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The subject of the paper is the variational problem of
Lagrange with an inequality in the form (a) ¢(x, %) = 0 or (b)
@, y,y’) = 0. The question of existence and uniqueness of
the continuation of a minimizing arc is investigated at points
of the boundary ¢ — 0, Various phenomena, including splitting
of extremals, dead-end, entry into, and exit from the boundary,
are treated and the conditions for their occurrence are derived.
The nature of the continuation is related to the ‘‘index”
associated with an extremal.

An appendix extends the results to a control problem of
the Mayer type.

In the variational problem of Lagrange with the inequality (a)
#(x, y) = 0 or (b) #(x, ¥, y’) = 0, case (a) has been treated by Bolza [3]
and Mancil [6], and case (b) by Valentine [8]. Despite the relative
antiguity of the problem several questions have remained unresolved.

A difficulty arises when an extremal of the problem has no unique
continuation. We distinguish continuations in the region ¢ > 0, and
continuations in the boundary ¢ = 0. Let the type of continuation
not be specified a priori, and let H denote the corresponding Hilbert
determinant of the composite arc. As will be shown, in case (a)

H = fy’z/’ — %y
0 o
and H = 0 if and only if ¢ = 0; in case (b)
H = Fz/'y' ¢1/’ ,
>‘-’¢y’ ¢

where )\ is a Lagrange multiplier and F'= f+ \¢, and H =0 if and only
if ¢ =X = 0. Since a solution generally contains points of the boundary,
clearly the singularities defined by H = 0 deserve attention. For not
only do they arise in practical problems, as noted by Garfinkel [5] and
others, but they are algso of intrinsic mathematical interest.

A systematic treatment of such singularities is undertaken here.
Various phenomena, including splitting of extremals, dead-end, entry
into, and exit from the boundary, will be treated and the conditions
for their occurrence derived. It will be shown that case (a) exhibits
the splitting and the dead-end, in contrast case (b), where a unique
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continuation exists.

Let B be a set of points (x,y, w) for which 2, <a <, and
é(x, ¥y, w) = 0. Assume that functions f(x,y, w) and ¢(x, y, w) have
continuous derivatives of order » + 2 in RB. An admissible arc y(x)
has a piecewise continuous first derivative, with a possible discontinuity
in ¢, i.e. y(x) is of class (C', D') in the notation of Bolza, with
(,9,y) in R, and its end-points (x,, y(2.), (2, ¥(x,)) fixed. In the
class of admissible arcs, we seek a y(x) that minimizes the integral

(1) J = Sff(x, Y, y)dw .

Within this general formulation, we shall investigate the singularities
that arise on ¢ = 0.

The attack on the problem begins in § 2 with a discussion of the
necessary and sufficient conditions I-IV of the caleulus of variations,
which are applied in §§ 3 and 5 to the point of junction of the region
and the boundary subarcs. Finally, the singularities in question are
treated in §§4 and 6.

A restatement of the known and relevant theory, designed to unify
the subject and to provide a sufficient background for the current
development, is incorporated in §§2, 3, and 5.

2. Necessary and Sufficient Conditions., Let R and B be the
subsets of B for which ¢ > 0 and ¢ = 0, respectively. Subares in R
and B will be referred to as region, or R-subarcs, and boundary, or
B-subares, respectively, and may be abbreviated as R and B.

An admissible curve y(x) is generally compounded of R-subares,
on which ¢ >0 and A =0, and of B-subarcs, on which ¢ = 0 and
A # 0 is admitted. Let such a composite curve lie in R for o, <z < &
and in B for £ = &« < «,, and have no corners except possibly at the
junction z = &.

Construct the function F' = f + \g, where the Lagrange multiplier
Mx) satisfies A¢ = 0. For the sake of notational compactness, define
the (n + 1) — vectors z = (x, ¥) and p(x, ¥, ¥):

(2) po:F—y"Fy" pi:Fy%’ 7;:1,”'%’

where the dot denotes the inner product of vectors. Then condition
I, dJ = 0 implies the Euler condition

(3) (Ia) 4 p,=F, r=0,
dx



SINGULARITIES IN A VARIATIONAL PROBLEM WITH AN INEQUALITY 275

holding between corners; the Weierstrass-Erdmann condition
(4) Ib) dp-dz|: =0,

for all dz satisfying d¢ = 0 at & = &, with 4p = p, — p_ denoting a
jump in p(x); the convexity condition

(5) o) Mz) 0.

