Pacific Journal of

Mathematics

SOME IDENTITIES VALID IN SPECIAL JORDAN ALGEBRAS
BUT NOT VALID IN ALL JORDAN ALGEBRAS

CHARLES M. GLENNIE




PACIFIC JOURNAL OF MATHEMATICS
Vol. 16, No. 1, 1966

SOME IDENTITIES VALID IN SPECIAL JORDAN
ALGEBRAS BUT NOT VALID IN
ALL JORDAN ALGEBRAS

C. M. GLENNIE

A Jordan algebra is defined by the identities:

(1) -y =y @y y=@y)y.

The algebra A; obtained from an associative algebra A4 on
replacing the product xy by z-y = 1/2(xy + yx) is easily seen
to be a Jordan algebra, Any subalgebra of a Jordan algebra
of this type is called special. It is known from work of Albert
and Paige that the kernel of the natural homomorphism from
the free Jordan algebra on three generators to the free special
Jordan algebra on three generators is nonzero and consequently
that there exist three-variable relations which hold identically
in any hemomerphic image of a special Jordanm algebra but
which are not consequences of the defining identities (1). Such
a relation we shall call an S-identity. It is the purpose of this
paper to establish that the minimun possible degree for an
S-identity is 8 and to give an example of an S-identity of
degree 8, In the final section we use an S-identity to give a
short proof of the main theorem of Albert and Paige in a
slightly strengthened form.

NoraTioN. The product in a Jordan algebra will be denoted by
a dot, thus a-b, and {abe} will denote the Jordan triple produect

(2) {abc} = a-(b-c) — b-(c-a) + ¢-(a-b) .

Unbracketed products a,-q,- «-- -a, will denote left-normed produets
ie (e ((@°ay-)-a)- - -+ -a,). When working in a special Jordan algebra
we shall use juxtaposition, thus ad, to denote the product in the
underlying associative algebra. Then a-b = 1/2(ab - ba) and 2{abc} =
abc + cba. The free (respectively free special) Jordan algebra on =
generators, taken as z, ---,x, or as x, %, 2 if » = 3, will be denoted
by J'™ (respectively J() and the kernel of the natural homomorphism
v, (written as v for # = 3) of J™ onto J{™ by K,. The subspace of
J™ spanned by the monomials of degree = linear in each of the
generators will be denoted by L,. The underlying associative algebra
for J{™ is the free associative algebra on # generators: we shall denote
this by A“. Throughout the paper we work over some fixed, but
arbitrary, field of characteristic not two.
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1. The following theorem has been proved by MacDonald [4]:

THEOREM 1. (MacDonald). K, contains no (nonzero) element
which 1s linear in one of the generators.

We have at once the following corollaries:

COROLLARY 1. K, contains no (nonzere) element of degree less
than six.

COROLLARY 2. Amn element w in J© linear in one generator, or
of degree less than six, can be unambiguously represented by the
expansion of uy in A®.

In this section we shall strengthen Corollary 1 to the following
theorem, which I understand has previously been proved by J. Blattner:

THROREM 2. K, contains no (nonzero) element of degree less than
eight.

Proof. Let L be the subspace of J® spanned by the elements of
degree two in x, two in ¥ and two in 2; M the subspace of J® spanned
by the elements of degree two in «, two in y and three in z. It is
sufficient to show that (i) the restriction of vy to L is one-to-one and
(i) the restriction of v to M is one-to-one. For (i) we display a set
of elements which span L but whose images are linearly independent
in Ly. For (ii) we prove a Lemma which implies that if (ii) does not
hold, then (i) does not hold.

