SOME RESULTS IN THE LOCATION OF ZEROS OF POLYNOMIALS

ZALMAN RUBINSTEIN
SOME RESULTS IN THE LOCATION OF ZEROS OF POLYNOMIALS

ZALMAN RUBINSTEIN

Three out of the four theorems proved in this paper deal with the location of the zeros of a polynomial $P(z)$ whose zeros $z_i, i = 1, 2, \ldots, n$ satisfy the conditions $|z_i| \leq 1$, and $\sum_{i=1}^{n} z_i^p = 0$ for $p = 1, 2, \ldots, l$. One of those estimates is

$$\left| \frac{P''(z)}{P'(z)} - \frac{P'(z)}{P(z)} - \frac{1}{z} \right| < \frac{l + 1}{|z|(|z|^{l+1} - 1)}$$

for $|z| > 1$.

The fourth result is of a different nature. It refines, in particular, a theorem due to Eneström and Kakeya. It is shown that no zero of the polynomial $h(z) = \sum_{k=0}^{r} b_k z^k$ lies in the disk

$$|z - \frac{\beta e^{-i\theta}}{(\beta + 1)}| < \frac{1}{\beta + 1},$$

where $\beta = \max_{|z|=1} |h'(z)|/\max_{|z|=1} |h(z)|$, and $\max_{|z|=1} |h(z)| = |h(e^{i\theta})|$.

We generalize and strengthen certain well-known results due to Biernacki [1], Dieudonné [3, 5], and Kakeya [8].

We use repeatedly a recent result due to Walsh which is a generalized form of an earlier theorem of his [10]. It concerns the case in which all the zeros of a polynomial lie within a certain distance of their centroid.

Theorem 1. Let $h(z) = \sum_{k=0}^{r} b_k z^k (b_k \text{ complex}),$

$$\beta = \frac{\max_{|z|=1} |h'(z)|}{\max_{|z|=1} |h(z)|},$$

$\max_{|z|=1} |h(z)| = |h(e^{i\theta})|$, and let C_β be the disk $|z - \beta e^{-i\theta}/(\beta + 1)| < 1/(\beta + 1)$, then no zero of h lies in C_β.

Proof. Consider the function $F(z) = e^{-i\theta} h(z e^{i\theta})/m$, where $h(e^{i\theta}) = me^{i\theta}$. Then F satisfies the conditions, $|F(z)| < 1$ in $|z| < 1$, $F(1) = 1$. Let $x_n \to 1$ as $n \to \infty$, $0 < x_n < 1$, and let $\alpha = \lim_{n \to \infty} [(1 - |F(x_n)|)/(1 - x_n)]$. Then $\alpha \leq |F''(1)|$. It follows readily (see [2] p. 57) that

$$\lim_{n \to \infty} [(1 - |F(x_n)|)/(1 - x_n)] = F''(1) = e^{i(\theta - \phi)} h'(e^{i\theta})/m = |h'(e^{i\theta})|/m.$$

Received June 3, 1964. This research was sponsored by the Air Force Office of Scientific Research.
We apply now the following result due to Julia [2]: If a function \(f \) is regular in the unit disc and \(|f(z)| < 1 \) for \(|z| < 1 \), and there exists a sequence of number \(z_1, \ldots, z_n, \ldots \) such that \(\lim_{n \to -\infty} z_n = 1 \), \(\lim_{n \to -\infty} (1 - |f(z_n)|)/(1 - |z_n|) = \alpha \) then

\[
\left| \frac{1 - f(z)}{1 - |f(z)|^2} \right| \leq \frac{1 - |1 - z|^2}{1 - |z|^2} \quad \text{for } |z| < 1.
\]

In (1), set \(f(z) = F(z), \alpha = |h'(e^{i\theta})|/m \). If \(F(z_0) = 0 \) and \(|z_0| < 1 \), then \((1 - |z_0|^2)/|1 - z_0|^2 \leq \alpha \), which is equivalent to \(e^{-i\theta}z_0 \in C_\alpha \). Since \(\alpha \leq \beta \), it follows that \(C_\beta \subset C_\alpha \); hence \(e^{-i\theta}z_0 \in C_\beta \), which concludes the proof.

Corollary 1. Let \(h(z) = \sum_{k=0}^{n} b_k z^k, b_k > 0 \). Then \(\beta = \sum_{k=1}^{n} kb_k/\sum_{k=0}^{n} b_k \), and no zero is in the disc

\[
\left| z - \frac{\sum_{k=0}^{n} kb_k}{\sum_{k=0}^{n} (k + 1)b_k} \right| < \frac{\sum_{k=0}^{n} b_k}{\sum_{k=0}^{n} (k + 1)b_k}.
\]

In particular, if \(b_k \) is a strictly increasing sequence, then all the zeros of \(h(z) \) lie in the complement of \(C_\beta \) with respect to the unit disc. This makes more precise the theorem of Enestrom and Kakeya [8].