The latter was derived by Bolza for case (a), and by Valentine for
case (b). We shall use the term extremaloid [7] to describe ares that
satisfy Ia, Ib, and Iec.

The necessary conditions for a minimum also include condition 11
of Weierstrass, conditton III of Legendre, and an appropriate modifi-
cation of condition IV of Jacobi. These condittons and the sufficient
conditions II} [1], III’, and IV’ are well known, and the last two can
be found in Valentine. For the purposes of our paper, we shall im-
pose the following condttion II1”, which is somewhat stronger than IIT':

F,., is a positive-definite matrix for all (z,y, \) on the extremal
and for all .

3. Non-Singular Points in Case (a). The question of existence
and uniqueness of an extremal continuation at points that are neither
corners nor junctions has been settled by the Hilbert Differentiability
Theorem [2]. On R and on B, the hypothesis of the theorem is the
nonvanishing of the Hilbert determinants; i.e.,

Hl:(fy'u’lio, (R)
H, = ¢y'fy’u"¢u #0, (B)
where the symbol A denotes the adjoint of a matrix. The condition
is assured by III” and by the assumed normality ¢, = 0 on the extremal.

Then the theorem implies that ¥’ and A exist and are in C", and that
the Euler equations have a unique solution.

(6)

The behavior of extremals at junctions has been investigated with
the aid of the corner condition. Since ¢,, = 0, dz(&) in (4) must satisfy
d¢ = ¢,-dz = 0 and 4dp-dz = 0, which implies

(") dp =kp, at v = ¢,

where £ is a constant of proportionality. From the system (7), of » 4~ 1
equations, the n + 1 unknowns, y), # are to be determined. At a
corner, the E-function with arguments ¥’ = ¢y and Y’ = ¢/, is given
by the expression



276 BORIS GARFINKEL AND GREGORY T. MCALLISTER

(8) By~ 9y) = 4f — (fy) -4y’ = &4, .

For entry into the boundary, ¢, = 0 and (8) implies £ = 0. Since
fis in C™* f,.,. exists and is continuous. By the Mean Value Theo-
rem applied to (8), there exists a number ¢ in the interval (0, 1) such
that

(9) EWL, v,) = 4y [y (Y- + 04y')- 4y .
Condition III” and E = 0 then imply
(10) 4y =0, 48’ =0.

The corner condition is then trivially satisfied with 4p =0, £ =0,
and the incident extremal must be tangent [4] to the boundary ¢ = 0.
It may be pointed out that, in order to establish (10), the positive-
definiteness of f,.,. is required only for & in (0,1). Hence condition
II1” is stronger than necessary.

Entry is thus subject to the conditions

(11) g=¢=0ata=¢,

connecting the two unknowns & and «,, where «, is suitably chosen
among the » parameters of the family y(x, @). It is noteworthy that
a degree of freedom is lost upon entry, with the n—parameter family
of R-extremals degenerating into an (n—1)-parameter family of B-ex-
tremals, with «, fixed.

At a point of exit from the boundary, the tangency condition (10)
is established by symmetry. Thus, while entry is limited to R-arcs
that are tangent to the boundary, exit from the boundary is unrestricted
provided AM(&) < 0. The variable & thus becomes a family parameter
of the emergent R-arcs, replacing the lost parameter «,, and the degree
of freedom lost on entry is restored on exit. While (10) is necessary
for both transitions, it is by no means sufficient, as will be shown in § 4.

Since ¥’ is continuous, and since %"’ and )\ are generally discontinuous
at junctions, it follows from the Hilbert Theorem that y”(x) and \(x)
are in (C7, D).

4. Singularities in Case (a). On a composite are, the system (3)
is linear in the unknowns 3", A and has the Hilbert determinant

fy'y' - ¢u
0

(12) H= )

=¢|fuowl.

