IN Variant SPLITTING in JORDAN AND ALTERNATIVE ALGEBRAS

EARL J. TAFT
INVARIANT SPLITTING IN JORDAN AND ALTERNATIVE ALGEBRAS

EARL J. TAFT

Let A be a finite-dimensional Jordan or alternative algebra over a field F of characteristic 0. Let N denote the radical of A. Then A possesses maximal semisimple subalgebras isomorphic to A/N, [5], [6], any two of which are strictly conjugate, [2], [9]. If G is a finite group of automorphisms and antiautomorphisms of A, then A possesses G-invariant maximal semisimple subalgebras, [10]. We investigate here the uniqueness question for such G-invariant maximal semisimple subalgebras. The result is that the strict conjugacy can be chosen to commute pointwise with G and to be in the enveloping associative algebra generated by the right and left multiplications in A.

Similar results have been obtained for associative algebras, [11], and Lie algebras, [12]. However, in the associative case, the conjugacy can be obtained in terms of adjoints of G-symmetric elements, i.e., elements left fixed by the automorphisms in G and sent into their negatives by the antiautomorphisms in G. In the Lie algebra case, one needs only to consider automorphisms, and the conjugacy is obtained in terms of adjoints of fixed points of G. In each case, the conjugacy is in the enveloping associative algebra of A. In both the Jordan and alternative cases, the automorphisms which occur would commute pointwise with G if the elements of A which occur in their formulation in terms of right and left multiplications were to be fixed points of G. However, we have not obtained the conjugacies in this form, and it seems to be an open question whether or not it is always possible to do so.

If G is assumed fully reducible, instead of finite, then A will also possess G-invariant maximal semisimple subalgebras. This is noted in the Jordan case in [4] when G contains only automorphisms, and the same proof can be extended to cover the alternative case, even if G also contains antiautomorphisms. We have answered the uniqueness question for the similar situation in the associative and Lie cases, [13]. For the Jordan and alternative case, the problem seems more complicated. We note here that it is easily answered if $N^2 = 0$, with the strict conjugacy commuting pointwise with G. However, the general question remains open.

Received July 15, 1964. Research supported by the National Science Foundation under grant NSF-GP1239 and by the Research Council of Rutgers, The State University.
2. Preliminaries. If $a \in A$, we let R_a and L_a stand for right and left multiplication by a, i.e., $xR_a = xa$, $xL_a = ax$. The following two lemmas are easily proved by straightforward calculation.

Lemma 1. Let g be an automorphism of A. Then $g^{-1}R_ag = R_ag$ and $g^{-1}L_ag = L_ag$.

Lemma 2. Let g be an antiautomorphism of A. Then $g^{-1}R_ag = L_ag$, $g^{-1}L_ag = R_ag$.

A derivation of A will be called inner if it is in the enveloping Lie algebra generated by the right and left multiplications in A, [7]. We will have occasion to use the following types of inner derivations. If A is Jordan, and $x, s \in A$, then $[R_x, R_s] = R_xR_s - R_sR_x$ is an inner derivation of A which, for $x \in N$, will be a nilpotent element of the radical of the enveloping associative algebra generated by multiplications in A by elements of A, [1], [2], [8]. If A is alternative, and $s, x \in A$, then $D_{s,x} = [R_s, R_x] + [L_s, R_x] + [L_s, L_x]$ is an inner derivation of A which, for $x \in N$, will be a nilpotent element of the radical of the enveloping associative algebra generated by the left and right multiplications of A, [7], [9].

Lemma 3. If A is alternative, $a, b \in A$, then $[R_a, L_b] = [L_a, R_b]$, and $D_{a,b} = -D_{b,a}$.

Proof. $x[R_a, L_b] = b(xa) - (bx)a = -(b, x, a)$, where $(b, x, a) = (bx)a - b(xa)$ is the associator of $b, x,$ and a. Also $x[L_a, R_b] = (ax)b - a(xb) = (a, x, b)$. The first part of Lemma 3 follows from the skew-symmetry of the associator function. Hence

$$D_{b,a} = [R_b, R_a] + [L_b, R_a] + [L_b, L_a]$$

$$= -[R_a, R_b] - [R_a, L_b] - [L_a, L_b]$$

$$= -[R_a, R_b] - [L_a, R_b] - [L_a, L_b] = -D_{a,b}.$$

Lemma 4. Let A be Jordan, and g an automorphism of A. Then $g^{-1}[R_a, R_s]g = [R_ag, R_bg]$.

