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We assume that a finite group G acts on the left on finite
sets X and Y, and that there is given a function f: X — Y,
We assume that f(ox) = of(x) for all 6 € G and z € X; and that
f~(y) has the same number % of elements for all ycY. We
show that the cohomology groups H(X; G, A) and H"(Y; G, A)
of the permutation representations (G, X) and (G, Y) with
values in a G-module A are interrelated by homomorphisras
inflation,: H{Y; G, A) —» H(X; G, A and  deflation,:
H(Y; G, A)— H(Y; G, A), for all r€ Z, The main properties
of inf, (inflation,) and def, (deflation,) are:

I. For all reZ, def,inf,: H(Y; G, A)— H(Y; G, A) con-
sists of multiplying the elements of H"(Y; G, A) by h?, where
qg =1 and q depends on 7.

II. If for some rc Z, H(Y; G, A) is uniquely divisible by
h, inf, is a monomorphism and def, is an epimorphism and
H"(X; G, A) = im(inf,) ®ker(def,.), where & denotes the direct
sum of abelian groups.

1. H"(Y; G, A) is uniquely divisible by 2 for all reZ
in each of the following two cases.

IIla. A is uniquely divisible by %.

II1b. (h, m) =1 where m is the index of (G, Y).

We then study the special case where the permutation
representations (G, X) and (G, Y) are transitive and where
(G, X) is furthermore free of fixed points. Since the classical
inflation and deflation mappings fall under this heading, we
have now extended these mappings to all of Z. We describe
the six mappings inf, and def, for » = 0, =+ 1 explicity in terms
of trace mappings, augmentation ideals and crossed homo-
morphisms,

G stands for a finite group. For every normal subgroup H of G
and G-module A, the inflation (or lift) mapping H"(G/H, A%) — H"(G,
A) is well known for » = 1; A# always denotes the submodule of A
whose elements are left fixed by H. Dually, there is available the
deflation mapping H(G, A) — H"(G/H, A®) for r < — 2 (see [7]). In
the present paper we extend the inflation and deflation mappings to
all re Z. (Z denotes the ring of the rational integers.) We develop
the theory for arbitrary permutation representations (see [6] for the
cohomology of permutation representations) which includes the case
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that H is not normal.

The fact that the inflation mapping followed by the deflation
mapping consists of multiplying by a power of [H:1] (see Theorem
5.1), indicates that these mappings behave particularly nicely if A is
uniquely divisible by [H: 1], or if H is a Hall subgroup of G. These
cases are worked out in §6, 7, 8, 11, 12 and 13 and are needed for
the author’s forthcoming paper on duality in the cohomology of
permutation representations. The study of deflation in dimension 1
brings to the fore natural endomorphisms of the group of crossed
homomorphisms from G to A. There is one such endomorphism for
each subgroug of G. (see §15 and 16.)

1. Inflation for chains. X stands for a finite set and (G, X)
for a permutation representation (see the introduction of [6]); i.e.,
oxe X for all xze X and €@, and (07)x = o(rx) and 1lx = 2 for all
o, 7€ G; 1 always denotes the unit element of the group under discus-
sion. Let (L, Y) be a second permutation representation of some finite
group L acting on some finite set Y, and let 4 = (o, f): (G, X) — (L,
Y) be a morphism of permutation representations (see the introduction
of [6]); i.e., :G— L is a group homomorphism and f: X— Y is a
function where f(ox) = @(0)f(x) for allo€ G and x€ X. The rth chain
group C,(X; G) of the standard complex C. (X;G) of (G, X) is the G-
module Z[X?], where X? is the cartesian product of X with itself ¢
times; g=7r+1if r=0and g = —r if »r <0 (see §1 of [6]; the
same definitions hold of course for (L, Y).) The function (x,, --- x,) —
(f(x), «+-, f(®,)) from X’ to Y? can be extended by linearity to a
homomorphism «,: Z[X?] — Z[Y?] which is a G-homomorphism if we
regard the L-module Z[Y?] as a G-module under ¢: G — L. All this
gives rise to the diagram:

L 0X 6) 2 X 6) s (X ) S e ) 2

ai

a0 VA
| N
e N
S C(Y; L)—a“,—’ C(Y; L) - C_(Y; L) 7 C_(Y; L)T X

a—1 a—2

We have primed the differentiation mappings 6. and augmentation
mappings &', ¢’ of the complex C.(Y; L). We know from §1 of [6]
that pe = 0, and that p'e’ = 8;; and §13 of [6] tells us that 8, =
«,_0, for r = 1 and that ¢’a, = . The reason why one shies away
from studying «, for » < 0 is that these commutativity relations fail
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for » < 0. We show however that they fail by so little that these
maps «, are still very useful for r < 0.

We assume for the remainder of this paper that f~'(y) contains
the same number of elements for all ye Y, and denote this number
by h. This implies of course that f: X— Y is an epimorphism and
hence that «,, for all »¢ Z, is an epi. Conversely, if f is an epi and
the permutation representation (G, X) s transitive, the number of
elements in f~(y) does not depend on y. This follows easily from the
fact that for every morphism of permutation representations the parti-
tioning X = UsSy) of X consists of domains of imprimitivity of (G,
X). (See §146 of [2] for domains of imprimitivity.)

We replace the differentiation operator 8, of C.(Y; L) by ho, if
r < 0, but leave 9, unchanged for » < 0. We also change /' to hy/
but leave ¢ unchanged. We now show that the following diagram
displays a chain mapping of complexes.

e 2 O G s 0K B - (X B) I 0K G) S
N
N\,
(I) i wo VA a1 [
l ]
VAN !

—C(Y; L) — C(Y; L) — C_(Y; L) — C_(Y; L) —> - -
a, ( ) a, ( ) h, ( ) ho', ( ) ha',

1

ProposiTiON 1.1. The upper row of diagram (I) is a G-complex
and the lower row is an L-complex. The diagram is completely com-
mutative, that is;

(1) 8o, =a._0, for r = 1;

(2) da,=-¢
(3) pe=20y
(4) hp'e = hay;
(5) oy =hy;

(6) how, = a0, for r < — 1.

The chain mapping {«,, r€ Z} is an epimorphism and a G-mapping if
we consider the lower row as a G-complex under ¢: G — L.