A unique solution exists if and only if H =+ 0 at x = & Accordingly,
we define singular points by the condition H = 0, which implies ¢ = 0
in virtue of III'. Singularities therefore occur on ¢ =0 in transitions
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classified below:

Table 1. Types of Transition

Type Symbol Name Remarks
Region-boundary RB entry nontrivial
Boundary-region BR exit nontrivial
Region-region RR nonentry trivial
Boundary-boundary BB nonexit trivial

Let us define p as the least integer such that p <r and
Yy Fr(&) # y2tP(&) in a nontrivial transition. The exceptional case where
p does not exist is treated in Appendix 1.

LeMMA (@). If ¢, =0, ¢, # 0 on the extremal, and III"” holds,
then at a singular point x = &
(13) AN = 0,

where the equality holds only for the trivial transitions, with both
factors vanishing.

Proof. For a nontrivial transition an application of the jump
operator 4 to the Euler equation in (3) yields

(14) Sy o dy"(§) = ¢ud)“(5) ’

in view of the continuity of y and y'. It follows by III” and normality
that both 49” and 4» vanish or do not vanish simultaneously. The
definition of p and the successive differentiation of the Euler equation
leads to

(15) Fywr - 4yTH2(E) = ¢,AND(E) # 0 .

By analogous reasoning, the application of the 4-operator to the
function ¢” yields

(16) Gy 4y"'(€) = 4¢"(€) ,

and

(17 Py Ay THE) = Ap*HH(E) .

The elimination of 4y'*** from (17) and (15) now leads to
(18) AT = (py [y - B IND

and, finally, by III” and normality, the conclusion follows.

COROLLARY (a). Under the same hypothesis,
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(19) LG <0,

where the two factors belong to the R and the B continuations re-
spectively.

Proof. Two cases occur, which shall be referred to as (R) and (B).

Case (R). If & belongs to a R-arc, the RB and the KRR transitions
must be considered. For the RB transition \x) =0, A?(§) =0 for
=& and ¢(x)=0, ¢ =0 for =&  Hence (13) becomes
PN P < 0, where the two factors are the lowest non-vanishing
derivatives at £. For the RR transition all the existing derivatives of
y(x) are continuous at &, so that ¢7*® = ¢%*», Since ¢_ refers to the
same R-arc, the last two equations imply (19).

Case (B). If & belongs to a R-arc, the BR and the BB transitions
must be considered. Analogous reasoning shows that ¢?*A® < 0 and
AP = AP, again leading to (19).

We shall now inquire whether the two continuations indicated in
(19) meet both the requirements ¢ = 0 and A =< 0. The question is
settled by

THEOREM (a). If the hypothesis of Lemma (a) holds, then the
extremal has either two continuations or none:

(1) for p even, there exists a continuation in the region and a
continuation in the boundary;

(2) for p odd, there is mo continuation.

Proof. Case (R). If & belongs to a R-arc, the dominant terms of the
Taylor series expansion of M) and ¢(x) about & in powers of ¢ = |z — &
are given by:

ME + &) = eNPE)/pt + -, (RB)
#(§ £ &) = ()" + 2)! + -+,  (RR)

for the RB and the RR continuations respectively. Since the given
R-arc is admissible, ¢(§ —e¢) > 0. Then (20) and (19) imply exactly
two possibilities:

(1) p is even: ¢ >0, ¢E+¢) >0, MNP <0, M+2¢6)<O.
The RB and the RR transitions satisty the respective requirements
ME+ ) <0 and #(§ + ¢) > 0. Both continuations being possible, an
extremaloid arc tangent to the boundary at = = £ splits off a boundary
subare.

(2) p is odd: ¢¥+ <0, ¢(&+¢) <0, NP >0, ME+¢)>0.
Both transitions violate the respective requirements, and neither con-

(20)
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tinuation is possible; the extremaloid thus comes to a dead-end.

Case (B). If & belongs to a B-are, (20) is replaced by

(& + &) = ")/ (p+2)! + +- -, (BR)
ME =+ €) = (£1)PAD(E)/pl 4 - . (BB)

Since the given B-arc satisfies M& — ¢) < 0, (21) and (19) again imply
exactly two possibilities:

(1) p is even: MM <0, ME+¢e) <0, o7 >0, 45+ ¢ >0.
Both continuations being possible, a boundary extremaloid splits off, at
x = &, a tangent subarec.

(2) p is odd: A" >0, ME+¢€) >0, ¢P™® <0, ¢(&+¢6)<O0.
Neither continuation being possible, the extremaloid comes to a dead-
end.

