SOME AVERAGES OF CHARACTER SUMS

HERBERT WALUM
SOME AVERAGES OF CHARACTER SUMS

H. WALUM

Let \(\chi \) and \(\phi \) be nonprincipal characters mod \(p \). Let \(f \) be a polynomial mod \(p \) and let \(a_1, \ldots, a_p \) be complex constants. We will assume \(a_j = a_k \) for \(j \equiv k(p) \), and thus have \(a_n \) defined for all \(n \). Define

\begin{equation}
S = \sum_r a_r \chi(f(r))
\end{equation}

and

\begin{equation}
J_s(c) = \sum_r \phi(r) \chi(r^n - c),
\end{equation}

where the variables of summation run through a complete system of residues mod \(p \).

The averages in question are

\begin{equation}
A_1 = \sum_{a=1}^{p-1} |J_s(a)|^2,
\end{equation}

and

\begin{equation}
A_2 = \sum |S|^2,
\end{equation}

where the sum in (4) is over the coefficients mod \(p \) of certain fixed powers of the variables in \(f \). Exact formulae for \(A_1 \) will be obtained in all cases, and for \(A_2 \) in an extensive class of cases.

Specifically, the following theorems are true.

THEOREM I. Let \(f(r) = y r^{m_1} + x r^{m_2} + g(r) \) and assume \((m_2 - m_1, p - 1) = 1 \). Let the sum in (4) be over all \(x \) and \(y \) mod \(p \). If \(g \) has a nonzero constant term and neither \(m_1 \) nor \(m_2 \) is zero, then

\begin{equation}
A_2 = p(p - 1) \sum_{r=1}^{p-1} |a_r|^2 + p^2 |a_0|^2.
\end{equation}

Otherwise,

\begin{equation}
A_2 = p(p - 1) \sum_{r=1}^{p-1} |a_r|^2.
\end{equation}

THEOREM II. Let \(d = (n, p - 1), \psi(t) = e^{2\pi i (r \text{ind} (t) / s)}, \) where, naturally, \(s \mid (p - 1), (r, s) = 1 \) and \(g^{\text{ind} (t)} \equiv t(p) \) for \(g \) a primitive root mod \(p \). If \(ds \mid (p - 1) \), then \(A_1 = 0 \). If \(ds \mid (p - 1) \) and \(\psi \chi^s \) is nonprincipal, then \(A_1 = p(p - 1)d \). If \(ds \mid (p - 1) \) and \(\psi \chi^s \) is principal, then \(A_1 = p(p - 1)(d - 1) - (p - 1) \).

The following is an immediate consequence of the first theorem.

Received November 21, 1963 and in revised form June 16, 1964. Research done under the auspices of the National Science Foundation.
Theorem III. Let \(f \) be as in Theorem I, and assume \(|a_r| = 1, r = 1, \ldots, p \). Then there exist \(x_0, y_0, x_1 \) and \(y_1 \) depending on \(\chi \), such that the \(S_r \) as in (1), for \(x_0 \) and \(y_0 \), satisfies \(|S| < \sqrt{p} \) and the \(S_r \), for \(x_1 \) and \(y_1 \), satisfies \(\sqrt{(p - 2)} < |S| \).

Proof of Theorem II. Our principal device is the fact that a function which is periodic mod \(p \) has a unique expansion by means of the characters mod \(p \). That is if \(h(r) = h(s) \) for \(r \equiv s(p) \), then for \(\chi \)

\[
(7) \quad h(n) = \sum_{\theta} b_\theta \theta(n),
\]

where \(\theta \) runs through the characters mod \(p \). \(b_\theta \) is given by

\[
(8) \quad (p - 1)b_\theta = \sum_r h(r)\theta(r).
\]

Regarding \(J_\chi(c) \) as a periodic function mod \(p \) of \(c \), and expanding \(J_\chi(c) \) in the form (7), we obtain, by standard methods,

\[
(9) \quad J_\chi(c) = \sum_{\rho^n = \chi} \pi(\bar{\rho}, \chi)\rho(c)
\]

where \(\pi(\alpha, \beta) \) is a Jacobi sum [1]

\[
(10) \quad \pi(\alpha, \beta) = \sum_r \alpha(r)\beta(1 - r).
\]

The sum in (9) is over all characters \(\rho \) which satisfy the indicated condition.