Let R, denote the mapping ¢ — a-b in a Jordan algebra. Then it
is well-known that:

(3) Ra-b-c — Ra~bRc + Rb-cRa + Rc-aRb - RaRcRb - RbRcRa
(4) Ra-b~c = RaRb~c + RbRc-a + RcRa~b - RaRcRb - RbRcRa
(5) Ra~bRc + Rb~cRa + Rc-aRb - RaRb-a + RbRc~a + RcRa-b

So L is spanned by elements of the forms

(i) aR,R.E,R.R, (v) aRRRER,.;
( il) aRb.cRngRf ( vi ) aRb.aRd.eRf
(i) @R,R..R.R; (vil) aRy.RiR.,

(iv) aR,R.E,.R, (viil) aR,R,.R..,
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where two of a,b,c,d,e, [ represent x, two represent y and two
represent z. Consider those of type (i). We have

(16 aR,R . E,R,)y = (abcde + edeba) + (bacde + edcab)
+ (cabde + edbac) + (cbade + edabc)
+ (dabce + ecbad) + (dbace + ecabd)
-+ (dcabe + ebacd) + (debae + eabed)
=U, + U, + -+ + U, (say)
(where U, = abede + edcba, ete) .

Cohn has shown [2] that reversible elements in A® are in J/® so that
each U; is in J/”. Since v is an epimorphism there exist u;, e J® (7 =
1, ..., 8) for which w,y = U,. Then

(16 aR R ER,)y = 32U, = J(uy) = (Ju,)v

Thus
16 aR,R.R,R, = 2u, (Theorem 1, Corollary 1)

and
16 aR,R.R,R.R; = (Su;)-f = S(u;-f)

By Theorem 1, Corollary 2, we can use U, to represent u, without
introducing ambiguity. Thus instead of w,-f we can write U,-f i.e.
(abede + edcba)-f, an element in J'® but with notation for the part
in brackets borrowed from J». Treating elements of types (ii)-(viii)
similarly we see that with this notational convention L is spanned by
elements of the forms (abcde + edcba)-f and (abed + deba)-(e-f). The
following elements then, together with those obtained by permuting
x,y and 2z, span L:

T-elements

1. 20 (Y% + 2Y'x) = du-{wye?)

2(a). @-(wyzyz + zyzyx) = 2x-{w{y2yle} = 2 {wyleyz)} .
(0).  @-(vzyzy + yryew) = 2u-{a{eyzly} = 22 {wz{yzy}}

2u-(xy2'y + yetyw) = da-(v-{y2'y})

2z-(yryx® + x*yzy) = 4z-({yzy}-o?)

2% - (ywzyz + zyzay) = 4u-{yx{zyz))

2y-(rya’z + 2a’yz) = dy-{e(y-27)z)

. 2 (Y’ + 2Pay?) = du-{y*a?)

8(a). w-(yzayz + zyxry) = ®-f(x, ¥, 2)
(b). y-(zayza + xzya2) = Y- f(y, 2, x)

N A
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(e). z-(xyzaxy + yxzyx) = 2-f(z, 2, y)
where f(2,y, 2) = 4{(y-2)x(y-2)} — {yleazly} — {z{yry)z}
9. 2y« (xryza) = 2y -{x{zyz}x}

10(a). %-(y%* + 2% = 22%-(y*-2%)

(b). - (&% + o%%) = 2 (227

(e). 2(x* + y'u®) = 22°-(2®-9%)
11. @* (yzyz + zyry) = 22°-(y-{zyz}) = 22°- ({yzy}-2)
12. 20* - (y2'y) = 2%+ {yz*y}
13, (wey)-(2y2® + 2'yw) = 2(%-Y) Risyry
14. (x-y) - (x2yz + zyzx) = 2{zyz}R.R,.,
15. (@-y)-(22’y + y2'w) = 2(z-Y) Ry
16, (z-y)-(Reyz + 2yxz) = 2(z-y)-{2(2-y)2} = 2{(z-y)2(x-y)}-2

T16 is clearly redundant, while use of formulae (3),(5) and (3)
respectively shows that T13, T14 and T15 are also redundant. So the
set T (namely T1-T12 together with those elements obtained from
T1-T12 by permuting x,y and z) spans L. We now display a set U
of Jordan elements. Kach U-element may be considered as an element
in J§¥: as such its expansion in A® appears as the corresponding V-
element, Alternatively the U-element may be considered as an element
in L: its expression as a linear combination of T-elements appears as
the corresponding W-element. For each integer » the validity of the
relation Ur = Wr can be checked by appealing to MacDonald’s theorem.
For example, in the case of » =7, UT = W7 is valid in J/ and linear

