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Let E [.7 ] be a locally convex space, B a saturated cover-
ing of E by bounded sets, and E’ the topological dual of
E[Z7]. Let Jg be the topology on E’ of uniform con-
vergence on sets of B and E'/ the topological dual of E'[ Fzl.
We assume E'/ has the natural topology .7, —that of uniform
convergence on the equicontinuous sets of E’,

This article includes the following: (1) an intrinsic charac-
terization for a bounded convex set B of E of the closure

@ of B in E''; (2) an intrinsic characterization of the closure
E_ of in E'' ; and (3) necessary and sufficient conditions that
E be E'’,

The spaces B8. Let I be the class of all closed convex neigh-
borhoods' of 0 in E[Z], and Be®B. A filter § on B is called
a convex filter if, for every Fe§, there exist M, Ne MM and ye K
such that M D N, Fo(M+yy)nNB, and (N + x)nBeg . Clearly if
% and @ are two convex filters on B, such that every set of § meets
every set of ®, then the least upper bound filter of ¥ and ® on B is
also convex. Furthermore:

LEMMA 1. For M, Ne I, if M> N, then there exists K e I such
that M DK DK D N.

Proof. If p and ¢q are the distance functions of M and N, then
1/2(p + @) is the distance function of such a K.

THEOREM 1. A convex filter ¥ on B is a maximal convex filter
on B if and oonly if, for every two closed convex bodies K and L of
E such that KD L, either KN Be$ or B\Le g.

Proof. Assume § is maximal and let K and L be as above, and
let B\L¢ . Let xe L and define a sequence {M,} in I so that

I%—xDMlDJIQJIDL—x and IlalnDMn+1Dﬂn+lDL—x (n = 1).
Then the filter ® on B with base {(M, +2)NB|n=1,2,8,.--} is

Roceived July 8, 1964 and in revised form January 11, 1965. Supported by
National Science Foundation grant NSF G-24865.

* The notation and definitions are principally those of Gottfried Kothe, Topolo-
uische Linoare Riume I, Springer-Verlag, Berlin, 1960.

1087



1088 F. J. WAGNER

convex and KN Be®CH.

Conversely let ¥ and @ be two convex filters on B such that
is strictly weaker than ©. Let Ge®, M, N ¢ M, and x < E such that
Ge®, MON,GO(M +2)NB, and (N + 2) N Be®. Then neither
(M + ) N B nor B\(L + z)€ .

REMARKS 1. Forevery « € B,8(x) ={V N BC B|V aneighborhood
of x in E} is a maximal convex filter on B.

2. For a maximal convex filter § on B, there is € B such that
B = By(x) if and only if §¥ has nonempty intersection.

LeEMMA 2. Every maximal convex filter on B is a weak Cauchy
filter.

Proof. Let % be a maximal convex filter on B,
uel', M={xck||ur|=1/2} and N={rxcE||ux| =< 1/4}.

Then M, Ne & and M>SN. Since B is weakly precompact, there exist
Xyy Ly + =+, &, € E such that U=, (N + ;) OB, and so (M + z;) N Be§
for some 1 <4 =<mn. For z,ye (M + =) N B, we have |ux — uy| < 1.

For a maximal convex filter ¥ on B and uwe E’, let F(u) denote
the limit of the restriction of u to B according to the filter .

LEMMA 3. For every maximal convex filter ¥ on B, the mapping
u— Fw) on E’ is linear and T g continuous.

Proof. Linearity is easily proved. Also let V be the polar set
of the absolutely convex hull of 2B, ue V, and Fe$ such that
Jue — F(u)| < 1/2 for every xe F. Then, for such an x, we have
B | = [Fw) —ux| + |uw| = 1.

We shall denote by 8 = B, the set of all maximal convex filters
on B. By Lemma 3 there is a mapping 7, from B, into E’ such that
(F) () = F(u) for every Fe By and ue E'.

THEOREM 2. If either 9 18 the weak topology or B is convewx,
then m, s a one-to-one mapping of By onto the 7 ,-closure B of B

mn E".

Proof. For Fe By 7x(F) is in the weak closure of B in E”. For
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given u,, -+, u,€E’ and >0, let F,.--, F, €% such that
lux —Fw) | el =t =n)andxe N F;. Then |Fu;) — ux| = ¢,
1= = n).