Proof. The upper row is the G-complex C.(X; G). The fact that
C.(Y; L) is an L-complex implies immediately that the lower row is
also an L-complex. The first three commutativity relations have been
discussed above and (4) follows from p's’ =9;. For (5) we observe
that a_,p(1) = @\ Y,cx® = J,cxf(®) = hE,eyy = Rp'(1). For (6) we
select (x,, +++, x,) € X" and use the definition of 4_, of §1 of [6] to
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compute that a_,_0_.(x,, -+, 2,) = a_._(Z,ex(®, 2, +++, &,) + Z7_(— 1)
Soex(®yy vo 0, Xy T, By, 00 X)) = Dex(fR), A&y, + -0, AAR) + Tioi(— 1)
erx(f(xl)’ ctty f(x,), f(.’L‘) f(xi+1); M f(xr)) = hz’yei’(yy f(xl)y °t Ty f(xr» +
+hE (= 1) Zyer(f(®), « -+, (@), ¥, (i), <+ -, f(2,)) = hOL(f (), + -+,
Ax,)) = ho_,a_ (2, + -+, x,). Finally, the fact that a,: C(X; G) — C.(Y;
L) is an epimorphism and may be regarded as a G-homomorphism has
been mentioned previously. Done.

One should be careful to observe that the lower row of diagram
(I) may not be acyclic any longer. True, its rth cycle group is the
same as the rth cycle group of the acyclic complex C.(Y; L), because
C(Y; L) = Z[Y"] is without torsion for all » <€ Z. However, if »r < — 1,
the rth boundary group of the lower row of diagram (I) is 2B, where
B, denotes the rth boundary group of C.(Y; L).

It is convenient to think of the mappings «, as the “inflation
mappings for chains” because, if r = 1, «, gives rise to the customary
inflation mapping (see Definition 4.1). If however » < 0, either a, or
ha, is used to define the inflation mapping (same definition).

2. Deflation for chains. We define, for every re€ Z, a homo-
morphism B,: C(Y; L)— CAX;G). Again, C(Y; L) = Z[Y"], where
gq=7r-+1if r=0and ¢q = — rif » < 0. The mapping (y,, *+++, ¥,) —
(%, e, ociq), where the summation is over all g¢-tuples of the
cartesian produet f~*(y,) X -+« Xf(y,), maps the Z-base of Z[Y?] into
Z[X"] = CAX; G). We define B, as the extension by linearity of this
mapping to Z[Y?‘]. We observe that 8, is the dual of the mapping
®_,_, in the following sense. C.(Y; L) may be regarded as Hom,(C_,_,
(Y; L), Z) and similarly, for C.(X; G). (See §1 of [6].) If we apply
the functor Hom,(*, Z) to the homomorphism «_, : C_, (X;G)—
C_,_(Y; L) we obtain the homomorphism 8,: C(Y; L) — C(X; G). This
observation makes the following proposition into an easy corollary of
Proposition 1.1.

ProposITION 2.1. The upper row of diagram (II) (see below) is
a G-complex and the lower row is an L-complex. The diagram is
completely commutative, that is:

(1) 9,8, = B,_.ho; for r = 1;

(2) eBy= he';

(3) pe=0d;

(4) p'he’ = hoy;

(5) By =

(6) 9,8, =p,.0, for r = — 1.
The chain mapping {5,; r € Z} is a monomorphism and is a G-mapping
if we consider the lower row as a G-complex under ¢: G — L.
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B 04X G) 2 0 X ) 2o (X 6) Th X 6) 2

RN
e\ e
40)) B b| Z Bt B2
he' 7N\
/ N
cre—p s L) —p C(Y; L) —» C_(Y; L) > C_(Y; L) —— -+~
ha) Y5 L) ha, CuY; L) ha) CAY; L) ', C(¥; L) 3’

Observe that the lower rows of diagrams (I) and (II) are not the
same but correspond to one another under the functor Hom,(*, Z).
It is convenient to think of the mappings 53, as the “deflation mappings
for chains” because, if » = — 2, B, gives rise to the deflation mapping
defined in [7]. If however » = — 1, either B, or hB, is used to
define the deflation mapping (see Definition 5.1).

ProPOSITION 2.2. a8, —h™ if r=0and a8, =h " ifr< — 1.
Here, h? denotes the endomorphism of C.(Y; L) which consists of
multiplying its elements by Ac.

Proof. The Z-base of C(Y; L) consists of the g-tuples (y,, ---
Y,) € Y7 Furthermore, a,58,(yy, <+ +, ¥)) = @, 2(%;, «+ =, @, )) = 2(f(w;), - -+,
f;)) where the summation is over the h? g-tuples (z;, cee, ;) of
the cartesian product f~y,) X -+« Xfy,). Hence the last sum is
equal to h%(y,, «+-,y,). Done.

’

3. Inflation and deflation for cochains. We now have to
“hom” diagrams (I) and (II) with modules. Although it is possible to
work simultaneously with a G-module and an L-module, we restrict
ourselves to the case which is of principal interest for group theory.
We assume for the remainder of this paper that G = L and that o

18 the identity wmapping of G. Furthermore, A stands for a
G-module.

If we apply the functor Hom.(*, A) to the chain complex C.(X;
G), we obtain the cochain complex C'(X;G, A) (see §2 of [6]). We
denote the rth cochain group of C*(X; G, A) by C"(X; G, A) and treat
the permutation representation (G, Y) in the same way. Hence,
under the functor Homg(*, A), the mappings «,: C(X;G)— C(Y; Q)
and B,:C(Y;G)— C(X;G) become, respectively, mappings a,: C"(Y;
G,A)—C(X;G,A) and b, C(X;@G, A)—C(Y;G,A); here, a,=
Homg(a,, 1,) and b, = Home(8,, 1,) where 1, denotes the identity of A.
When we apply the same functor to diagrams (I) and (II) we obtain,
respectively, diagrams (III) and (IV); and Propositions 1.1, 2.1 and 2.2
give Proposition 3.1.
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e IO XG, A) T O (X6, A) s CXGLA) -2 O (X6, A

(111) a-z] “4 aoT alI

- —C(Y;G,A)—— CY(Y;G,A)— C(Y;G,A)—— C(Y; — e
7 O (YiG, A CHYS6, A) o CUYiG ) — o O(YS 6, ) —

O XG, A0 XL A)  C(XG,A) 2 C (X6, A) -2

(IV) b;zl b_ll bol bll
oGV G, Ay GV G A) —s TG, A) —» CH(Y, G, A) -
o, 1o, na, 3,

—3 1

ProrosiTION 3.1. All four rows in diagrams (III) and (IV) are
complexes of abelian groups, and both diagrams are commutative
diagrams. The chain mapping {a,;r€Z} is a monomorphism, but
the chain mapping {b,;r<€Z} is not necessarily an epimorphism.
Furthermore, b,a,=h"* if » =0 and b,a,=h" if < — 1; here, h?
denotes the endomorphism of C"(Y; G, A) which consists of multiplying
its elements by A“.