This is immediate from Lemma 1.

Lemma 5. Let A be alternative, and g an automorphism or antiautomorphism of A. Then $g^{-1}D_{a,b}g = D_{a,b}$.

Proof. This is clear from Lemma 1 if g is an automorphism. Let g be an antiautomorphism. Then, using Lemma 2, $g^{-1}D_{a,b}g = [L_ag, L_bg] + [R_ag, L_bg] + [R_ag, R_bg] = D_{a,b}$ by Lemma 3.
If D is a nilpotent derivation of A, then $\exp D = I + D + (D^2/2!) + \cdots$ is an automorphism of A. We assume familiarity with the Campbell-Hausdorff formula, [3], \((\exp D_1)(\exp D_2) = \exp D_3\), where D_3 is in the Lie algebra generated by D_1 and D_2.

3. The Jordan case.

Theorem 1. Let A be a finite-dimensional Jordan algebra over a field F of characteristic 0. Let G be a finite group of automorphisms of A. Let S be a G-invariant maximal semisimple subalgebra of A. Let T be a G-invariant semisimple subalgebra of A. Then there exists an automorphism $U = \exp D$ of A such that

1. U maps T into S,
2. D (and hence U) commutes pointwise with G,
3. D is a nilpotent inner derivation of A which is in the radical of the enveloping associative algebra of A.

Proof. Let N denote the radical of A. Let s and n denote the projections of the vector space $A = S \oplus N$ onto S and N respectively. Then s and n are linear mappings such that

1. $s(t_1t_2) = s(t_1)s(t_2)$
2. $n(t_1t_2) = n(t_1)n(t_2) + n(t_1)s(t_2) + s(t_1)n(t_2)$
3. $s(tg) = s(t)g$, $n(tg) = n(t)g$

for $t_1, t_2, t \in T$, $g \in G$.

(i) and (ii) follow since N is an ideal. (iii) follows from the invariance of T, S and N under G.

Now set $N_1 = N$, $N_i = N_{i-1}^2 + AN_{i-1}^2$. By [5], the N_i form a nonincreasing sequence of ideals terminating in 0. Now $T_i = T \cap A = S + N_i$. Suppose that we have found automorphisms $U_0 = \exp 0$, $U_1 = \exp D_1$, \cdots, $U_{i-1} = \exp (D_{i-1})$ of A satisfying (2) and (3) of Theorem 1 such that $T_i = T U_i U_1 \cdots U_{i-1} \subseteq S + N_i$. Then we will show that there exists an automorphism U_i of A satisfying (2) and (3) of Theorem 1 such that $T_i U_i \subseteq S + N_{i+1}$. Hence if $N_k = 0$, then $U = U_0 U_1 \cdots U_{k-1}$ will be the desired automorphism by the Campbell-Hausdorff formula.

Now T_i is a G-invariant semisimple subalgebra of A, so that (i), (ii), (iii) hold for $t_1, t_2, t \in T_i$. Consider the space $N_i | N_{i+1}$. We consider this as a T_i-module by defining $t \cdot \bar{n} = \bar{n} \cdot t = \bar{n}s(t)$ for $n \in N_i$, $t \in T_i$. Then by (ii), we have

(iv) $\bar{n}(t_1t_2) = \bar{n}(t_1) \cdot t_2 + t_1 \cdot \bar{n}(t_2)$.

(iv) says that the map $t \to \bar{n}(t)$ is a derivation of T_i into the module $N_i | N_{i+1}$. Hence, by [2], there exist elements x_1, \cdots, x_p in $N_i, t_1, \cdots, t_p \in T_i$ such that

(v) $\bar{n}(t) = \sum_{j=1}^{p} ((\bar{x}_j \cdot t) \cdot t_j - \bar{x}_j \cdot (tt_j))$ for $t \in T_i$ i.e.,
\[n(t) = \sum_{j=1}^{n} (x_j s(t_j)) s(t_j) - x_j s(tt_j) \].

