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An interesting class of subsets of lattice points in n-space
arises naturally in the mathematical theory of (context free)
languages. This is the class of semilinear subsets, a subset
of lattice points being semilinear if it is the finite union of
cosets of finitely generated sub-semigroups of the set of all
lattice points with nonnegative coordinates.

The family of semilinear sets is here shown to be equiva-
lent to the family of sets defined by modified Presburger for-
mulas. A characterization of those semilinear sets which
correspond to languages is then given. Finaily, using the two
preceding results and the known decidability of the truth of
a modified Presburger sentence, a decision procedure is given
for determining whether an arbitrary linear set corresponds
to a language.

The class of semilinear sets, first considered in [3] was extensively
studied in connection with the theory of bounded languages [1]. In [1] it
was shown that the class of semilinear sets is closed with respect to
Boolean operations. A consequence of these techniques (in particular, of
the proof of Theorem 6.1 of [1]) is that the intersection of two finitely
generated sub-semigroups of nonnegative lattice points in n-space is
itself a finitely generated sub-semigroup.

The definition of a semilinear set as a finite union is an ‘‘internal”’
description of the set. More precisely, a semilinear set is defined by
a finite set of nonnegative lattice points (called constants) to each of
which is associated a finite set of nonnegative lattice points (called
periods). The semilinear set is the set generated by adding to each
constant an arbitrary finite sequence of its associated periods (allowing
repetitions of the same period in the sequence).

Another class of subsets of nonnegative lattice points is defined by
the modified Presburger formulas. This class is also closed with respeet
to Boolean operations [5]. The subsets in this class are defined by an
“‘external’’ description. More precisely, each set in the class is defined
as the extension of a modified Presburger formula with n free varia-
bles, i.e., the set of all n-tuples of nonnegative integers satisfying
the given formula.

Section 1 contains a proof that the family of semilinear sets is
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identical with the family of sets defined by modified Presburger for-
mulas. (This was stated without proof in [1].) Thus each set in this
family has both an internal and external deseription. Furthermore, each
description can be effectively obtained from the other. The situation
is somewhat analogous to the two ways of describing subspaces of a
finite dimensional vector space, the internal description for vector spaces
consisting of a finite subset of vectors which span the subspace and
the external description consisting of a finite system of linear equations
whose solution space is the subspace.

Our interest in semilinear sets stems from their relation to lan-
guages. Section 2 is devoted to this relation. It is shown that those
semilinear sets which correspond to languages can be given semilinear
descriptions of a particular form. For the special case of linear sets
we then give a decision procedure for determining whether an arbitrary
set corresponds to a language. The general case is still unresolved.

1. Semilinear sets and Presburger formulas., Let N denote the
set of nonnegative integers and N™ the Cartesian product of N with
itself # times. For = (x, ++-,%,), ¥ =¥, *+*, ¥, in N define
z+y=(@®+Y,- 2, + vy, and, for ¢ in N, define tx = (tx,, + -, t2,).
Then N* is a semigroup and is partially ordered by the relation
c=yife, 2y, forl =i,

Given subsets C, P of N™ define L(C; P) to be the set of all z in
N* which can be represented in the form

=X+ & F e+ 2,

with 2, in C and 2, ---,2, a (possibly empty) finite sequence of
elements of P. C is called the set of constanis and P the set of
periods of L(C; P). If C consists of a single element ¢ and P =
{p, +++, B} we write L(c; P) and L(c; p,, +-+,p) for L({ch; P). A
subset L of N* is said to be linear if there exist an element ¢ in N*
and a finite subset P of N™ such that L = L(¢; P). In this case P
generates a finitely generated sub-semigroup S of N” and L is the
coset of S in N* containing ¢. Thus L is linear if and only if it is a
coset of a finitely generated sub-semigroup of N*. A subset of N* is
said to be semilinear if it is a finite union of linear sets.

ExampLes. (1) In N? the set A = {(x,y)|2x = 1} is a linear set,
namely A = L((1, 0); (1,0), (0,1)). Clearly A is a sub-semigroup of
N*, Since no element of the form (1, ) is a sum of other elements
of A, A is not finitely generated.

