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It fe L(— D, D) and Q(z) is a meromorphic function whose
poles, all simple, forms a sub-set of the set {λv} (v = 0, ± 1,
± 2, •), then the C.E.S. (Cauchy exponential series) of / with
respect to Q(z) is Σcve

λ^x

9 where

-D

Suppose we are given a class A of functions / each of
which can be 'represented' in (— D9 D) by its C.E.S. with
respect to Q(z). We define a set of neighbourhoods U of {Λ}.
Then {λv} is stable if there is a U such that to each {tcv} eU
there corresponds a meromorphic function q(z) whose poles, all
simple, form a sub-set of {tcy} and which is such that each
fe A can be represented in (— D, D) by its C.E.S. with respect
to q(z); and {λv} is unstable if there is no such neighbourhood.

The case in which λv — iv, A is BV[— D, D], 'representa-
tion of / in (- D, DY means ' Σ M ^ V ^ V * -» 1/2 (f(x +) + f(x -))
boundedly within (D, D)' is considered. It is shown, in particu-
lar, that with reasonable conditions on the set of neighbour-
hoods U9 {iv} is unstable if D > 1/2 π, and stable if D = 1/2 π.

Let D > 0 and feL(—D,D). Let Q(z) be a meromorphic function
whose poles, all simple, form a sub-set of the set {λj(v = 0, ± 1, •••)•
Here, and in what follows, the use of the symbol {λv} implies that
λv Φ λ>/ if v Φ v'. The C. E. Sβ (Cauchy exponential series) of / with
respect to Q is ^cve

λvX where

Suppose that the set {λj is such that, for a class A of functions /,
the C.E.S. of / 'represents' / in (—D,D)O Then we may consider
the question of the stability of the set {λv}. We define, in some way,
a set of neighbourhoods U of {λv}. Then {λj is stable if there is a
neighbourhood U such that to each {Λ:,} e U, there corresponds a mero-
morphic function q(z) whose poles, all simple, form a sub-set of {Λ J ,
and which is such that each fe A can be represented in (— D, D) by
its C.E.S. with respect to q(z); and {λv} is unstable if there is no such
neighbourhood. The stability of {λj depends on the value of D, the
class A, the, particular meaning we give to the 'representation' of /,
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176 S. VERBLUNSKY

and finally on the definition of the set of neighbourhoods U. In this
note, we confine our attention to the simplest case: j \ , v = iv, A is the
class of functions / which are BV[ — D, D] and satisfy 2f(x) =
/ ( # + ) + / ( # — ) i n (— D, D), 'representation' of / means 'bounded
convergence to f(x) within (— D, D)', i.e., for each δ satisfying
0 < δ < D, Σivi<^ cve

λ*x —>f(x) boundedly in the segment | x \ ̂  D — δ.
We recall that if D = π, then each feA can be represented by its
C.E.Sc with respect to Q0(z) — 1/2 coth πz, since, in this case, the C.E.S.
is the Fourier series of /. Let us suppose that to each neighbourhood
U there corresponds an ε > 0 such that {μu} e U if Σ I ^^ — λ J < ε;
and to each δ > 0 there corresponds a neighbourhood UB such that if
{μu} e U8 then sup | μu — λ„ | < δ. What we prove, implies that {iv} is
unstable if D > π/2, and stable if Ό — π/2. We shall, however, prove
more than this, viz.

THEOREM 1. Let {£J be a real set not containing every integer,
such that l» is an integer for \ v \ ̂  N. If D > π/2, then there is no
meromorphic function q(z) whose poles, all simple, form a sub-set
of {Hv} and which is such that each feA can be represented by its
C.E.S. with respect to q.

THEOREM 2. Let lu = v + ocv + iβu where aV9 βv are real numbers
which satisfy

Πrn I au \ < — , ϊίrn | ft, | < oo .
IvHoo g |v|-*oo

If D — π/2, there exists a meromorphic function q(z) whose poles, all
simple, form a sub-set of {ilv} and which is such that each feA can
be represented by its C.E.S. with respect to q.

THEOREM. 3. The conclusion of Theorem 2 holds if the condition
on a» is replaced by sup | ex J < 1/4.

The relation between Theorem 2 and the work of Korous [1] is
explained in § 6. The relation between Theorem 3 and the work of
Levinson [2] is explained in § 7.