Using (i), we have

\[(vi) \quad n(t) \equiv s(t) \sum_{j=1}^{n} [R_{x_j}, R_{s(t_j)}] \pmod{N_{i+1}} \text{ for } t \in T_i.\]

Let \(g \in G \). Then

\[[R_{x_jg}, R_{s(t_j)g}] = g^{-1}[R_{x_j}, R_{s(t_j)}]g \]

by Lemma 4. Hence

\[s(t) \sum_{j=1}^{n} [R_{x_jg}, R_{s(t_j)g}] = s(t)g^{-1}\left(\sum_{j=1}^{n} [R_{x_j}, R_{s(t_j)}]\right)g \]
\[= s(tg^{-1})\left(\sum_{j=1}^{n} [R_{x_j}, R_{s(t_j)}]\right)g \equiv n(tg^{-1})g = n(t) \pmod{N_{i+1}}. \]

It follows that if we set \(D_i = -(1/m) \sum_{g \in G} (\sum_{j=1}^{n} [R_{x_jg}, R_{s(t_j)g}])g \)
where \(m \) is the order of \(G \), then

\[(vii) \quad n(t) = -s(t)D_i \pmod{N_{i+1}} \quad \text{for } t \in T_i.\]

Now \(D_i \) clearly satisfies (3) of the Theorem, since the \(x_jg \in N \). To see that \(D_i \) satisfies (2) of the Theorem, we fix a value of \(j \). Then

\[\sum_{g \in G} [R_{x_jg}, R_{s(t_j)g}] = \sum_{g \in G} g^{-1}[R_{x_j}, R_{s(t_j)}]g \]

clearly commutes pointwise with \(G \). Hence so does \(D_i \), which is a linear combination of such mappings.

Finally, set \(U_i = \exp D_i \). If \(t \in T_i \), then \(t U_i = t + tD_i + \frac{t}{2}D_i^2 + \cdots = s(t) + n(t) + s(t)D_i + n(t)D_i + \frac{t}{2}D_i^2 + \cdots. \)

Now \(n(t) \in N_i \), so that \(n(t)D_i \in N_{i+1} \). Also, since the \(x_1, \cdots, x_p \in N_i \), we have that \((t/2)D_i^2 + \cdots \in N_{i+1} \). Therefore

\[t U_i \equiv s(t) + n(t) + s(t)D_i \pmod{N_{i+1}} \]
\[\equiv s(t) \pmod{N_{i+1}} \text{ by (vii)}. \]

Hence \(T_i U_i \subseteq S + N_{i+1} \). This completes the proof of the Theorem.

Corollary 1. Let \(A \) be a finite-dimensional Jordan algebra over a field of characteristic 0. Let \(G \) be a finite group of automorphisms of \(A \). Let \(S \) and \(T \) be \(G \)-invariant maximal semisimple subalgebras of \(A \). Then \(S \) and \(T \) are strictly conjugate via an automorphism of \(A \) of the type described in Theorem 1.

Corollary 2. Let \(A \) and \(G \) be as in Corollary 1. Let \(T \) be any \(G \)-invariant semisimple subalgebra of \(A \). Then \(T \) is contained in a \(G \)-invariant maximal semisimple subalgebra of \(A \).

Corollary 1 is an immediate consequence of Theorem 1. Corollary 2 follows from the existence of a \(G \)-invariant maximal semisimple
subalgebra S of A. For then if U is an automorphism of A which maps T into S, and which commutes with G pointwise, it follows that SU^{-1} is a G-invariant maximal semisimple subalgebra of A which contains T.

