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Let (X, S, ¢) be a o-finite non-atomic measure space let N
be a real valued continuous convex even function defined on
the real line such that

1) N(uw) is nondecreasing for u = 0,

(2) lim N(u)/u = oo,

U—>00

3 il_l’lol Nw)w =0,
Let Ly be the set of all real valued g-measurable functions
J such that S N(f)dp < o, It is known that if there exists
a constant k& 11s'uch that N2u) < kEN(u) for all w = 0 then Ly

is a linear space; in fact, Ly is a B-Space if a norm || - || is
defined by setting

™ IIf||=inf{1/CtC>0, SXN(%f)dﬂél}.

Denoting the B-space (L, || - ||) by L5 it is proposed to obtain
the necessary and sufficient conditions in order that L} may
be (1) Strictly Convex (2) Uniformly Convex.

The linear space L, admits another norm |||« |||y known as the
Orlicz norm defined by setting

il = sup | _1£9] dp

for such that SXM(I g = 1, M being the function complementary to
N in the sense of Young. For a discussion of this class of Banach
spaces we refer to Mazur and Orlicz |2]. Convexity properties of the
Orlicz norm have been studied in Milnes |3].

The space L} may be considered as a modulared linear space
defined in Nakano [4]. A nonnegative extended real valued function
m defined on a linear space is called a modular if

(i) m(0) =0;

(ii) for any x e L there exists & > 0 such that m(fx) < oo ;

(iif) m(éw) = 0 for all & > 0 implies # = 0;

(iv) m(z) = Bup m(Ex) ;

(v) m is convex (i.e., =0, 820, a+8=1,2,ye L imply
m(ar + By) < am(x) 4+ Bm(y)).
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The modulared linear space may be considered as a normed linear
gpace if a norm || - || is defined by setting

(45) @] = inf {1/¢]¢ > 0 and m(E2) < 1} .

We note that the linear space Ly is a modulared space if

m(f) = | N(Hdu,

and the norm || - || defined by (**) is the same as the norm defined in =*.
In fact, the modulared space Ly is a finite modulared space, meaning
that m(f) < =, for all feL,.

A Banach space B is said to be strictly convex if z,ye B, ||2]| =
Nyl =|(® + 9)/2]]| =1 imply # = y. It is uniformly convex if to each
g, 0 < e =2, there corresponds a d(¢) > 0 such that conditions || || =
lyll =1, [|lo — yll = ¢ imply that || + ¥ || < 2 — ().

We shall start by characterizing the strict convexity of L.

LemMMA 1. The modulared norm defined in (xx) associated with
a finite modulared space is strictly convex if and only if m(x) =
m(y) = m{(x + y)/2)} = 1 imply = = y.

The proof is an easy consequence of the fact that in a finite
modulared space, m(x) = 1 if and only if ||z|| =1 where || || is the
related modulared norm.

THEOREM. The Banach space L% is strictly convex if and only
if the N-function N is strictly convex ; i.e.,

N(* : ") < % [N(w) + N(@)]

for all real u,v such that u = v.

Proof. Let N be a strictly convex N-function. Let f, g€ L} such
that

m(f) =mig) =m (L) =1.
By definition of m it follows that

[ [MD+N@] (L E0)]ap=o0.

whence the convexity of N together with the restrictions on f, and g
imply that f =g a.e. Thus by Lemma 1, L} is strictly convex.
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To prove the “only if” part, let L} be strictly convex. If possible
let N be not strictly convex so that there exist a,b =0 a % b such
that N{(a + b)/2} 1/2|N(a) + N(b)]. The continuity of N together
with the condition lim N(u)/w = 0 imply that N is linear on the interval

"o
[¢,b] and a 4 0, b # 0. For uela,b] let N(u) = pu + ¢q, where p and
q are reals.
Since ¢ is a nonatomic positive measure there exist pairwise dis-
joint measurable sets A, B, C of arbitrarily small measure such that

1(A) = (B) = p(C) .

Let us define functions f, g as follows. Let f(®) = a for x€ A, f(x)=5b
for z¢ I3, and f(x) =0 for all x¢ AU B. Let gx) =b for xzec A,
g(x) = a for zeB, and g(x) =0 for x¢ AUB, and g(x) =0 for
x¢ AU B. Then

m(f) = |_N()dp = [p@ + b) + 2414,
m(g) = | N@dp = [p(a +b) + 2q](B) ,

o w(LE) = 2w + mo),

and m(f) = m(g) = m{(f + ¢)/2)}. By a suitable choice of A, B, C we
can assume that

m(f):m(g):m<f;_g>-:K<—;—.

Now let /t be a function on X defined by setting
Ma) =0 if XeC, hx) ==t if xeC

where © in much that NWu(C) 1. - K. Let fi=h+f, and g, =
h+g;since b A f 0 I A g, we obtain

mify omiy vom(f) =1L —~K)+ K=1.

Similarly m(y,) 1, and further

m(L ) (k) =m(LEE) oy = 1.

Thus we have f,« L%, g.¢ Li and m(f) = m(g) = m{(f. + ¢./2)} = 1;
however f; # g,. Thuns 1.} is not strictly convex, a contradiction.

We next proceed to ehurncterize the uniform convexity of L.

It is known [5] that in a modulared semiordered linear space, the:
modular norm is uniformly convex if and only if the associated norm
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ia uniformly convex. The modulared linear spaces L, are modulared
semiordered linear spaces under the natural pointwise ordering, and
the above two norms are respectively the norms o and | |2y

With this remark we conclude that the Theorem 8 in Milnes [3]
which characterizes the uniform convexity of the norm ||| - |||y 2lso
characterizes the uniform convexity of the norm (e

I wish to thank Professor Victor L. Klee for his valuable sugges-
tions during the preparation of the manuscript, and the referee for his
suggestions and corrections which lead to a revision of the manuscript.
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