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This paper is concerned with the existence and structure
of invariant means on the space C(S) of all (including un-
bounded) continuous real-valued functions on a topological
semigroup S. The main result is that for realcompact semi-
groups every left invariant mean (if any exist) arises as an
integral over a compact left invariant subset of S. The
question of existence of noncompact group G such that C(G)
admits a left invariant mean is also considered. If G is a
realcompact (or discrete, or locally compact abelian) group,
then C(G) admits a left invariant mean only if G is compact.

By a topological semigroup we mean a semigroup S endowed
with a Hausdorff topology for which the mapping (x,y)—ay of S X S
into S is continuous. We denote by C(S) the space of all continuous
real-valued functions on S (not necessarily bounded). If aeS and
feC(S), then ,f and f, will denote those functions on S whose values
at xe S are f(ax) and f(xa) respectively. Obviously ,f and f, are
elements of C(S). A left invariant mean on C(S) is a nonnegative
linear functional M on C(S) such that that M(1) =1 and M(,.f) = M(f)
for all ae S and fe C(S). Right invariant means are defined similarly,
replacing .f by f,. A functional M that is both a left invariant mean
and a right invariant mean is called a two-sided invariant mean.

The purpose of this to study the structure of invariant means on
C(S). This problem differs from the usual problem of finding invariant
means for semigroups (see reference [2]), which concerns invariant
means on the space C*(S) of all bounded continuous real-valued fune-
tions on S. Of course S is pseudocompact, then C(S) = C*(S) and the
two problems are the same. Our main result is to the effect that,
for a large class of semigroups S, every left invariant mean (if any
exist) arises in a particularly simple way; namely, as an integral over
a compact left invariant subset of S. In the final section we consider
the question of whether there exist noncompact groups G such that
C(@) admits a left invariant mean. A negative answer is obtained for
noncompact groups of various types.

In this section we establish some terminology and preliminary
facts needed for the statement and proof of the main theorem.

Received May 17, 1964, This paper is based on a portion of the author’s doctoral
thesis prepared under the direction of Professor Edwin Hewitt at the University of
Washington. The author wishes to express his appreciation to Professor Hewitt
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194 L. ARGABRIGHT

THEOREM 1.1. Let F be a compact right simple semigroup.
Then F' is topologically isomorphic to a direct product G X E where
G is a compact topological group and E is a compact right zero
sSemigroup .

Proof. Numakura ([10], p. 103) has proved that a compact semi-
group contains at least one idempotent. Let E be the set of all
idempotents in £ and let G = Fe,, where ¢, is a fixed member of E.
It is easy to see that E and G are compact and that ex = x for all
ec E,xe F. Moreover, (see [1], Theorem 1.27, p. 38) G is a group and
G X E is isomorphic to F' via the mapping (xe,, ¢) — (xe)e = xe. This
mapping is obviously continuous and hence is also a homeomorphism.
Finally, since G is compact and multiplication in G is jointly continu-
ous, it follows that inversion is also continuous in G. Hence G is a
topological group.

The following theorem is due (independently) to E. Hewitt and
W. G. Rosen. The statement and proof given here are taken from
Hewitt’s manuscript [8].> It can also be inferred from [12].

THEOREM 1.2. Let F' be a compact right simple semigroup and
write F=G X K as in 1.1. Let 0 =\ X p where \ is the normalized
Haar measure on G and p is any probability measure on E° Then
the mapping

1 ri

is a left invariant mean on C(F). Moreover, every left imvariant
mean on C(F) is of this type.

Proof. For feC(F), let M(f) :§ fdo. Obviously M is non-
F

negative and linear. Moreover, by Fubini’s Theorem, we may write
M as an iterated integral

ms) = ||, #a oana) | apce -
Note that for (a,d)e G x E we have
e (@, €) = flaw, de) = flaz, o) .

1 We follow the terminology of Clifford and Preston [1]. A semigroup F is
right simple if aF'=F for all a€ F; a semigroup F is called a right zero semigroup
if 2y =9 for all z,y<€ E.

2 The author wishes to especially thank Professor Hewitt for allowing him to
read his unpublished manuseript.

8 A regular Borel measure such that u(F)=1.
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Thus by invariance of the Haar integral on G we have
Mwwf) = | [[ a2, odr@)] duto)
=[],/ oan@] aue = mr) .