4. The alternative case.

Theorem 2. Let A be a finite-dimensional alternative algebra over a field F of characteristic 0. Let G be a finite group of automorphisms and antiautomorphism of A. Let S be a G-invariant maximal semisimple subalgebra of A. Let T be a semisimple subalgebra of A. Then there exists an automorphism $U = \exp D$ of A such that

1. U maps T into S,
2. D (and hence U) commutes pointwise with G,
3. D is a nilpotent inner derivation of A which is in the radical of the enveloping associative algebra of A.

Proof. The proof is similar to Theorem 1. We define s and n as in Theorem 1, but use $N_i = N^i$ instead. We consider $N^i | N^{i+1}$ as a two-sided T_i-module by $t \cdot \bar{n} = s(t)\bar{n}$ and $\bar{n} \cdot t = n\bar{s}(t)$. Then (i), (ii), (iii) and (iv) are valid. Hence, by [9], there exist elements $x_1, \ldots, x_p \in N^i$ and $t_1, \ldots, t_p \in T_i$ such that

$(v) \quad n(t) = t \sum_{j=1}^p D_{s(t), x_j} \bar{t}_j$ for $t \in T_i$

where $D_{s(t), x_j}$ is the inner derivation $[R_{s(t), x_j}, [L_{s(t), x_j}, L_{s(t), x_j}]]$ of T_i into its two-sided module $N^i | N^{i+1}$. As in Theorem 1, we obtain

$(vi) \quad n(t) = s(t) \sum_{j=1}^p D_{s(t), x_j} \bar{t}_j (\mod N^{i+1})$ for $t \in T_i$

where $D_{s(t), x_j}$ is the inner derivation $[R_{s(t), x_j}, [L_{s(t), x_j}, L_{s(t), x_j}]]$ of A.

Now let $g \in G$. Then by Lemma 5, we have $g^{-i}(D_{s(t), x_j})g = D_{s(t), x_j}$. Hence, for any $g \in G$, $s(t) \sum_{j=1}^p D_{s(t), x_j} \bar{t}_j = s(t)g^{-t} \sum_{j=1}^p D_{s(t), x_j} \bar{t}_j = n(t)(\mod N^{i+1})$ by (iii) and (v).

Now set $D_i = -(1/m) \sum_{j=1}^p D_{s(t), x_j} \bar{t}_j$, where m is the order of G. Then we have

$(vii) \quad n(t) = -s(t)D_i (\mod N^{i+1})$ for $t \in T_i$.

D_i satisfies (3) of the Theorem since the $x_j g \in N$. To see that D_i satisfies (2) of the Theorem, we fix a value of j. Then $\sum_{g \in G} D_{s(t), x_j} \bar{g} = \sum_{g \in G} g^{-1} D_{s(t), x_j} \bar{g}$ commutes pointwise with G. Hence so does D_i, which is a linear combination of such mappings.

Now we set $U_i = \exp D_i$, and get that $T_i U_i \subseteq S + N^{i+1}$ as in Theorem 1. Finally, we put $U = U_0 U_1 \cdots U_{k-1}$, where $N^k = 0$, and use the Campbell-Hausdorff formula to complete the proof of the
Theorem.

As in the Jordan case, we have the following two corollaries of Theorem 2.

Corollary 1. Let A be a finite-dimensional alternative algebra over a field of characteristic 0. Let G be a finite group of automorphisms and antiautomorphisms of A. Let S and T be G-invariant maximal semisimple subalgebras of A. Then S and T are strictly conjugate via an automorphism of A of the type described in Theorem 2.

Corollary 2. Let A and G be an in Corollary 1. Let T be any G-invariant semisimple subalgebra of A. Then T is contained in a G-invariant maximal semisimple subalgebra of A.

5. The fully reducible case. Let A be a finite-dimensional Jordan or alternative algebra over a field of characteristic zero. If G is a fully reducible group of automorphisms and antiautomorphisms of A, then it follows from [4] that G will leave invariant a maximal semisimple subalgebra of A. The analogue of Corollaries 1 has not been answered as yet for this case. However, if $N^2 = 0$, then any automorphism of the form described in the proofs of Theorems 1 and 2 which carries a G-invariant maximal semisimple subalgebra T onto another one, S, is unique, and hence will commute pointwise with G.