It is clear from the previous sections that it is convenient to
think of the mappings a, and b, as, respectively, the “inflation map-
ping” and “deflation mapping” for cochains.

4. Inflation for cohomology groups. We denote, as in [6],
the rth cocycle group (coboundary group, cohomology group) of the
complex C*(X; G, A) by Z"(X; G, A), (B(X; G, A), H(X, G, A)); we do
of course the same for C(Y; G, A). We read immediately from dia-
gram (III) that a(Z°(Y; G, A)) C Z2"(X; G, A) for all re Z; and that
a(B"(Y; G, A) Cc B(X; G, A) if =1, If r <0, a, may not transform
coboundaries into coboundaries (see Example 9.1); this depends on the
nature of our morphism (G, X) — (G, Y) and the G-module A. How-
ever, diagram (III) does tell us immediately that ha.(B"(Y; G, A)) C
B(X; G, A) and that ha(Z7(Y; G, A)) Cc Z"(X; G, A) for all re Z.

The above implies the following for the cohomology groups. The
homomorphism ha, always induces a homomorphism (ha,)*: H'(Y; G,
A)— H(X;G, A) for all reZ. The homomorphism «. induces a
homomorphism a}: H(Y; G, A) — H(X; G, A) for r = 1 but, depending
on the morphism (G, X) — (G, Y) and on A, not for » =< 0. Whenever
af exists, that’s the mapping we want. If however a} does not exist
we should not despair but be satisfied with (ha,)*. The following
definition reflects this attitude.

DEFINITION 4.1. Let r€ Z. If it happens that a(B"(Y; G, A)) C
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B'(X; G, A), we call the homomorphism a}: H(Y; G, Ay — H(X; G, A)
the inflation mapping or lift mapping for dimension r. If a.(B(Y;
G, A)) & B'(X; G, A), we call the homomorphism (ha,)*: H(Y; G, A) —
H"(X; G, A) the inflation mapping or lift mapping. We denote the
inflation mapping by inf or inf,.

The above definition gives the customary inflation mapping when
r =z1. We repeat that, when 7~ =< 0, it depends on the morphism
(G, X)— (@, Y) and the module A whether inf, = a} or inf, = (ha,)*.

REMARK 4.1. One could obviously have proceeded differently.
Namely, diagram (III) shows that a, always induces a homomorphism
from the rth cohomology group H™ of the lower row of that diagram
into H(X; G, A). The groups H" for r =< 0 seem to be of no particular

interest for group theory which is why we proceeded as in Definition
4.1,

ExampPLE 4.1. Consider the morphism of permutation representa-
tions (14, f): (G, G) — (G, G/H). Here, X =G and the permutation
representation (G, G) consists of G acting by left multiplication on
itself. TFurthermore H is a subgroup of G, mnot necessarily normal,
and Y is the set G/H of the left cosets of H. The permutation re-
presentation (G, G/H) consists of G acting on these cosets by left
multiplication. Finally, f(6) = ¢H for 0 € G. The number of elements
in f%(cH) is the order # of H and hence is independent of ¢H.
Consequently, Definition 4.1 applies and inf,: H(G/H; G, A)— H"(G; G, A)
is defined for all re Z. As is well known, H"(G; G, A) is the classical
cohomology group H"(G, A), and H'(G/H; G, A) is the relative group
H'(G: H, A) defined in [1]. If » = 1, inf, coincides with the inflation
mapping defined in §7 of [1]. If H is a normal subgroup of
G, H'(G: H, A) is isomorphic with the classical cohomology group
H'(G/H, AZ) (see the Corollary on page 68 of [1]) and we obtain, if
r = 1, the customary inflation mapping from H"(G/H, AF) into H'(G,
A). We shall frequently come back to this example.

5. Deflation for cohomology groups. We read from diagram
(IV) that b(B"(X; G, A)) Cc B(Y; G, A) for all re Z; and that b.(Z"(X;
G, A)cZ(Y;G,A) if r<—2, If r=—1, b, may not transform
cocycles into cocycles. Diagram (IV) also tells us that #b.(Z7(X; G,
A)C Z(Y; G, A) and that hb(B(X; G, A))C B (Y; G, A) for all re Z.

Consequently, hb, induces a homomorphism (hb,)*: H(X; G, A) —
H"(Y:G, A) for all reZ. The homomorphism b, induces a homo-
morphism b}; H"(X; G, A) —» H(Y; G, A) for »r < — 2 but, depending
on the morphism (G, X)— (L, Y) and the module 4, not for » < — 1.
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We proceed as in the case of inflation.

DEFINITION 5.1, Let re Z. If it happens that b0.(Z"(X; G, A)) C
Z"(Y; G, A), we call the homomorphism b}: H"(X; G, A) — H"(Y; G, A)
the deflation mapping for dimension . If (Z"(X; G, A)) ¢ Z"(Y; G, A),
we call the homomorphism (kb,)*: H"(X; G, A)— H"(Y;G, A) the
deflation mapping. We denote the deflation mapping by def or def,.

We repeat that, when r< — 2, def,=(®,)*. If r=-—1, it
depends on the morphism (G, X) — (G, Y) and the G-module A whether
def, = b} or def, = (hb,)*. Remark 4.1 applies of course equally well
to deflation.

ExampLE 5.1. Consider the morphism (14, f): (G, G) — (G, G/H)
of Example 4.1. Definition 5.1 defines the deflation mapping def,:
H'(G, A)— H"(G: H, A) for all reZ. If H is a normal subgroup of
G, def, maps H"(G, A) into H(G/H, A¥); if furthermore » < — 2,
def, coincides with the deflation mapping studied in [7].

THEOREM 5.1. Let h? denote the endomorphism of H'(Y; G, A)
which consists of multiplying its elements by h' For each reZ
there exists an integer q = 1, depending on r, such that def, inf, =
he.