(2) In N? the set X ={(z,y)|y = «*} is a sub-semigroup which is
not semilinear, To see this, note that every vertical line meets X in
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a finite set. Thus each linear set contained in X can only have periods
#(0, 0) of the form (x,y) with > 0. Let L(c; P,), -, L(c,; P,) be
a finite sequence of linear sets contained in X and let

M = max {y/x | (2, y) in UP;, (x,y) = (0,0)}.

Then the slope of the line joining any two points of L(c;; P;) is <M.
If 2z, 2, in N are such that M < 2, < z,, then the slope of the line
joining (2, ) and (2., 23) is 2, + 2, > 2M > M. Therefore the set
L(c;; P;), 1 =37 <m, can contain at most one element of the set
{(z,2) |2 = M}. Since {(z,2*) |z = M) is an infinite subset of X, it fol-
lows that X #= UP L(e;; P;). Thus X is not semilinear.

From Theorem 6.1, Corollary 1 of Theorem 6.2, and Lemma 6.3
of [1] there follows

THEOREM 1.1. The family of semilinear sets of N™ is closed
with respect to union, intersection, and complementation. The pro-
jection of a semilinear set is semilinear.

We now consider formulas (= statements) about nonnegative in-
tegers. If P is such a formula and has n = 1 free variables «,, ---, x,,
we also write it as P(x,, -+, ,). The set of Presburger formulas,'
denoted by 72, is the smallest class of formulas satisfying the following
five conditions:

(a) For given nonnegative integers ¢;, ¢}, 0 < 7 < n,

1 1

is a formula in 7,

(b) If P, P, are in &7, so is their conjunction P, A\ P,.

(¢) If P, P, are in 7, so is their disjunction P, \/ P,.

(d) If Pis in &7, so is its negation ~ P,

(e) If P(x,, +++,x,) is in & and 1 <1 =<n, then the formula
(Fx;)P (2, +++, x,) is in A,

A Presburger sentence is defined to be a Presburger formula with
no free variables. One of the main results is the following [2].

THEOREM 1.2. It is decidable whether an arbitrary Preburger
sentence is true.
REMARKS. (1) The formula

1 To be precise, this is the set of modified Presburger formulas. The original
Presburger formulas [4] were defined over all the integers.
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t + Dyt < 1+ S5 e,
1 1

is regarded as a Presburger formula since it is equivalent to the Pres-
burger formula

@) (b0 + St =t + 3t + 2,0)
2) If P(x, -+-,x,) is a Presburger formula, then the formula
(@) Py, =+, @)
is regarded as a Presburger formula since it is equivalent to
~ @r)(~ Py« o0, ) .

Similarly if P and @ are Presburger formulas, P= @ is regarded as a
Presburger formula.
For n» >0, a set A is a Presburger set in N* if

A= {(xly cc 0y xn)]P(xly M) xn) ig true}

for some P(x,, -+, %,) in 2. A Presburger set is a Presburger set
in N* for some .

It follows from (b), (c), and (d) that the family of Presburger
sets in N* is closed under intersection, union, and complementation.
From (e), the projection of a Presburger set is a Presburger set. Our
interest in Presburger sets is due to the following result.

THEOREM 1.3. The family of Presburger sets of N™ is identical
with the family of semilinear sets of N*. Furthermore, each des-
cription s effectively calculable from the other.

Proof. It is obvious that every linear set, thus every semilinear set,
in N* is a Presburger set. To see the reverse, by Theorem 1.1 it
suffices to show that the set of nonnegative solutions of

Q) to + ; tx, = th + Ell tix,

is semilinear. Let C be the set of minimal solutions in N* of (1) and
let P be the set of minimal solutions in N” — 0** of the associated
homogeneous equation

(2) i tx, = }3 tia; .
1 1

Then C, P are finite (by the corollary of Lemma 6.1 of [1]) and effec-
2 We use 0" to denote (0, ---,0) in N»,
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tively calculable (by Lemma 6.5 of [1]). It follows from the method
of proof of Theorem 6.1 of [1] that the Presburger set defined by the
equation in (1) is U.¢L(c; P). This gives the result.