2. Let 0 < D ^ π, and let A have the meaning specified in § 1.

LEMMA 1. If Hn(t) e L(- 2Ό, 2Ό) for n ^ n0, then, in order that
for each feA,

f(t)Hn(t-x)dt~->f(x)
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boundedly within (— D, D), it is necessary and sufficient that

S t 1

Hn(u)du -* — sgn t
o 2

boundedly within (— 2D, 2D).

Proof. Let
sin in + - -

/.(«)= x v 2

2 π B i n | «

Then for each feA,

Γ f(ί)Jn(t-x)dt-+f(x)
J-D

boundedly within (— D, D), and

S i 1

Jn{u)du —> — i
o 2

boundedly within ( - 2D, 2D). Let Kn(u) = Hn{u) - Jn(u). It suffices
to prove: in order that for each fe A,

Γ f(t)Kn(t-x)dt->0

boundedly within (— D, D), it is necessary and sufficient that

kn{t) =

boundedly within ( - 2D, 2D).

Sufficiency. We have

(1) Γ f{t)Kn{t - x)dt = f(D)kn(D - x) - / ( - D)kn{- D-x)
J-D

- Γ kn(t - £B)d[/X*)
J-D

and the second member tends to zero boundedly within (— D, D).

Necessity. In the first place, it is necessary that for each
τe(-2D,2D),kn(τ)-*0 as n-+co. For let a, βe (- D, D) and let x = a.
Let f(t) — 1 in the open interval, and let f(t) = 0 outside the closed
interval, whose end points are a, β. Then
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kn(β - a) = Γ Kn(t - a)dt -» 0 .

Since a, β can be chosen so that β — a has any assigned value in
(— 2D, 2D), this proves our assertion.

By (1), for each xe(— D, D), the functions kn(t — x) of t, for
n Ξ> n0, form a sequence of elements of C[ — D, D] such that

kn(t - x)df(t)
Ό

is convergent for each fe A. By the principle of uniform boundedness,
it follows that

sup I kn(t - x) I < co .
teί-D, z>]

Choose x = D — δ. Then kn(t) is uniformly bounded in [— 2Ώ + δf δ].
Choose x — — D + δ. Then &„(£) is uniformly bounded in [—<5, 2Ό — <?].
Hence &„(£) is uniformly bounded within (— 2D, 2D) as required.

3. Proof of Theorem 1. We may suppose that D ^ π. Let ω
be chosen to satisfy π < ω < 2D. We choose the notation so that if
0 e {lv} then 0 = ϊo If a meromorphic function ^(2J), with the properties
mentioned in the enunciation, exists, let Cn denote a contour which
contains in its interior precisely those ilv for which | v \ g n, and which
does not pass through any of the ϊlv. Let

\ <•

If Σ c»eihx is the C.E.S. of / with respect to q(z), then
(3) Σ Cβ"v = Σ res?(«)Γ f(t)e?{-"dt

Γ
We have

= Γ
J

( 4 ) f lflr.(tt)dw = - L ( q(z) 1 ~ eZX dz
Jo 2π%)on z

where rv is the residue of g(̂ ) at iϊv and where, if l0 = 0, we use the
convention

-I p-ilQt I ^,-iZί

( 5 ) λ - f = l i m 1 ~ e = t .
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By Lemma 1, it is necessary that

( 6 ) Σ^d-^-

boundedly within (— 2D, 2D), and hence in [— ω, ω]. Let xe (— ω,
ω — 2ττ). Then for | v | Ξ> iV, the terms on the left are unaltered on
replacing x by x + 2τr. By subtraction, it follows that

for such x, and hence for all x. We note that if k — 0, the term with
v — 0 is — ro2π. At this point, we distinguish to cases, (a) l0 Φ 0,
(b) l0 = 0.

In case (a), we integrate (7) over (— X, X), divide by 2X, and
let X—>oo# We obtain a contradiction. In case (b), we take mean
values as in case (a), and deduce that the term with v — 0 is — 1.
Then (7) implies that

y j ——e ^ ye ^ — l.) :=z u
0<|v|<iV Hu

ίor all x. If we multiply this by its conjugate, and take mean values,
we deduce that

I γ 12

( 8 ) 2 '— si*1* π^ — 0
O<|V|<ΛΓ \\

By (6),

boundedly within (— 2D, 2D). Considering odd parts, its follows that

( 9 ) Σ ^ sin kx -> - ί sgn x - ^
o<ιvi^τz lv 2 2ττ

boundedly within (— 2J9, 2D). By hypothesis, there is an integer μ
say, which is not one of the lv; and μ Φ 0 since Zo = 0. By (8), r v = 0
if £„ is not an integer. Hence, on multiplying both sides of (9) by
μ sin μx and integrating over (— π, π), we obtain 0 = 1, a contradiction.

