Pacific Journal of

Mathematics

INTEGRAL EQUATIONS AND PRODUCT INTEGRALS




PACIFIC JOURNAL OF MATHEMATICS
Vol. 16, No. 2, 1966

INTEGRAL EQUATIONS AND
PRODUCT INTEGRALS

BURRELL W. HELTON

H. S. Wall, J. S, MacNerney and T. H. Hildebrandt have
shown interdependencies between the equations

F@= "0 +dg) and F@ =1+ S fdg;
this paper extends and consolidates some of their results, Let

S be a linearly ordered set, R be a normed ring, and OA° and
OM?® be classes of functions G from S X S to R for which

)

S"I[1+G<I>1—H,<1+G>|=0,

=0

G(I) — S G

I

and

respectively, We show the following. If G has bounded vari-
ation, Ge OA° if and only if GeOM°, For some rings, the

existence of bG(I ) and ,T]*[1 + G(I)] imply that G € OA° and

a
OM?®, respectively, This is used to prove a product integral
solution of integral equations such as

F@) = fa) + <RL>S”<fG + Hf),

where f is a function from S to K and G and H are func-
tions from S X S to R. Then these results are used (a) to
show that each nonsingular m X m matrix of complex numbers
has » distinct nth roots, (b) to show that, with seme restric-
tions, >\ A, exists if and only if JJZ,(1+ A,) exists and
(¢) to find solutions of integrals equations such as

f@) =Ffla)+ S’”fndg .

In his recent paper, Integral Equations and Semigroups [7], J. S.
MacNerney develops some of the interdependencies between additive and
multiplicative integration processes for rings, defines two classes OA and
OM of functions V and W such that the integral-like formulas

Via, b) = g"(W— 1) and Wi, b) =01+ V)

are mutually reciprocal, shows a one-to-one correspondence between the
Received May 8, 1964.
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298 BURRELL W. HELTON

classes OA and OM and shows that this leads to an integral-equation
theory of Cauchy-right and Cauchy-left integrals which extends earlier
results of H. S. Wall [9], T. H. Hildebrandt [4] and MacNerney [5] [6].
In several recent papers, W. D. L. Appling [1] [2] has based several
proofs on the following theorem: “If G is a real-valued function of

subintervals of [a, b] such that SbG(I) exists, then

1.1) SM iG(I) — SIG(J)‘ —0.

In this paper we extend this theorem to matrices and to some types
of rings, prove a similar theorem for product integrals in which

(1.2) S[M] |[1 + 6] = T + G(J)]' ~0

and use these concepts to extend and consolidate some of the theorems
of MacNerney [7] and Hildebrandt [4].

We denote by OA° and OM° the classes of functions G satisfying
equations 1.1 and 1.2, respectively; MacNerney’s class OA is a proper
subelass of OA° and OM is closely related to the class OM°. Using
MacNerney’s theorems, we prove that, if G has bounded variation,
GeOA® if and only if Ge OM®°. The defining properties of the classes
OA" and OM"° are used in the proofs of theorems which give solutions
and reciprocal relations for integral equations of the form

@ = @) + (RL)| 7B + 6D)-11,

where the range of each function is a subset of a ring N. Then these
theorems are used

(1) to prove that each nonsingular m X m matrix of complex
numbers has n distinet nth roots;

(2) to prove that, with suitable restrictions, >\, A; exists if
and only if J[=, (1 + A;) exists; and

(3) to find the solutions of integral equations such as

¥(@) = ¥(@) + | WG + v'F) .

2. Definitions. Most of the definitions used in this paper are
the same as those used by MacNerney [7]; where a new definition is
used, the symbol “°” is added (OA to OA°) to indicate a changed, yet
similar, definition. Occasionally a phrase or a symbol defined by Mac-
Nerney will be used without repeating his definition and will be in-
dicated by [7, p. +--].

0 is a linear ordering [7, p. 149] of a nondegenerate set S. N is
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a ring which has a multiplicative identity element denoted by 1 and
has a norm |-| with respect to which N is complete and |1|=1.
Lower case letters will be used for functions from S to a subset of
N; from S X S to N by capital letters.