Proof. def, inf, is equal to b*a} or to (hb,)*a} or bf(ha.* or
(hb,)*(ha,)*. Proposition 3.1 tells us that b.a,, (kb,)a,, b.(ha,) and (hb,)
(ha,) all consist of multiplying the elements of C*(Y;G, A) by a
positive power of 4. Done.

We now study various special instances of inflation and deflation.
Hereto, we need some material on uniquely divisible modules.

6. Uniquely divisible modules. In this whole section, ke Z
stands for a fixed, nonzero integer. If F' is a module (i.e., an abelian
group written additively) we denote the identity mapping of F' onto
itself by 1,. Hence, k1, denotes the endomorphism of F which con-
sists of multiplying its elements by k. As always, F' is called divisible
by k if k1, is an epimorphism; and F' is called uniquely divisible by
k if k1, is an automorphism.

PROPOSITION 6.1. Let 0—» D ——E —1»F —0 be an exact
sequence of modules. If two of them are uniquely divisible by %k, so
is the third.

Proof. Consider the commutative diagram
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0—D—>E-.F— 0

Lo

0— DS E2 . F_— 0

where the vertical arrows denote, respectively, k1,, k1, and k1,. We
conclude from the “5 lemma” (see [3], page 5) that, if two of the
vertical arrows are automorphisms, so is the third. Done.

ProOPOSITION 6.2. Let v: E— F be a homomorphism from the
module E to the module F. If F and F are both uniquely divisible
by k, so are ker(v), coker(v), im(v) and coim(v). (Coim stands for
coimage.)

Proof. Since E is divisible by %k, im(v) is evidently divisible by
k. The fact that, actually, im(v) is uniquely divisible by % then
follows from the fact that k1, is a monomorphism. This also takes
care of coim(v) =~ im(v). We now apply Proposition 6.1 to the exact
sequences 0 — im(v) — F'— coker(v) — 0 and 0 — ker(v) — E — coim(v) —
0 and we are done.

REMARKS 6.1. Propositions 6.1 and 6.2 together say that the
category of modules which are uniquely divisible by % is a complete
subcategory of the category of abelian groups (see page 138 of [5]).
This subcategory is not “épaisse” (same reference) since the additive
group of Z is a subgroup of the additive group of the rational numbers;
the latter group is uniquely divisible by &k but, if k # = 1, the first
one is not.

PropPoSITION 6.3. Let E and F be two /4-modules where 4 is some
ring with unit element. If one of the modules is uniquely divisible
by k%, so is Hom(E, F').

Proof. Suppose that k1, is an automorphism. Then, Hom,(k1,,
1.): Hom(E, F)— Hom(F, F') is an automorphism, and it consists of
course of multiplying the elements of Hom,(F, F') by k. We proceed
similarly if k1, is an automorphism. Done.

We now return to our permutation representation (G, X). Since
(G, X) is entirely arbitrary, Lemma 6.1 is valid for all permutation
representations.

LeMMA 6.1, Let A be a G-module which s uniquely divisible
by k. Then, H(X; G, A) 1is uniquely divisible by k for all re Z.
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Froof. Let reZ. C(X,; G, A) = Hom(C(X; G), A) is uniquely
divisible by & by Proposition 6.3. We apply Proposition 6.2 to the
homomorphisms C(X, G, 4)— C"(X,; G, A) — C*{(X; G, A) and find
that the cocycle group Z7(X; G, A) and the coboundary group B7(X,
G, A) are uniquely divisible by k. Since H"(X; G, A) is the cokernel
of the ineclusion mapping B(X; G, A) — Z"(X; G, A), the same proposi-
tion gives the desired result.

REMARK 6.2. Lemma 6.1 gives a cute proof of the well known
fact that H"(G, A) = 0 if A is uniquely divisible by the order n of G.
Namely, nH"™ = 0 and, by Lemma 6.1, nH"(G, A) = H"(G, A). More
generally, if A is uniquely divisible by the index of the permutation
representation (G, X), then H(X; G, A) = 0 for all »re Z. (See Corol-
lary 10.2 of [6].)

7. The case that H'(Y; G, A) is uniquely divisible by h. We
recall that the set Y is partitioned into the domains of transitivity
T, ---, T, of the permutation representation (G, Y). If T, has m,
elements, the greatest common divisor m of m,, «--, m, is called the
index of (G, Y) (see §4 of [6]).

Lemma 7.1. Let d = (h, m). If A is uniquely divisible by d,
then H'(Y; G, A) s uniquely divisible by h for all re Z.

Proof. H'(Y; G, A) is uniquely divisible by d by Lemma 6.1, and
mH"(Y; G, A) = 0 by Corollary 10.2 of [6]. Done.

The following proposition is an immediate corollary of Lemma 7.1.

PropoSITION 7.1. In each of the following two cases H(Y, G, A)
is uniquely divisible by & for all »e Z.

(a) A is uniquely divisible by A.

o) (h, m) =1,

ExamMpPLE 7.1. Case (b) of Proposition 7.1 is important for Hall
subgroups. (A subgroup H of G is called a Hall subgroup if the
order of H is relatively prime to the index [G: H] of H.) In the
morphism (G, G) — (G, G/H) of Example 4.1, the index of (G, G/H) is
the index [G: H]; hence, (h, m) =1 if and only if H is a Hall
subgroup of G.

THEOREM 7.1. Let re Z and let H'(Y; G, A) be uniquely divisible
ty h. Then, inf, is a monomorphism and def. is an epimorphism;
and H'(X; G, A) = im(inf,) P ker(def,) where @ denotes the direct
sum of abelian groups.
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Proof. def,inf, = h? for some ¢ =1 by Theorem 5.1. Since A is
an automorphism of H"(Y; G, A), Theorem 7.1 follows from routine
group arguments.

ExamMPLE 7.2. Consider the morphism (G, G) — (G, G/H) of Ex-
ample 4.1 and suppose that, for some r<c Z, H'(G/H; G, A) is uniquely
divisible by h. Since mH"(G/H; G, A) = 0 where m = [G: H], it is
obvious that m(im(inf,)) =0. It may however very well be that
H"(X; G, A), which is equal to H"(G, A), contains further elements
which are annihilated by m. For instance, if A is uniquely divistble
by h, all elements of H'(X; G, A) are annthilated by m. This follows
from (1) H'(X; G, A) is divisible by % (it is even uniquely divisible by
h by Lemma 6.1); (2) mhH(X; G, A) = 0 since H"(X; G, A) = H'(G,
A) and mh is the order of G.