4. Proof of Theorem 2. For all sufficiently large n, the circle
Γn:\z\ ~ n Λ- 1/2, contains in its interior the points ilv for | v \ 5g n,
and every point on Γn is at a distance greater than 3/8 from all the
points ilu. Let q(z) be a meromorphic function whose poles, all simple,
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form a sub-set of {ilv), and define Hn(u) by (2) with Cn replaced by
Γn. Using the notation of §§ 1, 2, we have

and therefore, as in § 2, it suffices to prove that we can choose q(z)
so that

\XKn(u)du = - L ί (q(z) - QQ(z)) * ~ e~°* dz -> 0
Jo 2mirn z

boundedly within (—π, π).
Write

In § 5, we shall prove

LEMMA 2. As \z\-+<*>, P(z) = o(\z\iί2eπM). On Γn9 \P{z)\~ι =

o(nll2e~πlrezl) as n~+ oo.

The meromorphic function QQ(z)P(z) is regular, except possibly at
the points iv, which are at most simple poles of residue P{iv)j2π. By
Lemma 2, P(iv) — o{\ v | 1 / 2). Hence we can define the meromorphic
function

+ Σ W + 4
2π L % \z — %v %

which has the same principal parts as Q0(z)P(z). Thus

Q0(z)P(z) = R{z) + S(z)

where S(z) is an integral function. We can write q{z)P(z) — F(z)r

where F(z) is an integral function. Then

In § 5, we shall prove

LEMMA 3. On Γn, R(z) = o{niμ) as n—• oo.

We choose F(z) so that the numerator in (10) will not be of a
greater order of magnitude than R(z). This means, since F and S
are integral functions, that F = S + c where c is a constant. Theorem
2 will follow if we show that
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tends to zero boundedly within (—π, π). Write z — (n + Ij2)eiθ. By-
Lemmas 2 and 3,

R ^ = o(ne-nπlcosΘ]) .
P(z)

If then I x \ ̂  π — δ, δ > 0, we have

In(x) = o

5* In order to prove Lemmas 2 and 3, it will be convenient to
write

P(iz) = ip(z)9

so that

and

(11) Λ(w) = r(z)

We need the following result, which is a special case (a — 0) of [3]
Theorem 1 (with a change of notation).

LEMMA 4. Let L, M be positive numbers. Let sv = v + σv + iτu,
where σv1 τv are real numbers which satisfy \σu\ ^ L9 \ τv \ ̂  M for
all v. Suppose that there is a δ > 0 such that \su\*zδ for all v.
Let

Then there is a positive constant C (depending only on L, M, δ) such
that,

(i) for all z, \ f{z) \<C(l+\z |)4V l iW21

(ii) if I z - sy I ̂  δ for all v, then \ f{z) \~ι <C(l + \z |)«e-
|C>*wιr| .

Proof of Lemma 2. We can find a positive number L < 1/8 such
that \au\ :g L for | v \ > N say; and a positive number M such that
I βv I ^ M for all y. In Lemma 4, choose sv = lv for | v | > N; —v for
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0 < I v I ^ N; = 3/8 for v = 0. Then p(z)/ψ(z) tends to a nonzero
constant as \z \ —• <*>. By Lemma 4 (with <? = 3/8), there is a positive
constant -D such that

(i) I p{z) \<D\z |4VK m z | if \z\ is sufficiently large;

(ii) if z is on Γn and τ& is sufficiently large then | p(z) I""1 < Dn4Le~πlίmzl

(the condition | z — su | Ξ> 3/ 8 for all v being satisfied). Since P(z) =
ip{ — iz), and 4L < 1/2, the lemma follows.

Proof of Lemma 3. By (i) above, p(v) = O(| i; | 4 Z). By (11), it
will suffice to prove that if z is on Γn, then

The left

o
2-

hand side

+ -

is

1

V
(z - v)

v~ n v\ v
^ y 4 Z + ^ ?zr4 z-2"

-n -1)
The first and second sums are O(w4Zlogw). The third sum is
This proves the lemma.