2. Semilinear sets and languages. Let us recall the basic ideas
associated with context free languages. A grammar G is a 4-tuple
(V,2,Q,0) where V is a finite set, 2 is a subset of V, ¢ is an
element of V — 2, and @ is a finite set of ordered pairs of the form
(&, w) with §in V — Y and w a string over V. (&, w) in @ is denoted
by &— w. For strings y,z over V, we write y =1z if y = uév, z =
uwwv, and € —w. We write y=*>z if either 4y = 2z or if there exists
a sequence of strings z, +--,?,, called a derivaiton of y=*>z, such
that y = z,, 2, = ¥, and 2, = 2;,, for each ¢. The language generated
by G, denoted by IL(G), is the set of strings over X, {w|o = w}. A
context free language (over X) is a language L(G) generated by some
grammar G = (V, 2, @,0). By a language we shall always mean a
context free language.

Let a,, ---, @, be distinct letters and let af --- af denote the set
of all words w=ait+--ai»,0=4; for =1, ---,n. Let = be the
Parikh mapping of af ---a} into N™ defined by

T(aft + s @) = (g, 000, 00)

Clearly 7 is one-to-one. If ZZ af --- a) is a language, then (Z) is
a semilinear subset of N™ [3]. We are interested in characterizing
those semilinear sets I & N* such that z7'(L) is a language.

A subset X of N* is said to be stratified if the following two
conditions are satisfied:

(a) Each element in X has at most two nonzero coordinates.

(b) There are no integers, ¢, J, k, m, with 1 Zi<j<k<m=n
and © = (2, +++, 2,), ¢’ =(2', -+, 2;) in X such that zxjx,x, # 0. In
other words, no two elements X have nonzero coordinates which
“‘interlace.”’

LemMA 2.1. If ZZ af ---aF 18 a language, then ©(Z) can be
represented as a finite union of linear sets each of which has a
stratified set of periods.

Proof. We prove the lemma by induction on n. For n =1 or 2
every subset of N* is stratified, and the result is valid, Let =3
and assume the lemma holds for languages in a --- af;,. By Lemma
2.5 of [1] every language in af --- aF is a finite union of sets of the
form
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LD, E, F) = {aiuvdl |al, in D, in E,v in F'}

where D, E, F' are languages in afa}, af --- a}, af --- a} respectively,
and 1 < ¢ < n. Hence it suffices to prove the result for such a set
L(D, E, F).

Let7':af <<+ a} — N%and 7”: af -+ a} — N "+ be the appropriate
Parikh mappings. Let p be the mapping of afa; into N™ defined by
p(aial) = (4,0, -+, 0,7). By the induction hypothesis, z/(¥) is a finite
union of sets of the form L(c¢’; P’) where ¢ is in N’ and P’ is a
stratified subset of N’ Also by the induction hypothesis, ¢”(F') is a
finite union of sets of the form L(c"”; P"”) where ¢” is in N™ ' and
P” is a stratified subset of N""+ Since (D) is semilinear, p(D)
is a finite union of sets of the form IL(¢c; P) where ¢ is in N and
every element of P has zero as the 7th coordinate, 1 <7< n. Consequently
7(L(D, E, F)) is a finite union of sets of the form

L((¢’ % 0°) + (0 X ¢”) + ¢; (P’ X 0")U(0*" x P")UP).

Since P’, P” are stratified, so are P’ x 0»? and 0" X P”. Now

each element of P’ x 0"~ has its nonzero coordinates in the set {1,---, g},

each element of 0%* x P” has its nonzero coordinates in the set

{g, +-+,n}, and each element of P has its nonzero coordinates in the

set {1, n}. Therefore (P’ x 0" U (0" x P")UP is a stratified set.
We now prove the converse.

LEMMA 2.2. If the subset L of N™ is a finite union of linear
sets each of which has a stratified set of periods, then t7'(L) is a
language.

Proof. It suffices to prove the result for a set L = L(¢; P) where
P is a stratified set. We do this by induction on ». If n =1 or 2,
then each subset P of N or N* is stratified. From the corollary to
Lemma 2.2 of [1], it follows that z='(L(c; P)) is a language if P is
finite.

Assume 7 > 2 and that the lemma is true for 1 = m < n. We
prove the result for L(c; P) by induction on the number of periods in
P, If P is empty, then L(c; P) consists solely of ¢. Therefore
77%(L(e; P)) is finite and hence a language. Assume P is nonempty
and consider the following two cases.