In this connection, it is interesting to recall that Faddeev proved
in [4] that, if H is a Hall subgroup of G, and r = 1, im(inf,) consists
of all the elements of H"(G, A) which are annihilated by m. We
conclude: Let r =1, let A be uniquely divistble by h and let H be
a Hall subgroup of G. Then, inf, and def, are both tsomorphisms.
In particular, H (G, A) ~ H(G: H, A). (This last isomorphism and
the fact that inf is an isomorphism also follow from Faddeev’s results
on the restriction mapping. All one has to observe is that H(H, A) =
0, since A is uniquely divisible by h.) The author conjectures that
this result remains true for » < 0.

8. The case that A is uniquely divisible by . We know from
Lemma 6.1 that, if A is uniquely divisible by %, Theorem 7.1 may be
applied for all re€ Z. We now add to this that in this case inf, = af
and def, = b} for all »re Z. In other words, the factor % in Definitions
4.1 and 5.1 can be omitted. For deflation this is even correct if A1,
is only a monomorphism.

THEOREM 8.1. If A is uniquely divisible by h, inf, = a} for all
reZ. If hl, is a monomorphism, def, = b* for all re Z.

Proof. Let A be uniquely divisible by h and select reZ. We
see from diagram (III) that the rth coboundary group of the lower
row of that diagram is B(Y; G, 4) if r =1 and is AB"(Y; G, A) if
r = 0. We see from the proof of Lemma 6.1 that B"(Y; G, A) is
uniquely divisible by # and hence hB"(Y; G, A) = B(Y; G, A). Since
{a;, € Z} is a chain mapping it is now clear that . (B(Y; G, A)) C
B"(X; G, A); hence, by Definition 4.1, inf, = a?.

Let Rkl, be a monomorphism and select reZ. We see from
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diagram (IV) that the rth cocycle group of the lower row of that
diagram is Z(Y; G, A) if »r < — 2 and is ker(hd]) if » = — 1. Since
k1, is a monomorphism the endomorphism which consists of multiply-
ing the elements of C™YY; G, A) by h is evidently a mono; hence,
ker(hé;) = ker(d)) = Z°(Y; G, A). Since {b;, i€ Z} is a chain mapping
it is now clear that b(Z"(X; G, A)) C Z"(Y; G, A); hence, by Definition
5.1, def, = b*. Done.

We are now going to study inflation and deflation for dimensions
0, —1, and 1.

9. Inflation in dimension zero. We restrict ourselves in the
remainder of this paper to the morphism (g, f): (G, G) — (G, G/H)
of example 4.1. Hence, from now on, X =G, Y =G/H, h =[H:1]
and m = [G: H] where m is the index of (G, G/H). We denote the
order of G by n. The trace mapping Sgz: A7 — A% is the customary
one; we usually write S;, Sy instead of S;;, or Sz,

We know that there exists an isomorphism j: A — CY(X; G, A)
given by (j(a))(1) = @, where a€ A and 1 is the unit element of G.
(See Proposition 4.2 of [6].) The same reference tells us that there
exists an isomorphism k: A% — CYY; G, A) given by (k(a))(H) = a,
where a € AZ,

ProposITION 9.1. The following diagram commutes
A-1,0%X; G, A)

4 k Iao

A7 — CAY; G, A)

where 4: A” — A is the inclusion mapping.

Proof. Let ae A”. Then (ji(a)) (1) = i(a) =a, while (ak(a))
(1) = (k(a)) (H) = a. Done.

We conclude that inflation for O-cochains ts mothing but the
incluston mapping 1. A¥ — A. Since ZYY; G, A) = Z'(X,; G, A) = A¢
(see Proposition 4.1 of [6]) and 7| A% is the identity, inflation for
0-cocycle is the identity mapping of A% We have observed in §4
that we cannot expect that a(BYY; G, A)) C BAX; G, A). Let’s see
what the situation is.

B(Y; G, A) = Sgjz A" and BYX: G, A) = SzA by Proposition 4.3
of [6]. However the inclusion goes the wrong way, that is, SeA C
SenA¥ as follows from SeA = S¢;zSud C SejzA”. We conclude from
Definition 4.1:
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ProposITION 9.2, inf, = af iff S;;;A7 = SgA. In that case, inf,
is the identity mapping of A%/Ss;A. Otherwise, inf(a + SgzA%) =
ha 4+ SqA for all ae AS.

ExaMPLE 9.1. Let A = Z with trivial G-action. Then, A% =
A? = Z, S, zA" = mZ, S,A — nZ and hence, if H # {1}, S, 47 + S,A.
Furthermore, A°%/S;zA” = Z, (the cyclic group with m elements)
and A%/S;A = Z,. We see from Proposition 9.2 that inf,;: Z,, — 7, is
the natural monomorphism 2z + mZ — hz - nZ where z¢ Z; this is
also true if H = {1}. It is immediate from Proposition 9.2 that in
general, if G acts trivially on A and hl, is a monomorphism, inf,
18 0 MONOMorphism.

REMARK 9.1. We always have hSyzA" CS;AC SenA”. The
right hand inclusion was observed before Proposition 9.2. The left
hand inclusion follows either from ha(BYY; G, A)) C B(X; G, A) (see
§4) or from S;A D S;A7 = SguSpA® = WS¢ xA”.

10, Deflation in dimension zero. Let j: A— CY(X; G, A) and
k: AT — CYY; G, A) denote the same isomorphism as in Proposition 9.1.

ProposiTioN 10.1. The following diagram commutes.

A, 0ux: G, 4)

Sgl lbo

A7, oy @, A)

Proof. Let ae A. Then, (kSza) (H) = Sya, while (b,j(a)) (H) =
j(a) (Zpemo) = ZPEH‘OG/ = SHCL. Done.

We conclude that deflation for 0-cochaims ts the trace mapping
Sz: A— A%, Furthermore, deflation for 0-cocycles consists of mulit-
plying the elements of A? by h, since this is the effect of Sz on A°.
This comes as a mild surprise since it shows that b(Z%X; G, A)) C
Z(Y; G, A) which, as we observed in §5, can not be expected to be
true for all morphisms of permutation representations. We know
from the same section that b(BYX; G, A)< BA(Y; G, A) which is
equivalent to saying that hS;A C S;zA"; this last inclusion follows
from SgA < S;4AZ, observed before Proposition 9.2.