T U-elements V-elements W-elements T
1| 22 {yz*y} Y2ty + yPrya’ T12 6
2| 2{x{yz*ylx} 2xy2’yx T3 — T12 6
3t 2{x*y2?} xRt - Pyt T10a — T10b -+ T10¢| 3
41 2{x(y*-2")a} Xy + xty’x T1 — W3 3
5 2{x(y-{zyz})x} xyzyze -+ xzyzyx| T2a -+ T2b — T11 |3
61 2{z*yzylz} 2Pyzyz + zyryx’ T2a — T2b + T11 |6
T 2{zx*{yzy}} XYY -+ YRYr'2 T4 — W6 6
8| f(&* y,2) Yyza*yz -+ 2yx’zy T6 — W7 3
9| 2y-{x{zyz}x} yaxzyzx + xzyzey | T9 6
10 2{zyx}-{zyz} xyxzyz -+ zyzeyx | TH — W9 3
11|x-f(x,y,2) —y-f(¥y, 2, )| vyzeyz + zyrzyx | T8a — T8b + T8e |3
+2-f(2, %, y)
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in {yzy}, so U7 = W7 is valid in J*®. Suppose now that the sets of
U, V and W-elements have been augmented by adjoining all elements
obtained from those displayed by permuting «,y and z. The column
headed 7 shows the number of distinct elements obtained for each value
of r. It is then easy to check that each T-element is a linear combi-
nation of W-elements, so the W-elements span L. But their images
under v are the V-elements which are clearly linearly independent.
So v | L is one-to-one. To complete the proof of the theorem we now
prove the following lemma:

LemMMA 1. Let n be an odd (positive) integer and uw an element
m K,N L, which is expressible in the form v = S, x,°y;. Then
y,€ K, for each 1 =1, -+-,m,

Proof. For convenience we denote v, by v. For n = 1 there is
nothing to prove. Assume % > 1 and let the coefficient of

xi%lxif‘? °e xnxl °e xi"l (9“12 e xn lf 1= 1)

in y be y;. Then the coefficient of ®, @, ., - 2,2, - o; in 2uy is
L + ... Sinee distinet monomials in A™ are linearly independent we
have g, + ¢,., = 0,2 =1, ---, » — 1 and g, + p, = 0, whence (n being
odd) ¢, = 0,7 =1, ---,n. In particular z, = 0, i.e. the coefficient of
X, +++x, in yv is zero. It follows by considering suitable renumberings
of x,, ++-, 2, that v = 0, i.e. y, ¢ K,. Similarly y,€ K, fort =2, -, m,

COROLLARY. Let w be an element in K, which is homogeneous
of odd degree such that w — x-a + y-b + z-c. Then a,b,ce K.

Proof. Suppose % == x-a + y-b + z-¢ is of degree p in ®, ¢ in y
and r in z with p + ¢ + r = n (an odd integer). Let @, ---, %, be n
symbols of which p denote z, ¢ denote % and » denote z. For convenience
we denote v, by v. For n = 1 there is nothing to prove. We now
proceed almost word for word as in the proof of the lemma. Assume
n >1 and let y; be the coefficient of x;,, «-» x, 2, ¢ @y (@ c-- 2, if
t=1, x,--+w,, if 4 =n) and so alsoof x, ; ~-- L@, ++° T;4y (X, o> @,
ifi=1,2,,---2 if © =n) in the expansion in A® of av if z;, =, of
by if x, — y and of ¢y if ©, = z. Then the coefficient of =, , --- x,x, -«
x; (¢, ++ox, if ¢ =mn) in the expansion in A® of 2uy is p; + fti4,
(¢, + ¢, if 7 =mn). Since distinet monomials in A% are linearly
independent we have p; + ft;., =0,¢ =1, -+, n —1 and g, + p, = 0.
Whence (n being odd) p¢; = 0,% =1, ---, n, Since the argument goes
through for any distribution of p #’s, ¢ %’s and » 2’s amongst x,, -+, x,
the coefficient of each monomial in the expansion in A® of av is zero,
i.e. ae€ K,. Similarly for b and ec.
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It is now sufficient for the proof of Theorem 2 to show that each
element in M is of the form x-a + y-b 4+ z-¢c. Let N be the subspace
of J® spanned by elements of this form. We shall write ¢ =b to
denote a — be N: thus we wish to show that m = 0 for each me M.
Now M is spanned by elements of the forms a-(bcdefg + gfedcb) and
(a-b)-(cdefg + gfedc) where two of a,b, ¢, d, e, f,g represent x, two
represent y and three represent z. It is sufficient to show that each

element of the form (a-b)-(cdefg + gfedc) is in N, or by formulae (3)
and (4) that each of the following is in N:

( 1 ) aRbRcRdReRf.g - CRa.deReRf.g
( 2 ) aRbRcRd.eRf.g = C.Ra.de.eRf.g
(3) aR,E,.RRE;,

For types (1) and (2) let ¢t = a-b-¢c. Then we have for (1): (f-9)R, ...,
and for (2): (f-9)R,...,. Since R, = R,.,., it follows by two applications
of formula (3) in each case that elements of types (1) and (2) are in N.
Since any element in M can be written as zP where P is an operator
generated by the right multiplications R,, v J®, it will be sufficient

in the case of elements of type (3) to consider @ — z. The possibilities,
modulo interchange of z and y, are:

(i) z2R,R,.RR,,—=x«R.R, RR,,—xR,RR,.R,,=0 (type 2)
(ii) 2R.R,.,R,R,.,= —3%2R,R,,R.R,,=0 by (i)
(iii) 2R,R, . R.R,,= —2R.R,,RR,,=0 by (i)
(iv) zR,R,,R,R,,= —12R,R, .RR,,=0 by (iii)
(v) #R.R,,RR,,=*RR,,RR,, —xcRRR, R, =0 (type 2)
(vi) zR.R,,RR,.,= —#RR, . RR,, =0 by (ii)
(vii) 2R.,R,,RR,,= —42RR, ,RR,,=0 by (v)
(viii) zR,R,,R.R,,= —32R.R, ,R.R,, =0 by (vi)
(ix) 2R,R..RR,, =2RR, RR,. . = —itzRR. RR, =0 by (ii)
(x) zR,R,,RR,,= —22R,R, . RR,. =0 by (ix)
(xi) z2R.,R,,RR,,= —32R,R, ,RR,., =0 by (ix)
(xii) 2R.R,,RR,,= —1zR,R,,R,R,., =0 by (x)
(xiiiy zR.R, . R.R,,=«R,R,.R.R,, = 2R, R.R,R,, =0 (type 1)
(xiv) zR,R,..R,R,,—=2R.R, R,R,,—=xR, . RRR,., =0 (type 1)

This completes the proof of Theorem 2.

It is possible to avoid the use of MacDonald’s theorem in the proof
of Theorem 2 by using the following result, tabulating bases for each
subspace spanned by homogeneous elements of degree six and applying
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the Corollary to Lemma 1 to each subspace spanned by homogeneous
elements of degree seven. This process is straightforward, if somewhat
tedious, and is in any case largely a special case of MacDonald’s
theorem. We include Theorem 3, however, as it would appear to be
of independent interest, in providing easy verification of proposed
five-variable identities linear in each variable.

THEOREM 3. K, N L, = {0} for n < 5.

Proof. The cases n =1, 2,3 follow at once from the case n =4
with which we begin, taking the generators of J“ as x,y,z2,t. Let
R,, S,., U,, denote the mappings a — a-b, a— {abc}, a— {bac} respectively.
Then S,,=R,..+ R,R, — R,R,, and U,, = R,R, + R.,R, — R,.,. Since
L, is spanned by the elements tR.RR,, tR.R,.,, tR,. R, and all others
obtained from these by permuting «, % and z and R,.,= R,R,+R.R,— U,,,
2R,R, = S,, + U,., we have that (again to within permutations of x, %
and z) L, is spanned by ¢R,S,,, tR,U,., tU,,R,. Now let we K,N L,
and suppose that

u = U@,y RSy, + B.R. Uy, + 7. UyR,)

where the summation is over permutations of z,y and z. Since uec K,
and distinct monomials in A“ are linearly independent we have

(1) «,,, =0 (coefficient of txyz in A™) and similarly each «a-
coefficient is zero, and

(2) B, + v, =0 (coefficient of xtyz in A®) and similarly for each
pair of distinet subscripts., So 8, =8, =8, = —7, = —7v, = —7, and
% 1s a scalar multiple of

t(Ra: Uyz + Ry Uzm + Rz Ua:y - Uquz - Uysz - szRy)

which is zero by (5). So K,N L, = {0}.