If G is a function from Sx S to N and {a,b} € S X S, the sum (product)
integral of G exists on {a, b} means there is an element J of N such that
if ¢ is a positive number there is an 0-subdivision D of {a, b} [7, p. 150]
for whieh | 3%, G(x;_,, x;) — J | < ¢ (117 G(;_y, ;) — J | < ¢), provided
{;}7_, is a refinement of D [7, p. 150]. m, G(x;_;, ®;) means

G (%, )G (21, )G (X, 3) +++ G(Ty, T,) ©

b
The symbols SG and ,[I*'G will be used to represent the sum and
product integrals, respectively.

OA° denotes the set of functions G from S X S to N such that if
{a,b}e S x S and {a, z, y, b} is an 0-subdivision of {a, b} then SVG exists
b Yy z
and SH: 0, where Hi(z,y) = lG(x,y) — S G].

OM° denotes the set of functions G from S X S to N such that if
{a,b}e S x S and {a, x,y, b} is an 0-subdivision of {@,b}, then ,JI*(1 + G)
b
exists and S K =0, where K(x,y) = |1+ G(x,y) — . J[*A + G)|.

OB® denotes set of functions G from S X S to N such that if
{a,b}€ S X S there is a number M such that, for each 0-subdivision
{x}r, of {a, b}, S |Gy, x;) | < M.

OP° denotes the set of functions G from S x S to N such that if
{a,b8}e S X S there is a number M such that, for each 0-subdivision
{w;}rey of {a, b}, |TI-, [1 4+ G(x;_y, ;)] | < M for 0 < p < q <n. Note
that OB® is a proper subset of OP°.

The function G from S X S to N is bounded means if {a,b}e S x S
there is a number M such that if {a, x,y, b} is an 0-subdivision of {a, b}
then | G(z, y)| < M.

Occasionally, statements such as “the function f(x)G(x, y)” will be
used as a substitute for the statement “the function H from S x S to
N such that for {z,y}e S X S, H(z,y) = f()G(x, y)’. Similarly, df =
df(x, y) = fly) — f(x). Where no misunderstanding is likely, f;, df; and
G; will be used as shortened notations for f(x;),f(x;) — f(x;_) and
G(x;_., x;), respectively.

The following special symbols will be used for sum or product
integrals of G whenever G is defined in terms of functions f and H
from S and S X S, respectively:
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b

L) £H ~ @) Hz, v ;
(B)| H ~ f) HE, v) ;

200 Hf ~ H@, )If@) + f0);
(L).I1* (L + FH) ~ L+ f@)H(z, ) ; ete.

In Theorem 5.8, TI=, (1 + A;) exists means lim,_ . [T~ (1 + 4;) and
[lim, .. J1%. (1 + A)] exist.

3. GeOA® only if GeOM®’. In this section the properties of
functions belonging to OA’ and to OM?° are studied and some inter-
dependencies of the two sets are shown. The first theorem is an ex-
ample in which the OA° properties are used; the next two theorems
are used in the proofs of later theorems.

THEOREM 3.1. If {a,b}ec S x S and H, F,V,G, K, F, and G, are
 functions from S X S to N such that

(1) H,F,G and K are bounded,

(2) FV and VG are elements of OA°, and

(3) for each 0-subdivision {a,x,vy,b} of {a,b}, Fi(x,y) = gyFV and
Ge,y) = \'va, b
b z
then S HFGK = S HFVGK = S HFG.K, provided one of the integrals
exist. ‘ ’ ‘

Proof. Since F'V and VG are elements of OA4° then Sbl FV—-F|=0
b a
and \ |VG— G,| = 0 and, since H,F,G and K are bounded, it follows that
b ] b
S H(F, — FV)GK = 0 and S HF(VG — G)K = 0. Therefore,

b b b
SGHFlGK - SGHFVGK n LH(FI — FV)FK

b

HFVGK

I

> 8

I

HFGK + SbHF(VG — G)K

CIY

I

|
|
S HFG.K .

a

THEOREM 3.2. If {a,b}e S X S and F and G are functions from
S x S to N such that F and G are elements of OP°, there is a number
M such that if {x;}}-, is an 0-subdivision of {a, b}, then
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[+ F@iy, @)] — I [ + G@imy, )]

=1

< M3 | Fwi, @) — G@y @) -

Proof. Since F € OP° and GeOP°, there is a number M such
that, for each 0-subdivision {x;}, of {a,b} and 1 < p =< q < n,

<M and <M.