Suppose P contains a period p whose first and nth coordinates p,, p,
are both nonzero. Then P'=P—{p} is stratified and has fewer elements
than P. Therefore = (L(c; P')) is a language. Let G’ =(V', X, Q’, 0')
be a grammar generating z—(L(c; P’)). Let G=(V,2%,Q,0) where ¢ is
an element not in V', V =V'U{o}, and Q@ = Q" U{oc — 0¢’, 0 — alroali~}.
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Clearly L(G) = = (L{¢c; P)), so that z~'(L(c; P)) is a language.

Suppose that P contains no period having nonzero first and nth
coordinates. If every period in P having a nonzero first coordinate
has all of its other coordinates zero, let ¢ = 2. If there exists a
period in P having nonzero first and jth coordinate with 5 > 1, let ¢
be the largest such j. Clearly 1 < ¢ < n. From the way ¢ is chosen
and the fact that P is stratified, it follows that every element in P
either has zero ith coordinate for all ¢ < % =< n or zero ith coordinate
for all 1 £4 < q. Let P’ be the set of those elements in P having
zero ith coordinate for each ¢ <t =mn and P =P — P'. Let ¢ =
(¢, +++,¢,), ¢’=A(c, +++,¢,0,---,0), and ¢ =0, -+, 0, cp4s, +*~, C,).
Clearly ¢ = ¢’ + ¢” and

L(c; P) = L(¢’; P") + L(¢""; P").}

Let II’, II" be the projections of N* onto N? N+ defined by pro-
jecting to the first ¢, last » — ¢ + 1 coordinates respectively. Let
Thaf +ecaf— N?*and 77:a} --- af — N***' be the appropriate Parikh

mappings. Then
L(¢’; P') = LUI'(¢'); I'(P")) < 0**
and L(¢”; P") = 0" x L(II"(c"); II"(P")) .
Therefore
7 (L(e; P)) = [o"HLUT'(¢'); D' (PO=" (LT (e”); T"(P))] .

Since P is stratified, I7'(P)" and [1”(P”) are stratified subsets of N°
and N ! respectively. From the induction hypothesis,

LI, 1T(PYY), <=L ("), 1(P")))

are languages contained in af --- af, a} -+ af respectively. Since the
product of languages is a language, t7(L(c; P)) is a language. Hence

the lemma.
On combining Lemmas 2.1 and 2.2 we obtain

THEOREM. 2.1. Given a subset L of N*, v7'(L) is a language if
and only if L can be represented as a finite union of linear sets
each having a stratified set of periods.

We do not have a procedure for deciding whether a given semi-
linear subset L of N” satisfies the condition of Theorem 2.1. The
following results are directed toward a decision procedure for the
special case when L is a linear subset of N”*.

8For X, YS N, X+Y={z+ylzinX,yin Y}.
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LEMMA 2.3, Let M = L(c; P)U --- UL(e,; P,) be a semilinear
subset of N* and let L(c; p) be a linear subset of N*, with one period,
which meets M infinitely often. Then there exists 1 <1 < r and a
positive integer k such that kp is a sum of positive multiples of
some elements of P,.

Proof. Since L(c; p) meets M infinitely often, there exists 1 <7 <»
such that L(c; p) meets L(c;; P;) infinitely often. Let P — 0" ={qy, **+,q.}
and consider the set

X ={(s,, *++,tn) in N’"“ic+8p=ci+;tjqj}-

By assumption, X is infinite. By Lemma 6.1 of [1] there exist distinct
elements (s, t,, ++-,t,) and (s', ¢, -+, t,) in X such that s <s and
t; <t} for 1 <5 =<m. Then

(8" —5)p =3 (¢ — 4, -

Thus s < s’ or t; < t; for some j. In either case, k¥ = s’ — s is positive
and kp is a sum of positive multiples of some elements of P,.

LEMMA 2.4. Let X be a stratified subset of N* and Y a subset
of N»*. 1If for every y in Y there exists x in X and a positive
integer k such that kx = y, then Y 1is stratified.

Proof. If kx = y then y can have nonzero coordinates only where
2 has nonzero coordinates. From this and the fact that X is stratified,
it follows that Y is stratified.