The result for » = 5 now follows by Lemma 1 and the fact, already
noted in the proof of Theorem 2, that L; is spanned by the elements
a-b where a is a generator and b is linear in each of the other generators.

2. In order to establish the existence of an S-identity of degree
8 we now examine the situation discussed by Albert and Paige in the
paper [1] mentioned in the introduction.

Let D be an algebra with an identity element 1 and an involution
d—d. In the algebra D, of n X n matrices with entries in D we
can define an involution M — M’ by taking (M');; = (Mj;), i.e. M’ is
the conjugate transpose of M. Further, we can define an involution
M— M* in D, by choosing a diagonal matrix 7" = diag {v, +--, 7.}
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where the v, are self-adjoint (¥, = v,), in the nucleus of D and have
inverses, and defining M* = I'*M'I". Such an involution is called a
canonical involution in D,. The particular case in which 7" is the
identity matrix reduces to the first involution defined and this is called
a standard involution. It is clear that the subset of D, of matrices
self-adjoint under a canonical involution (i.e. M* = M) is closed under
the product A-B = 1/2(AB + BA) where AB is the usual matrix product
and forms an algebra relative to this product and the usual addition
and scalar multiplication. We denote this algebra by H(D,, ") or
simply H(D,) if I" is the identity matrix. With this notation the
main theorem proved by Albert and Paige can be stated as:

THEOREM 4. (Albert and Paige). If H(D,) is the homomorphic
image of a special Jordan algebra then D is assoctative.

Our first step will be to obtain a three-variable relation, S(z, ¥, z) =
0, which will be easily seen to hold in J/ and so in any homomorphie
image of a special Jordan algebra. Substitution of suitable elements
x,y, # from H(D,) will immediately show that D is associative, giving
an independent proof of the Albert-Paige result and simultaneously
showing that S(x, ¥, 2) = 0 is not valid in every Jordan algebra, since
an example is known (with D as the eight-dimensional Cayley algebra)
of a Jordan algebra H(D.) in which D is not associative. The homo-
geneous part of S(x,y,%2) =0 of degree 3 in #, 2 in y and 3 in z then
gives the required S-identity of degree 8. Lemmas 2 and 3 are
essentially due to Albert and Paige.

LEMMA 2. Let 6 be a homomorphism from a special Jordan
algebra H, embedded in an associative algebra U, onto a Jordan
algebra J such that

(1) H 1is generated by elements X, Y, Z and I (I an identity in
U) and

(2) H contains elements E,, ---, B, (k= 3) such that E,E; =
BB, in U and such that e, ---, ¢, (e; = E,0) form a set of orthogonal
idempotents in J whose sum is the identity f = 10 of J. Then, for
a, B in the set 1, «--, k and A a monomial in U generated by X, Y, Z
and I we have (F,AFs + FgA*F )0 ¢ J,3 where F, = E}, Fg = Ej}, A*
18 the reverse of A and J,z is the «, 8 component of J in the Pierce
decomposition determined by the e;’s.

Proof. Let B= E,AE; + E;A*E,,C = A + A*. Then

FaAFB ‘{"‘ FBA*Fa — EaBE{; "I" EBBEa - (EQEB)C(E«EB)
= 2{E.BEg} — {(E.+ Ep)C(E, - Ey)}



SOME IDENTITIES VALID IN SPECIAL JORDAN ALGEBRAS 55

So
(FaAFB + FBA*Fa)g = 2{60,(B0)63} - {(ea'eﬂ)(ce)(ea'eﬁ)} € JaB

LEMMA 2'. With H, J, 0 and condition (1) (but not condition (2))
as in Lemma 2 suppose that E, =1/2(X*+ X), E,=1— X*, E, =
1/2(X* — X) and X0 =x,10 = f,E0 = e, E0 = e, .0 =e,. Then
if Q) «* = x, we have that (a) e, e, e; are orthogonal idempotents
with sum f and (b) (B, AEs + EgA*E,)0 € Jow + Jop + Jpa.