In Lemma 4, we could replace 4L by 2L, if the σy satisfy the
further condition

Σ -^T = θ(i).
ii^ 1

2

This follows from [3] Theorem 2. Hence, as the preceding proof shows,
we can replace 1/8 by 1/4 in Theorem 2 if we add the condition

Σ - ^ V = 0(1).

2

6* The function g(z) of §4 is given by

Let <zo(z) = iq(iz)

= — cot πz +
2

If Σ c»eil*x is the C.E.S. of / with respect to q(z), then, for all suf-
ficiently large n,
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(12) Σ ^ M q ( ) [ π l 2

I 2π% J-jr/2

n J-π/2

Suppose now that βv — 0 for all v, and that c is real. Then qo(z) is
real for real z, so that qo(z) = qjz). If

ry = res g(«) = res go(s),

then rv is real. Let / be real. Write

S π/2
f(t)e-il^dt .

- J Γ / 2

Equating real parts in (12), we get

(13) 2 α> c o s ^ + 6^ s i n ^^ = — : I qo(z)dz \ f(t) cos z(x — t)dt

We thus obtain the class of trigonometric series investigated by Korous
[1]. Theorem 2 shows, in this special case, not only that (13) converges
boundedly to f(x) within (— π/2, π/2), but also that

2 av sin lux — b» cos lvx

converges boundedly to zero.

7. We now turn to the proof of Theorem 3. We again suppose
that the notation has been chosen so that if 0 e {lv}, then 0 = lQ. It
will suffice to prove

LEMMA 5. Under the conditions of Theorem 3, there are complex
numbers wv such that

— sgn x
2

boundedly within (— π, π).

For then, by the classical theorem of Mittag-Leffler, there is a
meromorphic function q(z) whose poles form a sub-set of {ilv}, the
principal part at ilv being ilvwj(z — ilv) if lv Φ 0. If l0 = 0, we allow
the origin to be a regular point. Defining Hn(u) by (2), we have

1 o— zx

q(z)- — d z
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By Lemma 5,

• — o ,
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— / Λ Wv\l. β

-2-1 ^ v 6 - γ s g n o ?

boundedly within (— π, π). Thus, Theorem 3 will follow from Lemma 1.
One way of proving Lemma 5 is to generalize the following theorem

of Levinson [2, 48]: if the real numbers λv satisfy | λ v | ^ P < 1/4,
then there are numbers wv such that

2π J-:

converges uniformly to zero within (— π, π) if / e L 2 ( — π, π). The
generalization consists in showing that we can replace the real λv by

v + av + iβU9 where \au\ ^ P and lim | βv \ <.°°. However, we only
|v|-»oo

need the result for the function f(t) — 1/2 sgn t. It seems worthwhile
to prove this special case, for which the argument of Levinson can be
given a rather simple form. This is done in § 9.

8* We need the following deduction from Lemma 4.

LEMMA 6. Let Sv = v + σv + iτv, where σv, τv are real numbers
which satisfy \σv\ ^ P, \ τv \ ^ Q for all v, where 0 < P < 1/4 and
Q > 0. Let

Then there is a constant K {depending only on P and Q) such that

(14) I Ψ(z) I < K(l + I z \)ipeπlίmz] .

and there is a constant Kε (depending only on P, Q and έ) such that

(15) I Ψ(g) I"1 < Kε(l + I z |«y*1 < I M |

if I z — S» I ^ ε for all v.

Proof. In the following proof, and in § 9, the symbols K, Ke do
not necessarily denote the same constants at each occurrence. In

Lemma 4, choose s0 = — P , sv = S v for v φ 0. For | v \ ^ 1, we have

I sv I > — . By Lemma 4 (with δ = min (1/2P, 3/4)),
4

(16) \ψ(z)\
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Now

(17) y(s) = - £ ( ^ ^
2 \ z — s0

and I (z - S0)/(z - s0) | < K for | s - s01 ^ 1/4. For such 2, (14) follows
from (16). Finally, | Ψ(z) \ S K inside \z — so\ ^1/4 since this is true
on the boundary. This proves (14).