LemMMA 2.5. Let L be a linear subset of N™ with set of periods
P and let L' be a linear subset of L with stratified periods. Then

there exists a finite subset F of L and a stratified subset Y of P
such that L' S L(F; Y)Z L.

Proof, Let L' = L(c; X) where X is a finite set of stratified periods.
Let Y be the set of all ¥ in P having the property that there exists
2 in X and a positive integer k such that kx = y. By Lemma 2.4,
Y is stratified. For each 2« in X, since L(c; z) & L it follows from
Lemma 2.3 that there is a positive integer k such that kx is a sum
of positive multiples of some elements of P. Note that these elements
of Parein Y, Let X={x, -+, 2, and for 1 <7< m let k, be a
positive integer such that k;x; is a sum of positive multiples of some
elements of Y. Let F' be the finite set
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F:{c+ ﬁtixi|0§ti<ki}.

We complete the proof by showing that L' & L(F; Y) &S L. Now
each element of L’ is of the form ¢ + > s;x;. For each ¢ there exists
r; and 0 £ ¢t; < k; such that s; = rk;, + ¢t;. Thus

¢+ Isw, = ¢ + Jtx, + 2rika;

is in L(F; Y). Hence the first inclusion holds. The second inclusion
holds from the fact that F < L and Y & P.

COROLLARY 1. A linear set L = L(c; P) is a finite union of
linear sets with stratified periods if and only tf it is a finite union
of linear sets each of whose periods form a stratified subset of P.

Proof. If L=L, U +-- UL, where each L; is a linear set with
stratified periods, it follows from Lemma 2.5 that there exist finite
subsets F,, ---, F,, of L and stratified subsets Y,, ---, Y,, of P such
that L = UrL(F;; Y,). The corollary follows from this and the fact
that, for 1 <4 =< m, L(F;; Y;) is a finite union of linear sets with
set of periods Y.

In case the periods are linearly independent (as vectors over the
rationals) we obtain the following result.

COROLLARY 2. Let L be a linear subset of N™ with a linearly
tndependent set of periods P. Then t7(L) 18 a language if and only
if P is stratified.

Proof. If P is stratified, it follows from Theorem 2.1 that z—*(L)
is a language. We prove the converse. If ¢7!(L) is a language, it
follows from Theorem 2.1 and Corollary 1 above that L = |J?L; where
each L; is a linear set whose periods form a stratified subset of P.
Let L = L(c; P), with P={p,, +++, p,}. Then L(¢; p,+ -+ +p,) < L.
By Lemma 2.3 there exist 1 < ¢ < » and a positive integer & such that
k(p, + <+ + p,) is a sum of positive multiples of some periods of L.
Thus k(p, + «++ + p,) = t,p1 + -+ + ¢,p;, where each », is a period
of L; and t; > 0. Since {pi, -+, ») S {py, --°, ».} = Pand P is linearly
independent, {p;, -+, pi} = P and k = ¢t; for each j. Since {p], ---, pl}
is stratified, so is P.

COROLLARY 3. Let L = L(c; P) be a linear subset of N*. If
(L) is a language, then for every period p with more than two
nonzero coordinates there is a positive multiple kp which is a sum
of positive multiples of some stratified periods of L.
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Proof. By Corollary 1, L(c; P) = U; L(c;; P;), each P, a stratified
subset of P, By Lemma 2.3, there exists 1 <7 <7 and a positive
integer k such that kp is a sum of positive multiples of some elements
of P,.

ExampLEs. (1) We give a simple proof of Theorem 3.2 of [1].
That is, we show that if L&{(¢,7,k}0=7=j, 0=k=J} and
LNL(1,1,1); 1,1, 1)) is infinite, then z7'(L) is not a language. Sup-
pose the contrary, that is, suppose z7'(L) is a language. Then L =
U:-.L, where each L, is a linear set with stratified periods. Since
L((1,1,1); (1,1, 1)) meets L infinitely often, by Lemma 2.3 there exists
s such that some positive multiple of (1,1,1) is a sum of positive
multiples of some nonzero periods p,, +-+, », of L,. Let

pl = (plu pm p13)r cty pm = (pmli pm2r pm3) .