Proof. (a) This follows immediately from the definitions of e,
e,, e; and condition (2)'.
(b) Let B=XA(I— X)+ (I — X)A*X. Then
2AE.AE, + E,A*E)0 = {(I + X)B(I + X)}¢
= {(2E, + E,)B2E, + E,)}0
= {(2e, + €,)(BO)(2e, + e)} € Jy + iy + Iy

Similarly for other choices of o and S.

LEMMA 3. Waith notation as tn Lemma 2':
2[(E.AEs; + E A*E,)-(E.DE, + E,D*Ejy)|0
= |E,AE EDE, + E,D*EgEA*E, 10

where D is @ monomial in U generated by X, Y, Z and I, and «, 8,
are distinct integers chosen from 1,2, 3.

Proof.
2[(E.AE, + EgA*E,)-(EDE, + E,D*Eg)|0
= (B AEEDE, + E.D*E F,A*F,)0
+ (B, AE.E,D*Ey + E;DE, E;A*E,)0
+ (EgA*E, EsDE, + E,D*EgE,AFEg)0
+ (EsA*E,E.D*E, + E,DE.E,AE,)0 .

Now, since «, 8 and v are distinet, J,pJ5 S J,y. S0, by Lemma 27,
the left-hand-side is in J.,. The result now follows from Lemma 2’
and the disjointness of the Peirce decomposition.

COROLLARY.

A[{E\ZE)}-(E,AE,E,ZE, + E.ZE,E,A*E,)|0

6
(6) = A[(E.ZE,E,AE, + E,A*E,E,ZE,)-{E.ZE}0

Equation (6) suggests the following relation in U:
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A[{E.ZE)}-(ECE,E,ZE; + E,ZE,E,C*E,)]
— (B, ZE.E,CE,E,ZE; + E,ZE,E,C*E,E,ZE,)
— (E.ZE,E,ZE,E,C*E, + E,CE,E,ZE,E,ZE)
— (E,ZE.E,ZE,E,C*E, + E,CE,E,ZE,E.ZE))
(7) = 4[(E,ZE,E,CE, + E,C*E,E,ZE))-{E,ZE}]
— (EZE,ECE,E,ZE, + E,ZE.E,C*E,E,ZE,)
— (BE,C*E,E,ZE \E,ZE, + E,ZE,E, ZE,E,CE),)
— (E,C*E,E,ZE E,ZE, + E,ZE,E ZE,E,CE),)
where, for reasons which will appear later, we take C = YXZY and

C*=YZXY. In turn, (7) suggests the following relation in J§,
(this is the relation referred to previously as S(x, v, z) = 0)

4{eze.} - p, + {(es + 2e5)q,(e, + 2¢5)}
(8) — {(2e, + e)r(2e; + e,)} — {e:s,64}
= 4{eze} -0, — {(2¢; + €,)q,(2¢, + €,)}
+ {(ey + 2e;)7ry(e;, + 2e,)} — {€.8.€:}

where ¢, = 1/2(x* + ), e, = 1 — 2%, e, = 1/2(2* — ) and p,, 2q,, 27, 8;, Ds,
2q,, 2r,, s, are Jordan elements in J® equal respectively in A® to

e YrRYe.e.ke; + esre.eyzrye, ,

1 + z)zeeyrzyeerx + xzeeyzaye.ez(l + x) ,

xzeseze.e.yzry(l — x) + (1 — x)yxrye.e.ze.e.2x ,

26165%€,8,YRXY + YTRYE,0,2€:6:%

€,26,8,YXRYe; + e YZLYese28;

x2eLyx2yee2(l — ) + (1 — x)ze,e.yzrye.ere ,

1 + x)yzeyeezeerx + xzeezeeyxzy(l + ),

YRBXYECL:26,632 + 2€36,26:,6,YTRY
Now, (8) is an S-identity. By construction it holds in J® and we may
see that it does not hold in H(C,), where C is the eight-dimensional
Cayley algebra, by substituting