B

Hence M is a left invariant mean on C(F').

Conversely, suppose M is a left invariant mean on C(F). For
arbitrary functions ¢ € C(G) and + € C(¥), let @ and ¥ be the functions
on F'=G x FE defined by @(z, ¢) = p(x) and ¥'(e, ) = ¥(e) respectively.
Obviously C, = {@ : pe C(G)} and C, = {¥ : 4 ¢ C(F)} are linear subspaces
of C(F') which are isometrically isomorphie to C(G) and C(FE) respective-
ly. Hence, by the Riesz representation theorem, there exist probability
measures M and ¢ on G and E respectively such that

M) = nga(x)dh(x) for all pe C(G)
M) = SEaﬁ(x)d;c(x) for all v e C(E) .

Moreover, since ,,;,?(x, ¢) = @(ax, ¢) = p(ax) and M is left invariant,

we have ch(ax)dx(x) = S @(x)dMzx) for all peC(G,R) and acG.
G

Thus A is, in fact, Haar measure on G and H(p) = Scp(w)dx(ac) is the

Haar integral on G.
Now let us consider functions of the form @-¥. Note that

@)@, &) = D0, ) ¥(as, &) = P(aw)- ¥ (e)
= (0.0?)- ¥ (2, €)

and so
M(¢?F) = M(((a,d)@)’q/) .

More generally, for any finite sequence a,, -+, a, of elements of G,
we have

M@V = M((%- S d)@).w) .

By a well-known construction of the Haar integral on a compact group
(see [11]), there is a sequence of functions of the form 1/n >\, .o
which converge uniformly to the constant function H(p) on G. The
corresponding functions 1/ 3%, (@ converge uniformly to the
constant function H(p) on F. Thus, since M is continuous in the
uniform topology on C(F'), we have
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u@r) = He)M@) = (| p@ane))-(| vedpe))
= LBGW(“”’ e)dh(x)]dy(e)
= | ovas

where ¢ denotes the product measure N X yg. Furthermore, for any
function of the from >, @,¥;, we have

M(Sor) =3 uer) =3 or.do
i=1 =1 =1 JF
- S SO0, do
F i=1

and, since the latter class of funections is uniformly dense in C(F),
we conclude that the equality

M(f) =\ fdo

holds for all fe C(F). This completes the proof.

1.3. THBEOREM. Let S be an arbitrary topological semigroup and.
suppose S contains a compact left invariant subset F.* Let o be a
product measure on F as in 1.2. Then the mapping f ——»S fdo is
a left invariant mean on C(S). ’

Proof. Let N(p) = g pdo for all @eC(F), and let M(f) =

F
N(f| 7 for all fe C(S). Obviously M is nonnegative and linear, and
M(1) =1. We have only to show that M is left invariant. Since F"
is a compact subsemigroup of S, it contains at least one idempotent e.

Moreover ([1], p. 37), ¢ is a left identity in F. Thus, for each ae S
and fe C(S), we have

J(@) = flaw) = flalex)) = f((ae)z) = .f(x)

for all xe F'; that is, .f|r = «(f|r). Since aec F and N is left
invariant on C(F'), if follows that

M.f) = NGflr) = NSl p) = N(f|p) = M) .

2. The main theorem. In this section we show that if S is a
realcompact semigroup then every left invariant mean on C(S) (if any
exist) arises as in 1.3. For the definition of “realcompact” see [3] or

+ By this we mean that aF = F for all a€ S; equivalently, F is a right simple
left ideal in S.
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[6].° We remark (see [3]) that any completely regular Lindelof space
is realcompact and that products and closed subspaces of realcompact
spaces are realcompact; also any discrete space of nonmeasurable cardi-
nal is realcompact.

The proof of our main theorem is based on a theorem of Hewitt
[7] concerning the representation of certain linear functionals on spaces
of continuous functions.® We begin by summarizing Hewitt’s result in
the form in which we shall apply it.