For let $U_1 = \exp D_1, U_2 = \exp D_2$ be of this form and both map T onto S. Then $D_1^2 = D_2^2 = 0$, so that $U_1 = I + D_1, U_2 = I + D_2$. If $t \in T$, then $tU_1 = t + tD_1 \in S$ and $tU_2 = t + tD_2 \in S$. Hence their difference $tD_1 - tD_2 \in S \cap N = 0$, since D_1 and D_2 have range in N. Hence $D_1 = D_2$ on T. Also D_1 and D_2 are both 0 on N since $N^2 = 0$. Hence $D_1 = D_2$ since $A = T + N$.

Now let $g \in G$. Then $g^{-1}U_1g = I + g^{-1}D_1g$ will map T onto S and $g^{-1}D_1g$ is a derivation of square zero having range in N. Hence, by the above, $g^{-1}D_1g = D_1$, that is, D_1, and hence U_1, commutes pointwise with G.

REFERENCES

Rutgers, The State University
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON
Stanford University
Stanford, California

R. M. BLUMENTHAL
University of Washington
Seattle, Washington 98105

J. DUGUNDJI
University of Southern California
Los Angeles, California 90007

*RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
AMERICAN MATHEMATICAL SOCIETY
CALIFORNIA RESEARCH CORPORATION
SPACE TECHNOLOGY LABORATORIES
NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
by typewritten (double spaced). The first paragraph or two must be capable of being used separately
as a synopsis of the entire paper. It should not contain references to the bibliography. No separate
author’s résumé is required. Manuscripts may be sent to any one of the four editors. All other
communications to the editors should be addressed to the managing editor, Richard Arens, at the
University of California, Los Angeles, California 90024.

50 reprints per author of each article are furnished free of charge; additional copies may be
obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and
December. Effective with Volume 13 the price per volume (4 numbers) is $18.00; single issues, $5.00.
Special price for current issues to individual faculty members of supporting institutions and to
individual members of the American Mathematical Society: $8.00 per volume; single issues $2.50.
Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6,
2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