An illustration of the theory is furnished by the following example.
Consider a boundary extremal subarec at £ = 0 with

F=v1+y?, p=1y —a.

21

Then y(x) = 2%, ¥y’ = 3a%, 9"’ = 6z, ¥y’ = 6. From (3)

Me) = (L 1y — 1) 3,
— 6a(1 + 9ty

Hence M&) = 0, M(¢) = 6, and p = 1. Since p is odd, case (2) applies,
with the diagnosis of a dead-end. A string stretched along a convex
boundary ¢ = 0 provides a physical interpretation of the fact that a
geodesic y(x) has no continuation beyond a point of inflection, where
y"(§) = 0 and y"'(§) > 0.

5. Nomnsingular Points in Case (b). As in §3, an extremal has
a unique continuation between junctions. A significant change in the
analysis leading to (6) is the replacement of (f, A, ¢,, ¢"") by (F, X, ¢,., ¢)
respectively, with the assumed normality ¢, # 0 on the extremal.
There follows the conclusion that the Euler equations have a unique
solution ¢” and M.

Since ¢,, #= 0, dz in (4) is arbitrary and the corner condition be-
comes

(22) 4Ap(§) =0,

which furnishes n + 1 equations from which the # + 1 unknowns ¥,
A, are to be determined. Hence

(23) E@y.,y0) =0,
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by reasoning analogous to that in §3. An assumption on F like the
one in (9) finally implies

(24) Ay =0.

From (24) and (23) it follows that A, = 0; since A_ = 0, A\ is continuous
at &, and

(25) AN=0.
Entry is thus subject to the conditions
(26) 6=0, dy=0, In=0.
By symmetry, the conditions
(27) A=0, dy=0, =0

hold for exit. In both transitions, the unknowns &, %%, A, are com-
pletely determined. That these conditions are not sufficient will be
shown in §6.

Since %" and \ are continuous, and since %" and A\ are generally
discontinuous at junections, it follows from the Hilbert Theorem that
y"(x) and N(x) are in (Cr, D°).

6. Singularities in Case (b). For a composite arc the system (3)
is replaced by

(28) 4 p,=F, Lop=o,
dx

which is linear in %", A’ and has the Hilbert determinant

29) H=| Tt

yﬂ] )’¢1l y'y’ ¢1I‘

From II', normality, and \¢ = 0 there follows H = 0 if and only
if g=n=0.

LemMA (b). If ¢, = 0 on the extremal, and III” holds, then at
a singular point x = §
(30) AP < 0

where the equality holds only for the trivial transitions, with both
factors vanishing.

The proof proceeds as in § 4, Lemma (a), with the replacement of
(N, 84, 8") by (—N, ¢y, ¢') in (14-18).
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COROLLARY (b). Under the same hypothesis,
(31) PLINE > 0,

where the two factors belong to the R and the B continuations, respec-
tively.

The proof proceeds as in § 4, Corollary (a), with the replacement
of ¢+» AP by ¢F+h ) NP+ regpectively.

THEOREM (b). If the hypothesis of Lemma (b) holds, then the
extremal has a unique continuation:

(1) for p -+ 1 even, a R-arc continues in R, and a B-arc con-
tinues in B;

(2) for p+1 odd, & R-arc continues in B, and a B-arc con-
tinues in R.

Proof. Case (R). Equation (20) is replaced by

ME 4 &) = ePTNE(E)(p + D) + -+, (RR)
$(& &) = (£ (E)/(p + DI + --- . (RB)

Then (32), (31) and ¢(¢ — &) > 0 imply either (1) or (2):

(1) p+1is even: the quantities ¢*+", #(& + &), AP, ME& + ¢)
are positive; the extremaloid continues in the region and no entry can
occur.

(2) p-+1isodd: the same quantities are negative, so that entry
is the unique extremaloid continuation.

Case (B). Equation (21) is replaced by

6(E + €)= HBED @Ofp+ D+ oo+ (BR)
ME £ 6) = (—1P e e @f(p+ D+ o+ . (BB)

Now (33), (31), and M¢ — ¢) < 0 again imply either (1) or (2):

(1) »+ 1 is even: the quantities AM*+Y, NE + ¢), o™, #(€ + &)
are negative; the extremaloid continues in the boundary and no exit
can ocecur.