The expansion (7) has a Parseval identity

\[
(11) \quad \sum_{i=1}^{p-1} |h(t)|^2 = (p - 1) \sum_\theta |a_\theta|^2.
\]

Thus we can evaluate \(A_i \) by means of (11) and (9) when we know the value of \(|\pi(\alpha, \beta)|^2 \). Now [1] \(|\pi(\alpha, \beta)|^2 = p \) when \(\alpha \neq \varepsilon, \beta \neq \varepsilon \) and \(\alpha\beta = \varepsilon \), where \(\varepsilon \) is the principal character. If \(\alpha = \varepsilon \) or \(\beta = \varepsilon \), then \(|\pi(\alpha, \beta)|^2 = 1 \). If \(\alpha\beta = \varepsilon \) with \(\alpha \neq \varepsilon \) or \(\beta \neq \varepsilon \), then \(|\pi(\alpha, \beta)|^2 = p \). By hypothesis, \(\chi \) is nonprincipal. Thus \(|\pi(\bar{\rho}, \chi)|^2 \) is \(p \) unless \(\bar{\rho} = \varepsilon \) or \(\bar{\rho}\chi = \varepsilon \). If \(\bar{\rho} = \varepsilon \), then \(\bar{\rho} = \varepsilon \) and \(\psi\chi^* \) is principal. If \(\bar{\rho}\chi = \varepsilon \), then \(\rho = \chi \) and \(\rho^* = \psi\chi^* \) implies \(\psi = \varepsilon \) which is excluded by hypothesis. Let \(N \) be the number of solutions of \(\rho^* = \psi\chi^* \). If \(\psi\chi^* \) is nonprincipal then \(|\pi(\bar{\rho}, \chi)|^2 = p \) for all \(N \) of the \(\rho \) and \(A_i = p(p - 1)N \). If \(\psi\chi^* \) is principal, then \(|\pi(\bar{\rho}, \chi)|^2 = p \) for \(N - 1 \) of the \(\rho \) and \(|\pi(\bar{\rho}, \chi)|^2 = 1 \) for \(\rho = \varepsilon \). Thus, in this case, \(A_i = (p - 1)(p(N - 1) + 1) = Np(p - 1)^2 \).

Therefore, the number of solutions of \(\rho^* = \psi\chi^* \), is the number of solutions of \(\sigma^* = \psi \). It is a standard lemma from the theory of cyclic groups of order \(k \) that \(a^* = b \) has \((n, k) = 0 \) solutions according to whether...
or not order $b \mid k/(n, k)$. Also, N is the number of solutions of $x^n = \psi(g)$, for x, in $(p - 1) - st$ roots of unity. From either description of N, it follows that $N = d$ or $N = 0$ according as $ds \mid (p - 1)$ or $ds \mid (p - 1)$, and the theorem follows.

Proof of Theorem I. Referring to the hypotheses of Theorem I,

$$|S|^2 = \sum_{r,s} a_r a_s \chi(yr^{m_1} + xr^{m_2} + g(r)) \bar{\chi}(ys^{m_1} + xs^{m_2} + g(s))$$

and thus,

(12) $A_2 = \sum a_r a_s \sum \chi(yr^{m_1} + xr^{m_2} + g(r)) \bar{\chi}(ys^{m_1} + xs^{m_2} + g(s)) = T_1 + T_2.$

T_1 is the sum of the terms in (12) such that $r \neq 0$ and $s \neq 0$. T_2 is the sum of the terms in (12) such that $r = 0$ or $s = 0$. T_1 can be written

(13) $T_1 = \sum_{r \neq 0, s} a_r a_s \chi(r/s) A(p^{m_2-m_1}, r^{-m_2}g(r); s^{m_2-m_1}, s^{-m_1}g(s))$

where

$$A(a, b; c, d) = \sum_{y + cx \equiv 0} \chi \left(\frac{y + ax + b}{y + cx + d} \right).$$