Since SgA C Sy zA” C A¢, the natural epimorphism v: A%/S,A — A%/
SezA” is given by Y(a + S;A) = a + Sz AY, where ae A. It would
have been nice if v had been def,, but we regretfully conclude from
Definition 5.1:

ProrosiTioN 10.2. def, = bf. Explicitly, defya + S¢A) = ha +
S¢rA? for all ae A% t.e., def, = k7.
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ExaMpLE 10.1. Let A =7 with trivial G-action. Then, def,:
Z,— Z, is kv, where v: Z,— Z, is the natural epimorphism given by
vz + nZ) =2z 4 mZ for ze Z. It is clear from this example that def,
may be neither a monomorphism nor an epimorphism.

11. Coboundaries in dimension —1, In order to study infla-
tion in dimension — 1 we need some material on the (—1)-coboundaries
of the permutation representation (G, Y) = (G, G/H).

Let o, -+, 0, be a set of representatives for the left cosets of
H, ie.,, Y=G/H={0,H, ---,0mH}. We assume that the enumera-
tion is such that 0, H, ---,0,H (1 = w < m) is a set of representatives
of the permutation representation (H, G/H). (According to §4 of [6]
this means that (H, G/H) has % domains of transitivity and that o, H
belongs to the 4th domain.) We shall use the following notation.

NotATION 11.1. H;, = H N o0;Ho;* and M, = H No;*Ho, for 1 =1,
-+, u. Observe that M, = 0;*H,0,.

NoraTioN 11.2. S;e Z[H] is the sum of a fixed set of represent-
atives for the left cosets of H; as a subgroup of H; S;e Z[H] is the
sum of a fixed set of representatives for the left cosets of M, as a
subgroup of H, where ¢ =1, --+, u. Hence the trace mapping A% —
AT (AY: — A”) consists of multiplying the elements of A¥%: by S, (of
A¥i by S)).

We must first get a hold on C*(Y; G, A) = Hom(Z[Y"?], A).

ProposiTioN 11.1. The permutation representation (G, Y?) has the
pairs (H, 0,H) for ¢t =1, ---, u as a set of representatives.

Proof. Let 1 <t+#35=<u. Then, o(H,o0,H)=* (H,o0;H) for all
ocecG. Namely, cH= H means that cc H and this implies that
oo;H +#+ 0;H., Now consider the arbitrary pair (6H, tH) of Y* where
o,7¢G. Then, 0% oH,7H) = (H, 07'tH) and there exists a pc H
such that po'tH = 0,H for some 1=1 =< u. Since po(cH, tH) =
(H, 0,H) we are done.

The subgroup of G which leaves the pair (H, o;H) fixed is the
group H; of Notation 11.1; 4, ---, . Hence we conclude from §4 of
[6] that there exists an isomorphism ¢: AP .- P A™»—CXY; G, A)
given by: If a,¢ A% for 1 =1, --+,u, then (t(a,, -+, a,)) (H, 0,H) =
a;.

We can also consider the homomorphism d_,; A"1@ .- P A%v—
A7 given by d_jJ(a,, ---, a,) = >“.(Sio7'a;) — S;a;) where again a;¢€



INFLATION AND DEFLATION FOR ALL DIMENSIONS 1076

A%i for 4 =1, -+, u. (It is immediate that, if a,c A%, then o;'a;€
A, :

Finally, since CYY; G, A) = CY(Y; G, A), there is available the
isomorphism k: AZ — C-XY; G, A) of Proposition 9.1.

ProposiTioN 11.2. The following diagram commutes.

C(Y; G, 4) 225 c~(Y; G, A)

t] Ik

A@ - DA™ —— AT
—2

Proof. Let a;c A% for ¢+=1,---,u. Then (kd_,(a, ---,a,))
(H) =d_4a,, +++,a,). Furthermore, using the formula for §_, of §1
of [6], (0_.tay, « -+, ay)) (H)=H(ay, -+, a,) \7=0:H, H) — 3\7-(H,0;H)).
In order to compute the sum 3 ™ ,(H, o;H) we consider the permutation
representation (H, {(H, 0.H), ++-,(H, 0,H)}). It is immediate that the
pairs (H, o,H), ---, (H, 0,H) also form a set of representatives for
this permutation representation. Since H; is the subgroup of H which
leaves (H, 0;H) fixed, >\ ™,(H, 0,H) = >, “;S(H, 0;H) and hence #(a,,
e, ) O 7i(H, 0;H)) = 3 %.S,a;. In order to compute the sum
> r(0;H, H) we consider the permutation representation (H, {(o.H, H),
ces,(0,H, H)}). Since o;Y(H, 0;H) = (06;'H, H) we see easily that the
pairs (6;'H, H), -+, (0;*H, H) from a set of representatives for this
last permutation representation. Since M, is the subgroup of H which
leaves (0;'H, H) fixed, > %.(0;H, H) = >,%,Si(c;"H, H) and hence
Hay, <+, 0,) G ™i(0;H, H)) = 3, v,Si(67%a;). We conclude that (0_,
Hay, « =+, @) (H) = 3 1:(Si(07'a;) — Sia:) = d_y(as, -+, a). Done.

REmMARK 11.1. The above elements o, ---, 0, are nothing but a
set of representatives for the double cosets of H as a subgroup of
G. This remark makes it easy to check that our expression 3 % ,(S;
(07%a;) — S;a;) for the (— 1)-coboundaries of (G, Y) is equivalent to,
although not identical with, the expression * on page 69 of [1].

We denote the kernel of the trace mapping Sy z: AZ — A¢ by
ker(Se¢/z). The ideal of Z[G] which has as ideal base the elements
o — 1, where o €@, is as usual denoted by I.

LEmMmA 11.1. im(d_,) < (T4 N ker(Sq/x)).