Then there exist positive integers ¢,%, <--, ¢, such that ¢1,1,1) =
Z;:l typs. Thus

; L = ; Uiz = 2 s -
Since L S {(4,7, k)]0 =7 <7 and 0 <k < j} it readily follows that

D = Die a0d Dy = Py

for 1 < h <m. Hence p,, = pi. = s for each h. Therefore p, =
(D1, Doy P1s) has three nonzero coordinates, contradicting the condition
that {p, ---, .} is stratified.

(2) Let L be the linear set in N°® with constant (0,0, 0) and
periods (1,1,1), (1,0, 0), (0,2, 3). Since these periods are linearly in-
dependent but not stratified, it follows from Corollary 2 above that
z7Y(L) is not a language.

(83) The set X = {a’b’c’d’ |0 < 7, j} is not a language since 7(X) =
L(0,0,0,0,); (1,0,1,0),(0,1,0,1)) whereas (1,0,1,0),(0,1,0,1) are
linearly independent and not stratified.

We now use Corollary 1 to obtain a decision procedure for deter-
mining of a linear set L whether 77!(L) is a language.

THEOREM 2.2. It is decidable to determine of an arbitrary linear
set L whether t7'(L) is a language.

Proof. By Theorem 2.1 we are reduced to showing that it is
decidable whether L is a finite union of linear sets each having
stratified periods. Let S, ---,S, be all the stratified subsets of
the periods of L. By Corollary 1, L is a finite union of linear



SEMIGROUPS, PRESBURGER FORMULAS, AND LANGUAGES 295

sets with stratified periods if and only if there exist finite (possibly
empty) subsets F; of L for 1 <4 =< m such that L = UPrL(F;; S)).
Then F = U™F; is finite. Since F < L and S; & P, L = U™ L(F; S,).
Hence, by Theorem 1.2, we need only show there is a Presburger
sentence whose truth is equivalent to the condition that there exists
a finite subset F' of L such that L & U™ L(F; S)).

By Theorem 1.3 there is a Presburger formula P(x) for L, where
2z = (2, +++,2,). If S; consists of the elements

Y = (?fl‘ly ] y;n% e Yry = (yﬁ(i)ly M) y:(i)n)

let Q.(z, z), where z = (z,, -+, 2,) be the Presburger formula
" 7(4) )
@)+ @) A (2= 2+ 0 tws)

Then Q,(z, x) is a Presburger formula with 2n free variables. The
corresponding Presburger set is the set of all 2n-tuples (z, x) such that
x is in L(z; S;). It follows that the Presburger sentence

@EM,) - -+ AM,) (@) -+ - (x,)
[P0 = @) - @) PO A A@=M)AV QG 0]]
is true if and only if L S U L(F; S;) for the finite set

F:Lm{z|z§(M1y "'7M'n)}'

Hence the result.
Our final result provides a condition for deciding for an arbitrary
semilinear set L whether z7'(L) contains an infinite language.

THEOREM 2.3. Given a semilinear subset L of N*, (L) contains
an nfinite language ©f and only tf whenever L 1is represented as a
finite union of linear sets one of them has a period with exactly
one or two monzero coordinates.

Proof. If L(c; P) = L where P contains an element » having
exactly one or two nonzero coordinates, then L(c; p) & L. Therefore
™Y (L(c; p)) < t~*(L). Clearly z~*(L(c; p)) is infinite and, by Theorem
2.1, is a language. We prove the converse.

If z7%(L) containg an infinite language, it follows from Theorem
2.1 that L contains a set of the form L(c; p) where p has exactly one
or two nonzero coordinates. Given a representation of L as a union
of linear sets L,, ---, L, it follows from Lemma 2.3 that there exists
1 < ¢ = m such that some positive multiple of p is a sum of positive
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multiples of periods of L;. Then L; has a period having exactly one
or two nonzero coordinates.

The problem of finding a decision procedure for determining of an
arbitrary semilinear set L whether z~%(L) is a language is open.

BIBLIOGRAPHY

1. S. Ginsburg and E. Spanier, Bounded ALGOL-Like Languages, Trans. Amer,
Math. Soc. 113 (1964). 333-368.

2. D. Hilbert and P. Bernays, Grundlagen der Mathematik, Edward Brothers, Inc,,
Ann Arbor, Michigan, 1944,

3. R. J. Parikh, Language-Generating Devices, Quarterly Progress Report No. 60,
Research Laboratory of Electronics, Massachusetts Institute of Technology, January
1961, pp. 199-212.