Also, if B is convex, m,() is in the .7 ,-closure B of B in E".
Suppose the contrary. Then there is a continuous real linear functional
w on E' and a real number = such that w (7x(%)) < r and wz > r for
every z¢ B. :

Assume first that F is a real vector space. Let « be the restriction
of wto E',souc E. Let Fe$ such that |ux — Fu) | < r — w (75(F))
for every x€ F. Then, for such an x, we have wx = ux — F(u) +
Fw) < r. But xe€ B.

Now let E be a complex vector space. Then there is a complex
linear functional v on E” such that w = Rv. Let u be the restriction
of v to E and Fe$ such that |ux — Fu) | < r — w (75(F)) for every
x€ F. Then for such an * we have wz = R (ve) = R (ux — F(u)) +
R (F(w)) < r. Again, we have a contradiction.

Thus 7,(8,) C B if .7~ is the weak topology or B is convex.
On the other hand, if z¢ B, then:

Bu(2) ={V NBcB|V a neighborhood of z in E"[.7,]} € B;

and 7,4(By(2)) = 2. Let V be a neighborhood of z in E"[.7,], and let
U and W be closed convex neighborhoods of 0 in E”[.Z,] such that
USW and U+ UcV—z2 Let ye(U+2N(—W+2nNB, M=
UNE,and N=VNE. Then M, Ne Wand ION, Vo (M + ) N B,
and (N + ) NB=(W+ %) NBeBy(). Thus B(z) is convex.

Let K and L be closed convex bodies of E such that KD L. Let
veL, M=K —w, and N=L —«. Either ze interior M°° 4+ z——in
which case KN B=(M+x) N B=(M°° + )N Be By(z)—orzg¢ N°° +
2——in which case E"\(N°° + x) is a neighborhood of z in E” and so
B\L = [E"\(N°° + 2)] N B € By(z). Thus By(z) € B;.

Finally, let we E’, ¢ > 0, and F'e Bz(z) such that | ux — Ly(z)(w) | <
¢/2 for every xe€ F. Let V={weFE"||wu —2u| =< ¢/2}. Then, for
xe FNV, wehave | B(2)(u) — 2u| < | Bu(z)(u) — ux| + |ues —2u| < e.
Therefore, 7y(Bx(2))(w) = zu for ue K", and so 74(Bx(2)) = 2.

REMARK. Thus 7,(B,(2)) =2 for z€ B and § = B(7,4(F)) for F € B,.

COROLLARY 1. If either .7~ 1is the weak topology or B is convex,
then every maximal convex filter on B 1s a 7 -Cauchy filter.

COROLLARY 2. If either 7 4s the weak topology or B is convex,
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then for every {Fe By and MecI, there ewist xe B such that
M+ 2)yNBeg.

Proof. Let Fe$ such that FF— FC M and z¢ F.
For M eI and ¢ c B we define:

vo(M, ®) = {F e Bs | (M + ) N Be T}
Ux(M, x) = {F € Bz | mx(F) € interior M°° + x} .

For M,Ne¢ and z,yeB, if ze(ll‘;_f—i— w)ﬂ(l\r}'-l—y)ﬂB and
K=M+ 2 —2)N (N + y — 2), then vy(M, x) N va(N, y) = vs(K, 2) and
ts(M, x) N pa(N, y) = px(K, 2). Hence the class of all sets of the form
vu(M, x) and the class of all sets of the form pz(M, x) (for Me M and
x € B) form bases of topologies, called the v- and p-topologies respec-
tively, on B;.

THEOREM 3. If 7x(Bz) B (in particular if either 7 is the
weak topology or B tis convex), then v- and p-topologies coincide and
Ty 18 a homeomorphism of B, onto B.

Proof. If nxBs)c B, then, -for Mc9 and xcB, we have
ts(M, x) Cv(M, ), and so the identity mapping of B; with the u-
topology onto B; with the v-topology is continuous.

Also 7w, from B, with the v-topology onto B is continuous. Let
%€ By and V a neighborhood of 7x(F) in E”’[.7,]. Let U be a closed
convex neighborhood of 0 in E” such that U+ UC V — wx(F), M =
UNE, and e (U + 74$) N B. Then (M + 2) N Be Bu(msQ) = F,
and so Fevy(M, x). Also if Geyy(M, x), there is a neighborhood W
of 74(®) such that WNB=M+2)NB=(U+2)N B so

T(®e WNBcU+a2cU+U+n(HV.