Let I z — Sy I ̂  ε for all v. If | z - s01 ^ ε then

(18) \ψ(z)\-ί<K.(l + \z\ype-*»»*

by Lemma 4, and | (2 — so)/(z — So) | < JfiΓβ so that (15) follows from
(17) and (18). If, however, | z — s0 \ < ε, then for small ε the disc
Δ : I z — s01 < ε is outside each disc |« — Sy | < ε (v = ± 1, ± 2, •)•
If it is outside the disc / : | z — So \ < ε, then (^(z))-1 is regular in Δ
and so | Ψ(z) I"1 ^ iΓe in Δ since this is true on the boundary. If Δ
meets Δf we apply this argument to the portion of Δ which is outside Δf.

9* Proof of Lemma 5. By the hypothesis (of Theorem 3), there
are positive numbers P, Q such that \au\ ^ P < 1/4, | β„ | ^ Q, for all
y. Let Cn denote the rectangular contour whose vertices are ± (n +
1/2) ± ni. Let

We define

I f " G(u)φ(u)

where

1 — COS
φ(u) =

u

Then

W v β«^ = - ^ Γ G(U) φ(u)du\ fX dζ
^» 4τr 2 J-~ Jc7w G(ζ)(w — ζ)

4ττ2 J-~ jon u — ζ

The last term is

I fw + l/2 I

— sin uxdu
LiJZ v—(?l + l/2) /f/(/

— sgn x
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boundedly within (— π, π). Hence it suffices to prove that In(x)—>0
boundedly within (— π, π), where

In(χ) = ί~ G(u)φ(u)du\ fX dζ .

Since G(z) is a function Ψ(z), we have by (15), | G(ζ) I"1 < Kn*pe~πn

on the horizontal sides of Cn. Further,

| β * " | ^ β '"i, | w - ζ | - ι < ί Γ ( l + | u | ) - \ | ^(w) | < JBΓ(1 + | u\)~ι .

Since \G(u)\<K(l+ \u\)iρ by (14), the contribution to In of a hori-
zontal side of Cn does not exceed in absolute value

and tends to zero uniformly within (— π, π). It remains to consider

the contribution to In of a vertical side of Cn, say the right side.

This contribution is

G ( « ) ^ ) d W — i - -dζ

J - G ( Λ + | + C ) ( — — i c )

(19) = β*"^1'2' Γ G(U + n + ± ) ΨU + n + 1 )

x f" e— dζ .

)d^

For all v, we define l[ = — w + i^+w. Then

G(g) _ (z — ô) -fi- (g — £v)(a —Li;)

(w — lQ) i (w — lv)(w — Lv)

= g - n - Z; J J (g - w - l'v_n)(z -n - V^_n)
w — n — l'o i (w — n — l[-n)(w — n — i_v_J

_ Gn{z-n)
Gn(w - n)

where

and i; = v + < + i/S;, a[ = α v + %, ^ = &+.. Then | < | ^ P, | /3; | ^ Q.
Hence Gn(z) is a function Ψ(z) (of Lemma 6) and satisfies the inequalities
(14), (15) with constants K, Kε independent of n. In (19), we use the
equation
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It follows that

where

J
\y

±)\φ[u + n + ±)\J\du

P.ixi

Gn(ζ + ! .)(« - ζ)

and 7 denotes the path from — in to in modified by replacing the
segment (— iβ, iβ) by the right half or the left half of the circle
I ζ I = 1/8, according as u < 0 or u > 0. On 7, re(ζ + 1/2) is between
3/8 and 5/8, and therefore ζ + 1/2 is at a distance greater than 1/8 from
all the zeros of Gn(z). By Lemma 6, | Gκ(ζ + 1/2) I"1 <Ke~*M(l + | η |),
where η — imζ. Further u ζ I""1 < ϋΓ(l + | u \)~\ and so

K

w • s :

(l + \u\)(π-\x\y

Since |GJu + 1/2) \<K(l + \u])4P, it remains to prove that Hn->0
where

ί.=j" du

u + n + —
2

and d = 1 - 4P > 0.
If m is a positive integer, then

and the first integral tends to zero as n
and let g-1 + p-1 = 1. Then

c>o. Choose p so that pd > 1
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so that lim Hn = 0, as required.

Added in proof. A result similar to Theorem 2 was proved in a
Ph. D thesis by J. A. Anderson.
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