \max_{\omega \in Q_{m+1,n}} \det (A[\omega | \omega]) .
\]

For \(\alpha \in Q_{m,n} \) and \(\alpha \) a subsequence of \(\omega^0 \), i.e., \(\alpha \subset \omega^0 \), we know that \(A[\alpha | \alpha] \) is an \(m \)-square submatrix of \(A[\omega^0 | \omega^0] \). Hence, by the lemma,

\[
\text{(12)} \quad \max_{\alpha \in Q_{m,n} \cdot \alpha \subset \omega^0} \det (A[\alpha | \alpha]) \geq (\det (A[\omega^0 | \omega^0]))^{m/(m+1)} .
\]

Thus a fortiori

\[
\text{(13)} \quad \max_{\alpha \in Q_{m,n}} \det (A[\alpha | \alpha]) \geq (\det (A[\omega^0 | \omega^0]))^{m/(m+1)} .
\]

Applying (11) we obtain the inequality (1) from (13).

If equality holds in (1) then (12) must be equality as well. Therefore either the rank of \(A[\omega^0 | \omega^0] \) is less than \(m \) or \(A[\omega^0 | \omega^0] \) is a multiple of the \((m + 1)\)-square identity matrix. If the former is the case then \(\det (A[\omega^0 | \omega^0]) = 0 \) and hence, since (13) is equality, every \(m \)th order principal subdeterminant of \(A \) is 0. Thus the rank of \(A \) is less than \(m \).
REFERENCE

UNIVERSITY OF CALIFORNIA, SANTA BARBARA
Mathematical papers intended for publication in the Pacific Journal of Mathematics should by typewritten (double spaced). The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. No separate author’s resumé is required. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens, at the University of California, Los Angeles, California 90024.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. Effective with Volume 13 the price per volume (4 numbers) is $18.00; single issues, $5.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $8.00 per volume; single issues $2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

* Basil Gordon, Acting Managing Editor until February 1, 1966.
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projections in the space of bounded linear operators</td>
<td>David R. Arterburn and Robert James Whitley</td>
<td>739</td>
</tr>
<tr>
<td>Extreme operators into $C(K)$</td>
<td>Robert McCallum Blumenthal, Joram Lindenstrauss and Robert Ralph Phelps</td>
<td>747</td>
</tr>
<tr>
<td>A note on multiple exponential sums</td>
<td>L. Carlitz</td>
<td>757</td>
</tr>
<tr>
<td>A nonnormal Blaschke-quotient</td>
<td>Joseph A. Cima</td>
<td>767</td>
</tr>
<tr>
<td>Lie and Jordan structures in Banach algebras</td>
<td>Paul Civin and Bertram Yood</td>
<td>775</td>
</tr>
<tr>
<td>Dedekind domains: Overrings and semi-prime elements</td>
<td>Luther Elic Claborn</td>
<td>799</td>
</tr>
<tr>
<td>Note generalizing a result of Samuel’s</td>
<td>Luther Elic Claborn</td>
<td>805</td>
</tr>
<tr>
<td>Symmetric dual nonlinear programs</td>
<td>George Bernard Dantzig, E. Eisenberg and Richard Warren Cottle</td>
<td>809</td>
</tr>
<tr>
<td>Simple quadratures in the complex plane</td>
<td>Philip J. Davis</td>
<td>813</td>
</tr>
<tr>
<td>On a coincidence theorem of F. B. Fuller</td>
<td>Edward Richard Fadell</td>
<td>825</td>
</tr>
<tr>
<td>Incidence matrices and interval graphs</td>
<td>Delbert Ray Fulkerson and Oliver Gross</td>
<td>835</td>
</tr>
<tr>
<td>Tensor products over $H^*-algebras</td>
<td>Larry Charles Grove</td>
<td>857</td>
</tr>
<tr>
<td>L^2 expansions in terms of generalized heat polynomials and of their Appell transforms</td>
<td>Deborah Tepper Haimo</td>
<td>865</td>
</tr>
<tr>
<td>A characterization of groups in terms of the degrees of their characters</td>
<td>I. Martin (Irving) Isaacs and Donald Steven Passman</td>
<td>877</td>
</tr>
<tr>
<td>Integral invariants for vectors over local fields</td>
<td>Donald Gordon James</td>
<td>905</td>
</tr>
<tr>
<td>A remark on the lemma of Gauss</td>
<td>Fred Krakowski</td>
<td>917</td>
</tr>
<tr>
<td>A subdeterminant inequality</td>
<td>Marvin David Marcus and H. Minc</td>
<td>921</td>
</tr>
<tr>
<td>Norms and noncommutative Jordan algebras</td>
<td>Kevin Mor McCrimmon</td>
<td>925</td>
</tr>
<tr>
<td>Topologies for Laplace transform spaces</td>
<td>Donald Earl Myers</td>
<td>957</td>
</tr>
<tr>
<td>On some classes of nearly open sets</td>
<td>Olav Njstad</td>
<td>961</td>
</tr>
<tr>
<td>A characterization of conditional probability</td>
<td>Milton Philip Olson</td>
<td>971</td>
</tr>
<tr>
<td>A counter-example to a lemma of Skornjakov</td>
<td>Barbara Ososky</td>
<td>985</td>
</tr>
<tr>
<td>Ratio limit theorems for Markov chains</td>
<td>Sidney Charles Port</td>
<td>989</td>
</tr>
<tr>
<td>A generalisation of $W^*-algebras</td>
<td>George A. Reid</td>
<td>1019</td>
</tr>
<tr>
<td>Classes of recursive functions based on Ackermann’s function</td>
<td>Robert Wells Ritchie</td>
<td>1027</td>
</tr>
<tr>
<td>Properties of solutions of nth order linear differential equations</td>
<td>Thomas Lawrence Sherman</td>
<td>1045</td>
</tr>
<tr>
<td>Inflation and deflation for all dimensions</td>
<td>Ernst Snapper</td>
<td>1061</td>
</tr>
<tr>
<td>On the strict and uniform convexity of certain Banach spaces</td>
<td>Kondagunta Sundaresan</td>
<td>1083</td>
</tr>
<tr>
<td>Maximal convex filters in a locally convex space</td>
<td>Frank J. Wagner</td>
<td>1087</td>
</tr>
<tr>
<td>Translation-invariant function algebras on compact groups</td>
<td>Joseph Albert Wolf</td>
<td>1093</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>