In a recent paper, Tchakaloff [9] (see also [7]) has proved that if all the zeros of the polynomials

\[
P_k(z) = a_n^{(k)} z^n + \cdots + a_0^{(k)}(a_n^{(k)}) > 0, k = 1, \ldots, m
\]

lie in the unit disc and if \(A_k > 0(k = 1, \ldots, m) \), then all the zeros of the polynomial \(\sum_{k=1}^{m} A_k P_k(z) \) lie in the disc \(|z| \leq 1/\sin(\pi/2n) \), and that this is the best possible result. We prove a more precise result in the case where there is more information about the zeros of \(P_k(z) \).

Theorem 2. Let the polynomials \(P_k(z)(k = 1, \ldots, m) \) of the form (2) have all their zeros \(z_{ik}(i = 1, \ldots, n; k = 1, \ldots, m) \) in the unit disc and let \(A_k > 0(k = 1, \ldots, m) \). Suppose that \(\sum_{i=1}^{n} \bar{z}_{ik}^p \neq 0 \) for \(p = 1, \ldots, l(k = 1, \ldots, m) \). Then all the zeros of the polynomial \(\sum_{k=1}^{m} A_k P_k(z) \) lie in the disc \(|z| \leq (\sin \pi/2n)^{-1/(1+l)} \). For values of the form \(n = (l+1)r \), the exact bound does not exceed \((\sin \pi/(l+1))/2n)^{-1/(1+l)} \).

Proof. Without loss of generality we may assume that \(a_n^{(k)} = 1 \). By a recent result due to Walsh [11] the polynomials \(P_k \) satisfy the equality \(P_k(z) = (z - \varphi_k(z))^s \), where \(|\varphi_k(z)| < |z|^{-l} \) for \(|z| > 1 \). Let \(\zeta \) be a point outside the unit disc at which the circle \(|z| = |\zeta|^{-l} \)
subtends an angle \(\Psi \). On the circle \(|z| = |\zeta|^{-1}\) there exists a point \(a \), such that \(0 \leq \arg ((\zeta - \varphi_k)/(\zeta - a)) \leq \Psi \), and

\[
\sum_{k=1}^{m} A_k P_k(\zeta) = (\zeta - a)^{n} \sum_{k=1}^{m} A_k \left(\frac{\zeta - \varphi_k}{\zeta - a} \right)^{n}.
\]

One deduces from equation (3) that

\[
\sum_{k=1}^{m} A_k P_k(\zeta) \neq 0 \text{ if } \Psi < \frac{\pi}{n}.
\]

For \(\Psi = \pi/n \), \(\sin (\pi/2n) = |\zeta|^{-(l+1)} \). This proves the first part of the theorem. The example \(A_1 = A_2 = 1, m = 2, P_1(z) = (z^{l+1} + \mu)^r, P_2(z) = (z^{l+1} + \overline{\mu})^r \), where \(\mu = i \exp (i\pi/2n) \), proves the second part of the theorem, since in this case the polynomial \(P_1(z) + P_2(z) \) has the zero

\[
z = \left[\sin \frac{\pi(l + 1)}{2n} \right]^{-1/(l+1)}.
\]

Dieudonné has proved [3], (for a different proof see [4]), that if the polynomial \(P \) has all its zeros in the closed unit disc, then

\[
\left| \frac{P'(z)}{P(z)} - \frac{P''(z)}{P'(z)} \right| \leq \frac{1}{|z| - 1}, \quad \text{for } |z| > 1.
\]

We give a short proof of (4), which at the same time yields a stronger inequality in the case where the centroid of the zeros of \(P \) is at the origin.

Theorem 3. If all the zeros \(z_i (i = 1, \cdots, n) \) of the polynomial \(P(z) \) lie in the closed unit disc and if \(\sum_{i=1}^{n} z_i^k = 0 (k = 1, \cdots, l) \), then for \(|z| > 1 \) the following sharp estimate holds

\[
\left| \frac{P''(z)}{P'(z)} - \frac{P'(z)}{P(z)} - \frac{1}{z} \right| \leq \frac{l + 1}{|z|(|z|^{l+1} - 1)}.
\]

Inequality (5) holds also for \(l = 0 \), in which case the second condition imposed on the \(z_i \) is to be omitted.