* Basil Gordon, Acting Managing Editor until February 1, 1966.
<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert James Blattner</td>
<td>Group extension representations and the structure space</td>
<td>1101</td>
</tr>
<tr>
<td>Glen Eugene Bredon</td>
<td>On the continuous image of a singular chain complex</td>
<td>1115</td>
</tr>
<tr>
<td>David Hilding Carlson</td>
<td>On real eigenvalues of complex matrices</td>
<td>1119</td>
</tr>
<tr>
<td>Hsin Chu</td>
<td>Fixed points in a transformation group</td>
<td>1131</td>
</tr>
<tr>
<td>Howard Benton Curtis, Jr.</td>
<td>The uniformizing function for certain simply connected Riemann surfaces</td>
<td>1137</td>
</tr>
<tr>
<td>George Wesley Day</td>
<td>Free complete extensions of Boolean algebras</td>
<td>1145</td>
</tr>
<tr>
<td>Edward George Effros</td>
<td>The Borel space of von Neumann algebras on a separable Hilbert space</td>
<td>1153</td>
</tr>
<tr>
<td>Michel Mendès France</td>
<td>A set of nonnormal numbers</td>
<td>1165</td>
</tr>
<tr>
<td>Jack L. Goldberg</td>
<td>Polynomials orthogonal over a denumerable set</td>
<td>1171</td>
</tr>
<tr>
<td>Frederick Paul Greenleaf</td>
<td>Norm decreasing homomorphisms of group algebras</td>
<td>1187</td>
</tr>
<tr>
<td>Fletcher Gross</td>
<td>The 2-length of a finite solvable group</td>
<td>1221</td>
</tr>
<tr>
<td>Kenneth Myron Hoffman and Arlan Bruce Ramsay</td>
<td>Algebras of bounded sequences</td>
<td>1239</td>
</tr>
<tr>
<td>James Patrick Jans</td>
<td>Some aspects of torsion</td>
<td>1249</td>
</tr>
<tr>
<td>Laura Ketchum Kodama</td>
<td>Boundary measures of analytic differentials and uniform approximation on a Riemann surface</td>
<td>1261</td>
</tr>
<tr>
<td>Alan G. Konheim and Benjamin Weiss</td>
<td>Functions which operate on characteristic functions</td>
<td>1279</td>
</tr>
<tr>
<td>Ronald John Larsen</td>
<td>Almost invariant measures</td>
<td>1295</td>
</tr>
<tr>
<td>You-Feng Lin</td>
<td>Generalized character semigroups: The Schwarz decomposition</td>
<td>1307</td>
</tr>
<tr>
<td>Justin Thomas Lloyd</td>
<td>Representations of lattice-ordered groups having a basis</td>
<td>1313</td>
</tr>
<tr>
<td>Thomas Graham McLaughlin</td>
<td>On relative coimmunity</td>
<td>1319</td>
</tr>
<tr>
<td>Mitsuru Nakai</td>
<td>(\Phi)-bounded harmonic functions and classification of Riemann surfaces</td>
<td>1329</td>
</tr>
<tr>
<td>L. G. Novoa</td>
<td>On (n)-ordered sets and order completeness</td>
<td>1337</td>
</tr>
<tr>
<td>Fredos Papangelou</td>
<td>Some considerations on convergence in abelian lattice-groups</td>
<td>1347</td>
</tr>
<tr>
<td>Frank Albert Raymond</td>
<td>Some remarks on the coefficients used in the theory of homology manifolds</td>
<td>1365</td>
</tr>
<tr>
<td>John R. Ringrose</td>
<td>On sub-algebras of a (C^*)-algebra</td>
<td>1377</td>
</tr>
<tr>
<td>Jack Max Robertson</td>
<td>Some topological properties of certain spaces of differentiable homeomorphisms of disks and spheres</td>
<td>1383</td>
</tr>
<tr>
<td>Zalman Rubinstein</td>
<td>Some results in the location of zeros of polynomials</td>
<td>1391</td>
</tr>
<tr>
<td>Arthur Argyle Sagle</td>
<td>On simple algebras obtained from homogeneous general Lie triple systems</td>
<td>1397</td>
</tr>
<tr>
<td>Hans Samelson</td>
<td>On small maps of manifolds</td>
<td>1401</td>
</tr>
<tr>
<td>Annette Sinclair</td>
<td>(</td>
<td>\epsilon(z)</td>
</tr>
<tr>
<td>Edsel Ford Stiel</td>
<td>Isometric immersions of manifolds of nonnegative constant sectional curvature</td>
<td>1415</td>
</tr>
<tr>
<td>Earl J. Taft</td>
<td>Invariant splitting in Jordan and alternative algebras</td>
<td>1421</td>
</tr>
<tr>
<td>L. E. Ward</td>
<td>On a conjecture of R. J. Koch</td>
<td>1429</td>
</tr>
<tr>
<td>Neil Marchand Wigley</td>
<td>Development of the mapping function at a corner</td>
<td>1435</td>
</tr>
<tr>
<td>Horace C. Wiser</td>
<td>Embedding a circle of trees in the plane</td>
<td>1463</td>
</tr>
<tr>
<td>Adil Mohamed Yaqub</td>
<td>Ring-logics and residue class rings</td>
<td>1465</td>
</tr>
<tr>
<td>John W. Lamperti and Patrick Colonel Suppes</td>
<td>Correction to: Chains of infinite order and their application to learning theory</td>
<td>1471</td>
</tr>
<tr>
<td>Charles Vernon Coffman</td>
<td>Correction to: Non-linear differential equations on cones in Banach spaces</td>
<td>1472</td>
</tr>
<tr>
<td>P. H. Doyle, III</td>
<td>Correction to: A sufficient condition that an arc in (S^n) be cellular</td>
<td>1474</td>
</tr>
<tr>
<td>P. P. Saworotnow</td>
<td>Correction to: On continuity of multiplication in a complemented algebra</td>
<td>1474</td>
</tr>
<tr>
<td>Basil Gordon</td>
<td>Correction to: A generalization of the coset decomposition of a finite group</td>
<td>1474</td>
</tr>
</tbody>
</table>