2.1. An integral representation of linear functionals (see [7]).

Let X be a completely regular space and let C(X) denote the set
of all continuous real-valued funections on X. For fe C(X), let P(f) =
{xe X: f(x) > 0} and let Z(f) = {xc X: f(x) = 0}. Let <?(X) denote
the family of all sets P(f) and 2°(X) the family of all sets Z(f).
The smallest o-algebra of subsets of X containing <#(X) is called
the family of Baire sets of X. A Baire measure on X is a countably
additive set function defined on Baire sets. If I is a nonnegative
linear functional on C(S) such that I(1) = 1, then there exists a Baire
measure v on X such that ¥(X)=1 and

15) = | fada

for all fe C(X). The measure v has the property that every funetion
feC(X) is bounded except on a set (depending on the funection) of «-
measure zero. Moreover, if X is realcompact, then the set

F=nN{ZeczX):7(Z) =1}

is nonvoid and compact. This compact set F' supports v (or I) in the
sense that if Ge &7(X), then v(G) >0 if and only if GNF # @. It
follows from this that if f,ge C(X) and f(x) = g(x) for all xze F,
then I(f) = I(g).

We now state and prove our result.

THEOREM 2.2. Let S be a realcompact semigroup. Then every
left invariant mean on C(S) (if any exist) is of the form 1.3.

Proof. Suppose M is a left invariant mean on C(S). Then there
exists a Baire measure v on X with compact support F' (in the sense
described in 2.1) such that M(f) = S fdy for all feC(S). We will

S

show that F' is a left invariant subset of S and that M ecan be
represented as an integral over F' as in 1.3.

5 ‘““Realcompact space’’” means the same as ‘‘@Q-space’” in Hewitt’s terminology.
6 Also see [5].
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We first show that aF'c F' for all ae S. Let Z be an arbitrary
element of 2°(X) such that v(Z) =1, and write Z = Z(f),f = 0. Then

M(f) = Szfdv + Sz,fdv —04+0=0,
and so |
M(.s) = | famdr(m) =0
Since f is continuous and = 0, it follows that f(ax) = 0 for all x€ F.
Thus aF C Z(f) = Z and, since Z was arbitrary, we have
eFc N{Zez(X):v(Z)=1}=F.

We now show that F is left invariant; that is, aF = F for all
ae S. Suppose not. Then there exists a€ S and b € F' such that ax = b
for all xe F. Thus, for each xe¢ F, there is a continuous function
f:S—10,1] such that f(b) =1 and f(ax) = 0. Let

o= afous () 1]

and note that ¢g(b) = 1 and g(ay) = 0 for all

ye Ulx) = {yeS:f(ay) < %} - P(% ).
Since F is compact, there exist points «, ---,2,€ F such that
FcUx)U---UU(x,). Letg,---,g, be the corresponding functions

g and let
h =min (g, +--,9,).

Then he C(S), h: S—1[0,1], k() =1, and h(ax) =0 for all x it the
set U=U(x)U --- UU(x,). We note that Ue &#(X) and hence is -
measurable. It follows that

M(h) = SS h(x)dv(z) > 0
whereas
M(,h) = SU h(aw)dv(z) + SU, Maw)dv(@) =0 + 0 =0,
a contradiction.
It remains only to show that there is a product measure ¢ on F

such that M is of the form 1.3. We note that F' (being compact) is
C-embedded in S([3], p. 43); that is, every function in C(F') can be
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extended to a function in C(S). Also, for any fe C(S), M(f) is com-
pletely determined the values of f on F, that is, if g = f on F, then
M(g9) = M(f). Thus M induces a linear functional L on C(F') as fol-
lows: If @eC(F), let L(p) = M(f) where f is any function in C(S)
such that f|, = @. It is easy to check that L is a left invariant
mean on C(F'). Hence, by 1.2, L has the form L(p) = SF @do where

o is a product measure on F' as in 1.2. Finally, we have
M(f) = Lif 1) = | fdo

for all fe C(S). This completes the proof.

Obviously, results completely analogous to 1.2, 1.3, and 2.2 hold
for right invariant means. For two-sided invariant means we have
the following.

COROLLARY 2.3. Let S be a topological semigroup and suppose
S contains a compact subgroup G which is a two-sided ideal in S.
Let v denote the normalized Haar measure on G. Then

e

18 a two-sided invariant mean on C(S). Moreover, if S is realcom-
pact, then every two-sided invariant mean on C(S) (if any ewxist) is
of this tyope.