From the algebraic identity

t=i+1

it follows that for each 0-subdivision {x;}., of {a, b}

ﬁ(1+Fi)—ﬁ(l+Gi)l

z [(F,— G)| M.

THEOREM 3.3. If {a,b}e S X S and G is a function from S X S
to N such that Ge OP° Ge QA" and the function ‘Ge OP°, then
JIP(1+ G) = I1° (1 + SG), provided either product integral exists.

Proof. From Theorem 3.2 there is a number M such that for
each 0-subdivision {x;}~, of {a, b}

il (1 + St_G> — LI + G,

=DUEDY

7=1

Since Sb G — SG' — 0, it follows that ,IT° (L + G) = .IT* (1 + SG) pro-
vided one of the product integrals exists.

S” G — Gz, xi)l :

ZTi—1

THEOREM 3.4. If G is a function from S X S to N such that
Ge OB, the following statements are equivalent:
(1) Ge OA® and (2) Ge OM".

Proof. 1—2. Let V be the function from S X S to N such
that for each {x,y}e S x S, V(z,y) = SVG. By Lemma 3.1 [7, p. 152]
there is a function a in OA* [7, p. 150] such that the pair of funec-
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tions «, V satisfy the hypothesis of Theorem 3.1 [7, p. 153]; therefore,
for each element {x,y} of S x S, ,[IY(1 + V) exists and, by Theorem
3.8 above, JIYAL + V) =_.1[*(1 + G). For each 0-subdivision {x;}r,
of an element {a, b} of S x S

n

2 e A+ G) — [1 + Gy, 2)] ]

=1

= é{ Izi—l]:[xi(l +V)—11+ V(w,_y, )] | + é |G, — V]|
S ST+ @) — [+ ate, 2l + 3 16— Vil .

Since Ge OA® and ac OM° (by definition and also by our Theorem 4.2),
the last member can be made arbitrarily small; therefore

S:l(l+G)—H(1+G)|:0
and Ge OM®.

2—1, Let W be the function from S X S to N such that for
each element {x, ¥} of S X S, W(x,y) =.I1*(1 + G). By Lemma 3.2
[7, p. 152] there is a function pe OM* [7, p. 150] such that the
pair of functions g, W satisfy the hypothesis of Theorem 3.2 [7, p.

153]; hence, for each element {a,b} of S x S, Sb(W—— 1) exists and
for each O-subdivision {x;}*, of {a, b},

3 |l @) = 11— |7 (e — 1)

Fg—1

= 3 [ Wiy, 2) — 1] - Si_ w-v| (@ 3207
=S| e e -1 g:i- (W — 1)[
= g G(x;_s, ;) — Sxi (W-—-1

— ST+ 6) = [+ Glai, ] -

Since GeOM"® and (¢ — 1) OA° (by definition, also by our Theorem
4.1), it follows that

(o= for,

a

o-fol- .

G—S(W—l)lzo,

.

and G e OA°
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REMARK. OA° is not a subset of OB’ and OB’ is not a subset of
QOA°. Let S be the set of real numbers. If 2 is the function from
S to S such that i(x) =1 for x rational and A(x) = 0 for « irrational,
then the function H(x, y) = h(y) — h(x) is an element of OA° but is
not an element of OB°. Let G be the function from S x S to S such
that

(1) if 2 =y then G(z,y) =y — = and

(2) if 2>y, then G(x,y) =y — « if both 2 and y are rational,
otherwise G(x,y) =0. GeOB and SlG exists but SOG does not exist
and G ¢ OA". ° 1

MacNerney’s Lemma 4.3 [7, p. 156], which is used in the proof
of Theorem 3.5, could have been stated as follows:

LemMA 4.3°. If each of F and G is in OB |7, p. 155] and « is
a member of OA* [7, p. 160] such that |dF| < a and |dG| < «a then,

for each {a, b} in S x S, (L)S FdG and (R)g FdG ewist and—if e is
a member of S such that {e, a, b} is a subdivision of {e, b}—

i(R)S:FdG — F(a)dG(, a)i - ’ (L)S:FdG — F(a)dG(a, b)
< (L)SZa(e, Ya — afe, a)a(a, b) .

Furthermore, each of the functions
F(2)dG(x,y) , F(y)dGz,y), dG(x,y)F(z)
and dG(x, Y)F(y) is an element of OA° and of OM°.