Proof. By a recent result due to Walsh [12], there exists a function \(\varphi(z), |\varphi(z)| < |z|^{-1} \), such that for \(|z| > 1 \)

\[
\frac{P'(z)}{P(z)} = \frac{n}{z - \varphi(z)}.
\]

An estimate due to Goluzin [6], applied to \(\varphi \) yields the inequality

\[
|\varphi'(z)| \leq \frac{l|z|^{l-1}}{|z|^l - 1} (1 - |\varphi(z)|^2),
\]
for $|z| > 1$. Since by (6)

$$\frac{P''(z)}{P'(z)} - \frac{P'(z)}{P(z)} - \frac{1}{z} = \frac{\varphi(z) - z\varphi'(z)}{z(z - \varphi(z))}$$

is follows, using (7), that

$$\left| \frac{P''(z)}{P'(z)} - \frac{P'(z)}{P(z)} - \frac{1}{z} \right| \leq \frac{1}{|z|} \left[\frac{|\varphi(z)|}{|z| - |\varphi(z)|} + \frac{l|z|^l}{|z|^{2l} - 1} \frac{1 - |\varphi(z)|^2}{|z|} \right]$$

It remains to prove the inequality

$$\frac{x}{a - x} + \frac{la}{a^{l+1} - 1} \frac{1 - x^2}{a - x} \leq \frac{l + 1}{a^{l+1} - 1}$$

for all $0 \leq x \leq a^{-1}$, and $a > 1$.

If we denote the left hand side of (9) by $f(x)$, then $f(a^{-l}) = (l + 1)/(a^{l+1} - 1)$, and $f'(x) \geq 0$ provided the function $g(x) = a^{2l+1} - a + la(x^2 - 2ax + 1)$ is nonnegative. Since $g'(x) \leq 0$ it is enough to show that $h(a) = g(a^{-l})$ is nonnegative. Indeed one verifies that $h(1) = 0$ and $h'(a) > 0$ for all $a > 1$.

The particular case $P(z) = z^n - 1, l = n - 1$, shows that the bound (5) cannot, in general, be improved.

The result due to Dieudonné follows from (7) and (8).

Finally, we discuss a problem raised by Biernacki [1], which was also treated by Dieudonné [5], namely that of determining a region containing all but, possibly, one zero of the polynomial $aP(z) + P'(z)$ for all complex a. Each of the above authors has proved that if all the zeros of P lie in the unit disc, then the concentric disc of radius $2^{1/2}$ is the smallest concentric disc that has the above mentioned property. Assuming additional information about the zeros of P, we obtain a smaller disc for all but possibly $l + 1$ zeros of the polynomial $z^lP(z) + aP'(z)$.

Theorem 4. If all the zeros $z_i (i = 1, \ldots, n)$ of the polynomial $P(z)$ lie in the closed unit disc and if $\sum_{i=1}^{n} z_i^k = 0 (k = 1, \ldots, l)$, then for all complex a at least $n - 1$ zeros of the polynomial $z^lP(z) + aP'(z)$ lie in the disc $|z| \leq 2^{l/(2(l+1))}$.

Proof. Proceeding as in the proof of Theorem 3, we have

$$\frac{P'(z)}{P(z)} = -\frac{z^l}{a} = \frac{n}{z - \varphi(z)},$$
satisfied by any zero of the polynomial $z^l P + aP'$ which exceeds 1 in modulus. Set $g(z) = z^{-1} \varphi(1/z)$, $w = z^{l+1}$ and $h(w) = g(z)$. Then $|g(z)| < 1$ if $|z| < 1$ and

\begin{align}
(10) & \quad g(z) = \frac{1}{z^{l+1}} + an \\
(11) & \quad h(w) = \frac{1}{w} + an.
\end{align}

If for some a the polynomial $z^l P + aP'$ has at most $n - 2$ zeros in the disc $|z| \leq 2^{l/(2(l+1))}$, then equation (10) has at least $l + 2$ roots in the disc $|z| < 2^{-l/(2(l+1))}$, and hence equation (11) has at least two roots in the disc $|w| < 2^{-l/2}$. This was proved to be impossible in [5].

Theorem 4 is sharp for all l and n of the form $n = 2k(l + 1), k = 1, 2, \ldots$. The upper limit is attained by the zeros of the polynomial

$$P(z) = (z^{2l+2} - 2^{l/2}z^{l+1} + 1)^{n/(2(l+1))}.$$

References

HARVARD UNIVERSITY
Mathematical papers intended for publication in the Pacific Journal of Mathematics should by typewritten (double spaced). The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. No separate author's résumé is required. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens, at the University of California, Los Angeles, California 90024.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. Effective with Volume 13 the price per volume (4 numbers) is $18.00; single issues, $5.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $8.00 per volume; single issues $2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

* Basil Gordon, Acting Managing Editor until February 1, 1966.