Proof. The following diagram commutes.
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C(Y: G, A) 22 (Y5 G, A) -2 CoY: G, A)

t{ '{k Ik
AP - @ AT AF — A"
d—2 NETE-S

The left hand square commutes by Proposition 11.2; the right hand
square commutes by §4 of [6]. Since k is an isomorphism and 6_,0_, =
0 we read from this diagram that Sgzd_, =0, i.e., that im(d_,) C
ker(Syz). We now turn to im(d_,) C TA. We observe that the groups
H; and M; of Notation 11.1 are conjugate (in G) and hence contain
the same number, say c;, of elements. Hence the two decompositions
of H into the left cosets of H;, respectively M;, both consist of
subsets of H with ¢; elements. We conclude from Theorem 4 on page
12 of [8] that there exists a common set of representatives for the
left cosets of H; and of M, as subgroups of H. We now use such a
common set of representatives to compute S; and S; of Notation 11.2,
and obtain that S; = S!. Hence, if a;e A% for 1 =1, ---,u, d_4a,
a,) = > %S(07*— Da; € IA. Done.

COROLLARY 11.1. If G acts trivially on A, im(d_,) = 0.

Proof. G acts trivially on A if and only if T4 = 0. Done.

.o
’

12, Inflation in dimension — 1. The homomorphism a_;:
CYY; G, A)— CXX; G, A) is identical with the homomorphism a,:
C(Y; G, A) — C'(X; G, A). Consequently, Proposition 9.1 is valid with
a, replaced by a_;; i.e., ji =a_k. We conclude that inflation for
(— 1)-cochains s the inclusion mapping i: A¥ — A. Since Z7(Y; G,
A) = ker(Sg/z) and Z7(X; G, A) = ker(Sy), inflation for (— 1)-cocycles
ts the inclusion mapping Kker(Sgr) — ker(S;). (The fact that
ker(S¢/z) C ker(Sy) follows from §4 or from S¢ = SgzSz.) Since
BYY; G, A) = im(d_,) (see Proposition 11.2) and BY(X; G, A) = I A we
see from Lemma 11.1 that a_(B7Y(Y; G, A)) € BY(X; G, A); this could
not have been predicted from §4. We conclude from Definition 4.1:

ProposiTION 12.1. inf_, = a*,. Explicity, inf_,(a + im(d_,)) = a +
IA for all a e ker(Sq z).

The following theorem is crucial for the duality theory of transitive
permutation representations.

THEOREM 12.1. Let d = (h, m). If A is uniquely divisible by d,
then im(d._;) = IA N ker(S¢;z). This happens for tinstance im each
of the following two cases:

(a) A 18 uniquely divisible by h;

() H i8 a Hall subgroup of G.
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Proof. We see from Proposition 12,1 that ker(inf ,) = (I4A N
ker(S¢;))/im(d_,). Lemma 7.1 and Theorem 7.1 tell us that inf ; is a
monomorphism if A is uniquely divisible by d. The remainder of
Theorem 12.1 follows from Proposition 7.1 and Example 7.1. Done.

13. Deflation in dimension — 1, The homomorphism b_;:
CX; G, A)y-C '(Y; (4, A) is identical with the homomorphism b,:
C(X; G, A)— C(Y; G, A). Hence we conclude from Proposition 10.1
that deflation for ( -1)-cochains is the trace mapping Sz A— A~Z.
It follows immediately from Sy = SgzSy that Sz(ker(Sg)) C ker(Sqx),
which signifies that b (Z-%X; G, A)) C Z-Y(Y; G, A); this could not
have been predicted from §5. We conclude from Definition 5.1:

ProposiTION 13.1. def_, =b*. Explicitly, def_J(a + IA) = Sza +
im(d_,) for all a < ker(Sy).

The following theorem is the dual of Theorem 12.1.

THEOREM 13.1. In each of the following two cases, im(d_;) +
Salker(Ss)) = ker(Se/n).

(a) A is uniquely divisible by h.

(b) H ts a Hall subgroup of G.

Proof. We see from Proposition 13.1 that im(def_)) = [im(d_,) +
Su(ker(Sy))]/im(d_,). Hence, def_, is an epimorphism if and only if
im(d_,) + Sg(ker(Ss)) = ker(Ss,z). Proposition 7.1, Example 7.1 and
Theorem 7.1 tell us that def_, is an epimorphism in each of the cases
(a) and (b). Done.

Lemma 13.1. S,(TA)c im(d ,).

Proof. Since B '(X; G, A) = IA and B (Y; G, A) = im(d_,), Lemma
13.1 is equivalent to saying that b_(B~%(X; G, A))c B XY; G, A). This
last inclusion was observed in §5. Done.

14. Inflation in dimension 1. We denote by M the additive
group of the crossed homomorphisms from G to A; and by My the
subgroup of M whose clements are zero on H. We know from §6 of
[6] that there exists an isomorphism v: Z(Y; G, A) — My which is
defined by (ve)(0) = ¢(H, oH) for ce ZXY; G, A) and 0 € G. Similarly,
the isomorphism w: Z'(X; (G, A)-> M is defined by (we) (o) = ¢, o)
where ¢ce ZY(X; G, A),ocG and 1 is the unit element of G. We
denote the inclusion mapping M, - M by % and recall from §4 that
a(ZYY; G, A)) C ZYX; G, A).
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ProposITION 14.1. The following diagram commutes.

ZN(X; G, A)—> M

m[ ]u

Z\Y; G, A) — My

Proof. Let c¢eZ¥Y; G, A) and oeG. Then, ((wa,) (¢c)) (0) =
(ae) (1, 0) = ¢(H, oH); and (uv(c)) (6) = (ve) (6) = ¢(H, cH). Done.

We conclude that inflation for 1-cocycles is the inclusion mapping
%: Mz— M. In order to study inflation for 1-coboundaries, we recall
from §6 of [6] that v(B(Y; G, A)) is the subgroup M'; of M which is
described as follows: If ge My and o€ @G, then g¢g(o) = (0 — 1)a for
some fixed a € A%, The subgroup M’ = w(BYX; G, A)) of M is described
similarly with AZ replaced by A. Since My, C M’ we see that a,(B*
(Y; G, A)c B(X; G, A) which checks with §4. We conclude from
Definition 4.1:

ProprosITION 14.2. inf, = a¥. Explicitly, inf(g + ML) =g+ M’
for all ge M.

It is well known that inf;: H(Y; G, A) — HY(X; G, A) is always a
monomorphism. (see Theorem 7.3 of [1] or Theorem 15.1 of [6].) This
also follows from Proposition 14.2 and the observation that M, =
M N Mg.