1 . . - 1 . . u v
r=| - <, y=\{1 - 1}, z=|u w
- —1 - 1 7w

where u, v and w are arbitrary elements in C, and examining the 1, 3
element on each side of (8). The calculation is quite simple: by choice
of z, the only nonzero contribution on each side arises from the first
term. Further, p, and p, are of degree two in 2z and so may be
evaluated as though C were associative, that is by substituting directly
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into their equivalent associative forms displayed above. The result is
wf(v — 7)w] on the left and [u(v — 7)]w on the right. Since self-adjoint
elements in C are in any case in the nucleus we have u[(v + P)w] =
[w(v + D)Jw Whence u(vw) = (uv)w. But C is not associative. So (8)
does not hold in the Jordan algebra H(C;) and is thus an S-identity.

The relation (8) can be written as Y, fi(®,y,2) =0, where
fi(x, v, 2) is a Jordan polynomial of degree ¢ in x. Now fi(z, ¥, ) can
be expanded in A® ag a linear combination of monomials in «, y,z of
degree ¢ in . Since A® is free, fi(x, ¥, 2) = 0 for each 7. We consider
the case ¢ = 3.

The parts of the terms of (8) which are of degree 3 in =z are
equal respectively in A® to:

(2) —4(x-2) - (yxryza + rzyzay)
(b) 2XYTZYZT + TYZLYTL
() XZXRYZLY + YXZYILRL
(d) BLAXRZYZLY + YLIYZLAZ
(e) —A(z-x) - (xry2RYy + Y2OYRT)
() TRYTRYLZ + RAYZLYZL
(2) YRBYZLZEL + LRXZYX2Y
(h) YRXYZTATZ + 2TX2ZYLRY

We now make the following choices for Jordan expressions of the
above:

(@) + (e) + (d): —4{(x-2)y{rizyztal}
(b): 4{{z{wyz}ely(z-2)} —2{{a{y(x-2)y}w}z}
(e) + () + (2) + (h): —2{z{z{y(x-2)y}e}a}

and obtain the following relation which clearly holds identically in J;®:

(9) Hz{oyalzly(z o)} —2{{z{y(x-2)y}x}z}
= H(z-2)ylzieyzlal} —2{z{{y(w-2)y)e}a}

Substitution in (9) of the same elements as were substituted in (8)
shows that (9) is an S-identity.

3. In H(D,) let

g:

[STR <R

Then we have
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{xga} =|p « and {ygy}=|- v 7],
. P 18

while zgy (ordinary matrix multiplication) is equal to

r g
qp)a

With these results in mind, (8) suggests the following candidate for
an S-identity:

(10) 2{wza}-{uleyzly} — {o{e{ofyzylylelal
= 2{elzazly}- (yay} — {yle{ylvealalely}

We verify that (10) is an S-identity by using it to prove the Albert-
Paige Theorem in a slightly strengthened form. (Albert and Paige
mention that their method will give the stronger result but do not
give the details.)

THEOREM 4(a). If H(D,,I'),n = 3, is the homomorphic image
of a spectal Jordan algebra then D 1s associative,

[Theorem 4(a) is also a stronger form of a theorem due to Jacobson
[3] viz: If H(D,,I'),n = 3, is a special Jordan algebra then D is
associative.]

Proof of Theorem 4(a). It is sufficient to prove the result for
n = 3. Since H(D,, I") is the homomorphic image of a special Jordan
algebra the relation (10), which clearly holds in J,*, holds in H(D,, I).
Now suppose that

14
I = B
4
and let
B o o . . o ﬁB VY
=« , Y= v, z=lux - wWY]|,
5 - 0 WK

where u, v and w are arbitrary elements in D. Substitution in (10)
gives, in the first row, third column:

left hand side: BSuaB(avyBywHy)

right hand side: (BuaBavyB)yvwBy
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Since u, v and w are arbitrary and «, 8 and v are in the nucleus of
D with inverses the result follows at once.

REMARK., It can be shown by using the corollary to Lemma 1
that the S-identity (10) is generated by S-identities of degree 8. We
do not give the details here as we hope to embody them in a later paper.
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