Finally 7;' from B onto 5, with the p-topology is continuous by
the definition of the sets u.

COROLLARY 1. If either .7 is the weak topology or B is convex,
then B is closed in E"[.7,] of and only if every mazimal convex
filter on B has nonempty intersection.

COROLLARY 2. B 1is weakly compact if and only if every
maximal weakly convex filter on B has nonempty intersection.

2. The space 7. Let 9 denote the class of all convex sets of B
and a = Uzeu Bs the topological union of the spaces B;. Let @ be
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the continuous function from « into E"[.7,] defined by 7(F) = 7x(F)
if §eBz. For A, B ¢ U such that A < B, define a mapping ¢,, from
B, into By by gF) = B (F)) (for Fe B,). Then g, = w3'n, and
consequently is a homeomorphism of 5, into 8. Also, if Ac BcC,
then gos = gos 9sa-

THEOREM 4. Let A, Be U such that AC B, and let Fe B, and
S e Bs. The following three conditions are equivalent;

@) 6 =g5(@);
(b) 7(F) = n(S);
(¢) Every set of & contains a set of F.

Proof. §=VxF), ©=By(ms(®)), and g(F) = Bu(mx(F)).
Hence (a) and (b) are equivalent. Also (b) implies (¢): Given G ¢ & there
is a neighborhood V of #(®) = 7(F) such that G = VNBDO VN Aec§.
Also (c) implies (b): If 7(F) # x(®), then n(F) and 7(®) have disjoint
neighborhoods V and W in E”, and so W N A is a set of & contain-
ing no set of .

COROLLARY. Let A and Be U, FeB,, and &e B,. The following
three conditions are equivalent :
(@) () =(®).
(b) There exists Ce U such that CDO AU B and go(F) = goax(®).
(¢) There exists Ce W and He B, such that C DA U B and every
set of © contains @ set of F and a set of O.

Now let R be the equivalence relation #(F) = n(®) on a,n the
quotient space a/R, o the canonical mapping of « onto 7, and ¢ the
mapping from 7 into E” such that 7= = op.

THEOREM 5. 0 18 a homeomorphism of n onto the 7 ,-closure E
of E in E".

Proof. We need only prove o(7) = m(a) D E. Consider the dual
system {E’, E>. Since every we E’ is uniformly continuous on FE, the
topology induced on E by .7, is admissible for this dual system. For
ze K, there is a closed absolutely convex set B¢ such that |zu| < 1
for every uwe B°. Hence, z€ B°° = the closure of B in any admissible
topology = the .7 ,-closure B of B.

For Be 9, the weakest topology on B, for which every function
of the form § — F(w) (for ue E’) is continuous will be called the
weak topology of Bz. Clearly B in the weak topology is homeomorphie
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with B in the topology induced on B by the weak-star topology of E".

THEOREM 6. The following three conditions are equivalent :
(2 E=E";

(b) B is weak-star compact for every Be U ;

(e) By is weakly compact for every Be .

Proof. Clearly (b) and (c¢) are equivalent. Also (a) implies (b);
by the Alaoglu—Bourbaki theorem, for Be 2, the weak-star closure
of B in E"” = E is weak-star compact; but since .7, is an admissible
topology for the dual systm (E’, E>, this weak-star closure is B.
Finally (b) implies (a): regarding 25 as a total class of bounded subsets
of E, by the Mackey-Arens theorem .7 is an admissible topology for
the dual system (E’, E), and so E" = E.

THEOREM 7. For Be U, B, is weakly compact if and only if for
every maximal weakly-convex filter § on B, there is a maximal 7 -
convex filter on B which is stronger than .

Proof. Let B% be the space of all maximal weakly convex filters
on B and 7% the homeomorphism of S5 into E” with the weak-star
topology. In general B C m4(8;) = B C weak-star closure of B = n3(8%).

If B, is weakly compact, then 7wi(Bs) = m4(B8;) = B. So, for Fe £z,
7%(%) e B and hence B,(1i(F)) € B, is stronger than F.

Conversely, let Fe £ and G e B, stronger than §. Then 7)) =
75(®), and so 7H(BE) C Tu(Bs).

COROLLARY. E = E" if and only if, for every Be U and every
maximal weakly-convex filter § on B, there is a .7 -convex filter on

B stronger than .
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