15. Endomorphisms of the group of crossed homomorphisms.
Let M and My be as in the previous section. In order to study de-
flation in dimension 1, we define what should be regarded as the
natural homomorphism D: M— My. If ge M and o0 € G we denote the
sum Yg(v), where v runs through 0 H, by s,(¢H). In particular s,(H) =
Yg(p), where o runs through H. We now define the homomorphism
D: M— Mg.

DEFINITION 15.1. If ge M and o€ @G, (D(g9)) (0) = s,(cH) — s,(H).

One proves routinely that D is a homomorphism from M into M,.
We observe that s,(6H) = Yg(op), where p runs through H. Using
that g(op) = g(o) + og(p), we find:

ProrosiTiON 15.1. If geM and oe@G, (D(g) (0) = hg(o) +
(0 — L)s,(H).

ExampLE 15.1. Let G act trivially on A. Then, M = Hom(G, A)
and My consists of those homomorphisms from G to A which vanish
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on H. If ge Hom(G, A), we see from Proposition 15.1 that D(g) = hyg

and indeed, multiplication by h is the most naive way to change a

homomorphism belonging to Hom(G, A) into one which is zero on H.
We now prepare for the study of ker(D).

ProrosiTION 15.2. If ge M, Su(s,(H)) == 0.

Proof. Let pe H. Then, ps,(H) = Zpg(v) where 7 runs through
H. Since g(o7) = g(0) + pg(7), this last sum equals — hg(p) + sg(H).
Consequently, Sg(s,(H)) = — hs,(H) + hs,(H) = 0. Done.

We know from §6 of [6] that the homomorphism d;: C(Y; G, A) —
ZYY; G, A) may be interpreted as the homomorphism d;; A¥ — My, where
(0i(a)) (@) = (¢ — L)a for a € A” and o€ G. Similarly, the homomorphism
o C(X; G, A) — Z¥(X; G, A) may be interpreted as the homomorphism
0yt A— M, where (6y(a)) (¢) = (6 — 1)a for ac A and cecG. We also
recall from §10 that the homomorphism b,;: CY(X; G, A)— CYY; G, A)
may be interpreted as the homomorphism Sz: A — AZ.

ProrosiTioN 15.3. The following diagram commutes.

A% u

Sﬂl lD
AT, ME
3
Proof. Let ace A and oe@G. Then (6;Sx(e)) (0) = (¢ — 1)Sx(a).
Furthermore, denoting d,(a) = g, (Ddy(a)) (¢) = (Dg) (¢) = hg(o) + (o0 —
1)s,(H) = (e — 1)a + (0 — 1)¥(0 — 1)a where p runs through H.
Since J(o — 1)a = S,(a) — ha, (Dda)) () = (6 — 1)Sx(a). Done.

If K is a subgroup of M we denote the larger subgroup {g|g < M,
hge K} by K:h. We continue the investigation of the diagram of
Proposition 15.3.

ProrosiTiON 15.4. Rker(D)C dyker(Sg)) Cker(D). If hl, is a
monomorphism, ker(D) = d,(ker(Sxz)): h.

Proof. The inclusion oy(ker(Sy)) Cker(D) is read immediately
from the commutative diagram of Proposition 15.3. In order to show
that hker(D) C dy(ker)Sz)), we select geker(D) and show that hge
d(ker(Sg)). That is, we prove that for all o€ G, hg(c) = (¢ — 1)a for
some fixed a€ker(Sz). We see from Proposition 15.1 that hg(c) =
(0 —1)(— s,(H)) and from Proposition 15.2 that — s,(H) € ker(Sg).
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The first line of Proposition 15.4 has now been proved. We conclude
from it that ker(D) C d(ker(Sy)): h C ker(D): h. If hl, is a monomor-
phism, hl, is a monomorphism and hence ker(D) = ker(D): k. Done.

REMARK 15.1. We shall see in the next section that the homo-
morphism hD: M — Mj is precisely the deflation for 1-cocycles. Clearly,
ker(hD) = ker(D): b and hence we have good information about the
kernel of the deflation mapping.

16. Deflation in dimension 1. One proves easily that the
isomorphism v: Z{Y; G, A) — My of Proposition 14.1 has as inverse
the isomorphism v': My — ZYY; G, A) defined by: If ge My and o,
7€ @, then (v'(9)) (cH, TH) = ¢g(t) — g(0). (The proof uses that ge Mx
if and only if ge M and g is constant on the left cosets of H.) We
shall regard v’ as a monomorphism +": My — CYY; G, A). Similarly,
we have the monomorphism w': M — CX; G, A) defined by: If ge M
and o, 7€ @, then (w'(9)) (o, 7) = g(z) — g(o).

ProposITION 16.1. The following diagram commutes.

M2 C(X: G, A)

th 161

My —— C(Y; G, A)

Proof. Let geM and o,7€G. Then, using Definition 15.1,
(v'hD(g)) (cH, tH) = (hD(9)) (r) — (h.D(g)) ((0) = h(s,(z H) — s,(d H)).
Furthermore (byw’(9)) (6 H, 7H) = w'(g) (X(op, T7)), where the summation
is over all pairs (o, vY)e Hx H. Consequently, (bw'(9))(cH, tH) =
2(g(zv) — g(op)) = hs,(tH) — hs(0H). Done.

We conclude that deflation for l-cocycles is the mapping hD:
M— Mg, We see that b(ZY(X: G, A))C ZY(Y; G, A) which could not
have been predicted from §5. In order to study deflation for 1-
coboundaries we return to the groups M’ and M} of §14.

ProPOSITION 16.2. D(M')c M.

Proof. We read from the diagram of Proposition 15.3 that
Dé(A) = 8;Sg(A). Since 6,(4) = M and 6;Sz(A) C 6y(A") = Mg, we
are done.

It follows trivially from Proposition 16.2 that AD(M')C M}, i.e.,
that b,(BY(X; G, A)) C B(Y; G, A) which checks with §5. We conclude
from Definition 5.1:
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ProposiTION 16.3. def, - 0f. Explicitly, def (g + M') = hD(g) +
My for all ge M.

REMARK 16.1. Proposition 16.2 shows that D induces a homomor-
phism D*: H{(X; G, A)-+» H(Y; G, A), given by D*(g + M') = D(g) +
My for all ge M. Kvidently, D* is the natural mapping from H'(X;
G, A) into HY(Y; G, A) and def, = RD*. The factor k is pure waste;
and that, in times of deflation!
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