4, M. Presburger, Uber die Vollstandigkeit eines gewissen Systems der Arithmetic
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt, Sprawozdanie
z I Kongresu Matematykow Krajow Slowianskich, Warsaw 1930, pp. 92-101.

5. A. Robinson and E. Zakon, Elementary Properties of Ordered Abelian Groups,
Trans. Amer. Math. Soc. 96 (1960), 222-236.

SYSTEM DEVELOPMENT CORPORATION, SANTA MONICA, CALIFORNIA
AND UNIVERSITY OF CALIFORNIA, BERKELEY



PACIFIC JOURNAL OF MATHEMATICS

EDITORS
H. SAMELSON *J. DUGUNDJI
Stanford University University of Southern California
Stanford, California Los Angeles, California 90007
R. M. BLUMENTHAL RICHARD ARENS
University of Washington University of California
Seattle, Washington 98105 Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WoLF K. Yosipa

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY

CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF TOKYO

UNIVERSITY OF CALIFORNIA UNIVERSITY OF UTAH

MONTANA STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA UNIVERSITY OF WASHINGTON

NEW MEXICO STATE UNIVERSITY * * *

OREGON STATE UNIVERSITY AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON CHEVRON RESEARCH CORPORATION
OSAKA UNIVERSITY TRW SYSTEMS

UNIVERSITY OF SOUTHERN CALIFORNIA NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be
typewrittenn (double spaced). The first paragraph or two must be capable of being used separately
as a synopsis of the entire paper. It should not contain references to the bibliography. Manu-
scripts may be sent to any one of the four editors. All other communications to the editors should
be addressed to the managing editor, Richard Arens at the University of California, Los Angeles,
California 90024.

50 reprints per author of each article are furnished free of charge; additional copies may be
obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price
per volume (3 numbers) is $8.00; single issues, $ 3.00. Special price for current issues to individual
faculty members of supporting institutions and to individual members of the American Mathematical
Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal
of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6,
2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

* Paul A, White, Acting Editor until J. Dugundji returns.



Pacific Journal of Mathematics

Vol. 16, No. 2 December, 1966

Loren N. Argabright, Invariant means on topological semigroups. . ........ 193
William Arveson, A theorem on the action of abelian unitary groups . . . . ... 205
John Spurgeon Bradley, Adjoint quasi-differential operators of Euler

BYPDC o ettt 213
Don Deckard and Lincoln Kearney Durst, Unique factorization in power

series rings and SEMIGIOUPS . ... ..o et 239
Allen Devinatz, The deficiency index of ordinary self-adjoint differential

OPCFALOTS . . . oo v v ettt ettt et e e e e 243
Robert E. Edwards, Operators commuting with translations . .............. 259
Avner Friedman, Differentiability of solutions of ordinary differential

equations in Hilbert space ............ ... uiuiiiiiiiineennnnn. 267
Boris Garfinkel and Gregory Thomas McAllister, Jr., Singularities in a

variational problem with an inequality ...................ccccovuo... 273
Seymour Ginsburg and Edwin Spanier, Semigroups, Presburger formulas,

and languages . ........... .. 285
Burrell Washington Helton, Integral equations and product integrals. . . . . .. 297

Edgar J. Howard, First and second category Abelian groups with the n-adic
FOPOLOZY . . . oo e 323
Arthur H. Kruse and Paul William Liebnitz, Jr., An application of a family
homotopy extension theorem to ANR spaces. . .. ...
Albert Marden, 1. Richards and Burton Rodin, On the regi
hOmOLOPIC CUTVES . ..t
Willard Miller, Jr., A branching law for the symplectic gro
Marc Aristide Rieffel, A characterization of the group alg
GEOUPS « oo e i et
P. P. Saworotnow, On two-sided H*—algebras. . .. ......
John Griggs Thompson, Factorizations of p-solvable grou

Shih-hsiung Tung, Harnack’s inequalities on the classical
domains . ........... ... i
Adil Mohamed Yaqub, Primal clusters.................



	
	
	