Now,

$$A(a, b; c, d) = \sum_x \sum_{y \neq 0} \chi \left(\frac{y + x(a - c) + (b - d)}{y} \right).$$

Except when $(a - c)x + (b - d) \equiv 0(p),$

$$\sum_{y \neq 0} \chi \left(\frac{y + (a - c)x + (b - d)}{y} \right) = -1.$$

Also, $(a - c)x + (b - d) \equiv 0(p)$ when $x \equiv ((b - d)/(a - c))(p)$ or when $a \equiv c$ and $b \equiv d$. Thus, if $a \not\equiv c$ or $b \not\equiv d$, then

$$A(a, b; c, d) = -(p - 1) + p - 1 = 0.$$

If $a \equiv c$ and $b \equiv d$, then

$$A(a, b; c, d) = p(p - 1).$$

In view of this (13) becomes the sum over all r and s such that $r \neq 0 \not\equiv s$ and $r^{m_2-m_1} = s^{m_2-m_1}$, $r^{-m_2}g(r) = s^{-m_1}g(s)$. Since $(m_2 - m_1, p - 1) = 1$, we have $r \equiv s$. Thus the sum in (13) is over those r and s such that $r \neq 0 \not\equiv s$ and $r \equiv s$. Thus

$$T_1 = p(p - 1) \sum_{r=1}^{p-1} |a_r|^2.$$
Now

\begin{equation}
T_2 = \sum_{r \geq 0} a_r \sum_{x,y} \chi(yr^{m_1} + xr^{m_2} + g(r))\overline{\chi}(g(0)) \\
+ \sum_{x \geq 0} a_x \sum_{x,y} \chi(g(0))\overline{\chi}(ys^{m_1} + xs^{m_2} + g(s)) \\
+ \lvert a_0 \rvert^2 \sum_{x,y} \chi(g(0))\overline{\chi}(g(0)) = p^2 \lvert a_0 \rvert^2 \lvert \chi(g(0)) \rvert^2,
\end{equation}

except when \(m_1 = 0 \) or \(m_2 = 0 \).

Thus, if \(g(0) = 0 \),

\[A_2 = p(p - 1) \sum_{r \neq 0} |a_r|^2 \]

and if \(g(0) \neq 0 \), then

\[A_2 = p(p - 1) \sum_{r \neq 0} |a_r|^2 + p^2 \lvert a_0 \rvert^2, \]

when \(m_1 = 0 \) or \(m_2 = 0 \), then \(\chi(g(0)) \) in (14) must be changed to \(\chi(y + g(0)) \) or \(\chi(x + g(0)) \), and \(A_2 \) is given by (6).

References

Ohio State University
Larry Armijo, *Minimization of functions having Lipschitz continuous first partial derivatives* .. 1
Edward Martin Bolger and William Leonard Harkness, *Some characterizations of exponential-type distributions* 5
James Russell Brown, *Approximation theorems for Markov operators* 13
Doyle Otis Cutler, *Quasi-isomorphism for infinite Abelian p-groups* 25
Charles M. Glennie, *Some identities valid in special Jordan algebras but not valid in all Jordan algebras* 47
Thomas William Hungerford, *A description of Multi, (A₁, · · · , An) by generators and relations* ... 61
James Henry Jordan, *The distribution of cubic and quintic non-residues* ... 77
Junius Colby Kegley, *Convexity with respect to Euler-Lagrange differential operators* ... 87
Tilla Weinstein, *On the determination of conformal imbedding* 113
Paul Jacob Koosis, *On the spectral analysis of bounded functions* 121
Jean-Pierre Kahane, *On the construction of certain bounded continuous functions* ... 129
V. V. Menon, *A theorem on partitions of mass-distribution* 133
Ronald C. Mullin, *The enumeration of Hamiltonian polygons in triangular maps* ... 139
Eugene Elliot Robkin and F. A. Valentine, *Families of parallels associated with sets* ... 147
Melvin Rosenfeld, *Commutative F-algebras* 159
A. Seidenberg, *Derivations and integral closure* 167
S. Verblunsky, *On the stability of the set of exponents of a Cauchy exponential series* ... 175
Herbert Walum, *Some averages of character sums* 189