(2) p+1is odd: the same quantities are positive, so that exit
from the boundary is the unique extremaloid continuation.

(32)

(33)

7. The Index of an Extremal. Since y*+*(x) at © = &_ exists
for k=0,1,---, » and must be presumed known, the lowest non-
vanishing derivative of either ¢(x) or M(x) at &_ can be determined.
This may be done by the repeated differentiation of

(34) #(x) = ¢(x, y(@), ¥'(x))

if the subarc is in R, or of the Euler equation
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(35) Vo + 0 (L = )+ fy — fy =0

dx dx
if the subarc is in B. Let ¢ be the order to the lowest nonvanishing
derivative, and let the index () be defined as 0 if ¢ is even and as 1
if ¢ is odd. Clearly i(x) = 0 almost everywhere; the exceptions are
dead-end in case (a), and entry and exit in case (b).

In terms of the index 4(£), the behavior of an extremaloid can be
summarized by the following

THEOREM. If x = & 1s a singular point of an extremaloid, and

(a) If ¢, =0, then the extremaloid either splits, undergoing
both a trivial and a nontrivial transitions, or it comes to a dead-end,
depending on whether the index is zero or one.

(b) If ¢, % 0, then the extremaloid undergoes a trivial or a
nontrivial transition, depending on whether the tndex is zero or one.

Note that this statement covers two situations not included in the
proofs of §§4, 6:

1. In case (a), if ¢ < 0 and ¢ =% =1, a dead-end occurs, since
a corner on the boundary is excluded by our assumption on F.

2. In case (b), if »_< 0 and ¢ = ¢ = 0, there is only a trivial
transition, BB. If #(&) > 0, then 2 = 0, and only the trivial transition
RR occurs in both cases (a) and (b).

Details appear in Table 2, with N denoting the number of con-
tinuations, and the word Type referring to the type of transition.

Table 2. Behavior on the Boundary

. Case (a) C b

q v A @ N Typse N el‘s;p(e )
even 0 + 0 2 RB (entry) and RR | 1 RR
odd 1 — 0 0 dead-end 1 RB
even 0 0 — 2 BR (exit) and BB 1 BB
odd 1 0 + 0 dead-end 1 BR

The existence and uniqueness of extremaloid continuation have been
determined. The case ¢(z, y) = 0 exhibits the singularities of splitting
and dead-end, in contrast to the case ¢(x, ¥, ¥') = 0, where a unique
continuation exists. In all cases, the nature of the continuation depends
on the extremaloid index #(£); i.e. the parity of the lowest order of the
set of nonvanishing derivatives of either ¢(x) or M(z) at a given point
x =&



SINGULARITIES IN A VARIATIONAL PROBLEM WITH AN INEQUALITY 283

ApPPENDIX 1. An exceptional situation arises if the index (&) does
not exist because all the existing derivatives of () at & are continuous
in nontrivial transitions; i.e.

Ay(j+2)($):0y .7:0’ 1)”""-

Two cases are distinguished:

(1) The ambiguous case r < . Here the Taylor expansions of
#(x) and Mx) do not exist, and the signs of ¢(§ + &) must be deter-
mined by a direct solution of 3).

(2) The degenerate case r = . Here the Taylor expansions are
identically zero, with ¢ = 0 and A\ = 0; the two continuations are not
distinguishable, as ¢ = 0 is an integral of the Euler equation.

APPENDIX 2. A control problem of the Mayer type is governed by

Yy =g, y,u),
¢(x’ '_1/, ?1/) z O y

where the control variable 4 may be absent in ¢. The transformation
% = 9’ converts the problem into the standard form of the calculus of
variations, with the set (¢, ¢’), i.e. (%', ), playing the role of the slope
functions of the field theory. Accordingly, the function F' defined by

F=X(-y +9) + ps, np =0

must satisfy the Euler equations. As before, two cases are distin-
guished: case (a) ¢ = ¢(x,y), and case (b) ¢ = é(x, y, u), with the
corresponding Hilbert determinants

(a) H=|F,|¢
(b) H:[Fuu[qs_ﬂgbu'Fuu'q}u

on the composite arc. These expressions are analogous to (6) and (29)
respectively; hence the conclusions of § 7 hold for the control problem
under consideration.
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