Obviously, left invariant means on C(S) (when they exist) are not
in general unique. However, we do have the following.

THEOREM 2.4. Let S be a realcompact semigroup. If C(S)
admits a left imvariant mean M and a right invariont mean L,
then M = L. In particular, two-sided means (when they exist) are
unique.

Proof. By 2.2, S contains a compact left invariant subset F;
such that M(f) =S fdo as in 1.3. Analogously, S contains a com-
pact right invarianil set F, such that L(f) =S fdz where 7 is a
product measure on F, analogous to the measure ?. But, obviously,
F,=F,F, = F,. Thus

M(f) = L(f) = | fin

where G = F, = F, is a compact group and X\ is the normalized Haar
measure on G.
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ExamMpPLE 2.5. A nonrealcompact semigroup S may admit a left
invariant mean which cannot be represented as in 1.3. For example,
let 2 denote the first uncountable ordinal and let S be the set of all
ordinals & < 2, endowed with the order topology and a “multiplication”
defined by af = max («, 8). It is easy to see that S is a topological
semigroup and that M(f) = lim,_. f(«)" is a two-sided invariant mean
on C(S). However, M cannot be represented as in 1.3 since S contains
no compact invariant subset.

It S is an arbitrary completely regular semigroup and M is a
left invariant mean on C(S), then we can also regard M as a linear
functional on C(»S).® As such, it has an integral representation

M(f) = | fi@di)

where v is a Baire measure on vS having compact support F (in vS)
which is “left invariant” in the sense that Li(F') = F for all ac S;
here L, denotes the mapping x—ax of S into S. One can obtain a
proof of this fact by modifying the proof of 2.2 in an obvious way.
We note that if S and M are as in 2.5, then uvS can be realized as
the space of all ordinals less than or equal to 2 (with the order
topology) and we have M(f) = f(2) for all fe C(S).

Finally, we use 2.2 to derive the following theorem on invariant
means over compact semigroups. This result was obtained originally by
Hewitt [8] and Rosen [12]. Recall (see [10], p. 104) that a compact
semigroup S contains a unique minimal ideal K, called the kernel of
S, which is compact.

THEOREM 2.6. Let S be a compact semigroup. Then C(S)
admits a left invariant mean tf and only if K (the kernel of S) is
right symple. All left invariant means (if any exist) are of the
Jform 1.3 where FC K.

Proof. If K is right simple, then C(S) admits a left invariant
mean by 1.3. Conversely, suppose C(S) admits a left invariant mean
M. Then, by 2.2, there is a compact left invariant subset F' in S
such that M is of the form 1.3. Since F' is left invariant and K is
a right ideal we have KFC KN F; hence KNF = @. Let ac KNF.
Then F'=aF c K. It remains to show that K is right simple. We
note that FK is a two-sided ideal contained in K; hence FK = K.

7 This limit always exists; in fact, every function in C(S) is eventually constant
(I3], p. 75).

8 The space vS is a realcompact space in which S is dense and which has the
property that every continous mapping r from S into any realcompact space Y has
a continuous extension ¥ mapping vS into Y (see [3], p. 118).
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Then for each z¢ S we have
2K = a(FK) = (@F)K = FK=K.

Hence K is right simple.

COROLLARY 2.7. Let S be a compact semigroup. Then C(S)
admits a two-sided invariant mean if and only if K (the kernel of
S) is a group. In this case the unique invariant mean 1is just the
Haar integral over K.

3. Invariant means on groups. Harmonic analysis on compact
groups (¢ depends heavily on the existence of a unique, positive, in-
variant mean on C(G). Once conceivable extension to noncompact
groups G and their unbounded continuous representations would be via
an invariant mean on C(G). In this section we consider the question of
whether there exist noncompact groups G such that C(G) admits a
left invariant mean. We obtain a negative answer for noncompact
groups of various types; namely, realcompact groups, discrete groups,
and locally compact abelian groups.

ExAMPLE 3.1. We note that there do exist noncompact groups
G such that C(G) admits a left invariant mean. In fact, since every
commutative group G admits an invariant mean on C*(G) (see [2],
p. 516), it suffices to produce a noncompact commutative group which
is pseudocompact.’ The existence of such groups was pointed out by
Glicksberg in [4]. Specifically, let P = [].ec.Z. where Z,=1{0,1} is
the two element group and 4 is an uncountable index set. Let G the
subgroup of P consisting of all points 2 € P for which «, = 0 for all
but countably many A€ 4. Then G is a nonclosed (hence noncompact)
subgroup of P. On the other hand, G is sequentially compact and
hence pseudocompact.

It is also interesting to note that, for an arbitrary topological
group G, C(G) admits a left invariant mean if and only if it admits a
right invariant mean: For each fe C(G) and xe G, let f*(x) = f(x™?).
Then if M is a left [right] invariant mean on C(G), the functional
S— M(f*) is a right [left] invariant mean on C(G).

THEOREM 3.2. Let G be a realcompact group. Then C(G) admits
a left imvariant mean only if G is compact.

Proof. Suppose C(G) admits a left invariant mean. Then, by

% This author knows of no nonpseudocompact group G for which C(@) admits a
left invariant mean.



202 L. ARGABRIGHT

2.2, G must contain a compact left invariant subset. But G, being a
group, has no proper invariant subsets. Hence G is compact.

We note that, barring measurable cardinals,” every locally compact
group is realcompact. Precisely: Every locally compact group G is para-
compact and hence admits a complete uniform structure ([9], p. 172
and p. 208). Thus, by Shirota’s Theorem ([3], p. 229), G is realcom-
pact unless it contains a closed discrete subspace having measurable
cardinal.

In view of this, 3.2 implies that, barring measurable cardinals, a
locally compact group G admits a left invariant on C(G) only if G is
compact. The remainder of this section is devoted to showing that
the restriction on cardinals can be avoided in the case of discrete
groups or locally compact abelian group. We begin by observing that
if G is a completely regular topological group and if M is a left
invariant mean on C(G), then the Baire measure v which represents
M (as in 2.1) is a left invariant measure. This can be verified by a
routine computation using the definition of v in [7]. We omit the
details.

THEOREM 3.3. Let G be an infinite discrete group. Then G
contains a subset E such that G is the union of a countably infinite
Jamily of pairwise disjoint left translates of E. Hence

(i) G admits no nonzero, finite valued, left invariant measure,
and

(ii) C(Q) admits no left tnvariant mean.

Proof. Let S be a countably infinite subset of G and let H be
the subgroup generated by S. Then H is countably infinite., Let the
set F be formed by selecting exactly one element from each right
coset of H. Then {aF :aec H} is a countably infinite family of pair-
wise disjoint sets whose union is G.

Suppose now that p is a left invariant measure on G. If p(E) =0,
then p(G) = Sen (@) = Dpen t(E) =0. If p(E) >0, then p(G) =
Seer M) = + ., Hence G admits no nonzero, finite valued, left
invariant measure.

Our final theorem is based on the following:

LeMmA 3.4. Suppose G is a locally compact group which 1s
not realcompact. Then G contains an open and closed subgroup H
such that the left coset space G/H has measurable cardinal.

10 The hypothesis that every cardinal is nonmeasurable is consistent with the
usual axioms of set theory.
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Proof. Let U be a neighborhood of e (the identity in G) such
that U= =U and U~ is compact. Then H =J; ,U" is an open and
closed compactly generated subgroup of G. Note that H is o-compact
and hence realcompact. If G is not realcompact, then it contains a

closed discrete subspace D such that D is measurable. Let {Hy:ne 4}

denote the family of all distinet left cosets of H. Then DN H, is
nonmeasurable for all A (since H, is realcompact).

On the other hand, D= SaesD N Hy and so 4 must be measura-
ble ([3], p. 164)

THEOREM 3.5. Let G be a locally compact abelian group. Then
C(G@) admits a left invariant mean only if G is compact.

Proof. If G is realcompact, then 3.2 applies. Otherwise, G con-
tains an open and closed subgroup H such that the quotient group
G/H has measurable cardinal; in particular, G/H is infinite. Suppose
now that M is a left invariant mean on C(G). If, for each fe C(G/H)
and xe G, we let f'(x) = f(xH), then it is easy to see that f— M(f’)
is a left invariant mean on C(G/H). This contradicts 3.3 (ii).

Hence C(G) admits no left invariant mean.
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