Indication of proof. MacNerney gives a proof for
l(L)SdeG — F(a)dG(a, b)l < (L)gba(e, Yo — ale, a)(a, b) .

The definition of the function « (as well as our Theorem 4.1) assures that
the function a(e, x)a(x, v) is an element of OA4° therefore F'(x)dG(x, y)
and F'(y)dG(x,y) are elements of OA" and, since the integration by
parts theorem (Lemma 4.1, [7, p. 156]) applies, dG(z, y)F(x) and
dG(z, y)F(y) are element of OA°. It follows from Theorem 3.4 that
each of these four functions is an element of OM°.

THEOREM 3.5. If each of fi, fa fo and f, is & function from S
to N and df,e OB® for 1 =1,2,3,4, the function G is an element
of OB® and OA® and H 1is the function

H(x, y) = [fu(x) + LG, v) fo(x) + fuw)],
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then He OA° and He OM°.

Proof. Let V be the function V(z,y) = SVG. From Lemma 4.3°
it follows that each of the functions f,(x) V(x,y),xfz(y)V(x ), V(x,y)f(x)
and V(x, y)f(y) is an element of OA°’. Since f,(x)V(x, y) and G are ele-
ments of 0A4°, and

>

D

I AOVC ) = £V @ 0|
S FOVC, ) — £@G(@,y) + £@)G@,y) — fi@) V(z,y)

Ti—1

=2,

D

= 3

I 2OV ) = £@6@0]| ~ S 1@ 1660 - V)|

it follows that fi(2)G(x, y)e OA°. Similarly, the other three composite
functions of f; and G are elements of OA’. Hec OA°’ because OA° is
closed with respect to addition. Since H e OB, it follows from Theorem
3.4 that He OM". '

REMARK. If H is the function
H(@, y) = 3} Fi(w, y)Gi(z, ) Hz, v)

where, for 1 =1,2,3, -+, n, G; is an element of OB° and OA® and each
of the functions F; and H, is composed of products and sums of fune-
tions f from S to N for which df € OB°, then, by using Theorems 3.1
and 3.5, it follows that He OA® and He OM°.

4. OA’, OM° and a special ring. In this section it is shown

that if suitable restrictions are placed on the ring N, then the ex-
b

istence of the sum integral | G implies that G e OA°® and the existence

of the product integral ,IT® (1 + G) implies that Ge OM".

Let R be a ring which has K subsets R, R,, ---, Rx such that
R=UE R, and R has a norm |-| with respect to which R is com-
plete and |1| =1 and, if A and B are elements of the same subset
R, of R, then |A+ B|=]A|+ |B|. The field of complex numbers
with the norm of (e, b) defined as |a| + |b| satisfies these conditions.

THEOREM 4.1. If G is a function from S X S to R such that
SyG exists for each element {x,y} of S X S, then Ge OA".

Proof. If the theorem is false and H(zx,y) = SVG — G(z,y) for
each element {xz, y} of S X S, then there is an element {a, b} of S X S,
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a positive number ¢ and an 0-subdivision D = {x;}7-, of {a, b} such that
v | H(x,_y, ) | > ¢ and if {y,}?_, is a refinement of D, then

.6 = 265, v)| < 2K .

The following definitions are used to define a refinement D’ of D
which will lead to a contradiction. For each integer k,1 <k < K, let
A, be the set of integers such that pe A, only if H(x,,, %,) € R,.
Sinece >\r, | H(x;_;, ;)| > ¢, there is an element A of {4,}X, such that
Stiea | H(w;_y, ;)| > ¢/K. For each integer ¢,1 <t =<mn, let D, be a
subdivision of {x; ,, «;} and k; be an element of R such that

(1) if te A, then D, = {x;,,, «;} and k;, = H(z,_,, x;); and

(2) if ¢¢ A, then D, is an O-subdivision of {x,_,, x;} such that
ki =\ G— 5, 6@, ) and || < cf(2-2K). Let D'=UE,D;;

then D’ is a refinement of D and

s [[o 0|~ 5[0 3(50)
-[3(.e-%9)
>|5 k[ — 3 0/@2K) ;

hence ¢/K > IIZ,,-GA H(z;_y, 2.)| = Sliea | H;| > ¢/K. This contradiction
proves that S | H| = 0 and that Ge OA°.

THEOREM 4.2. If G is a function from S x S to R such that
for {a,ble S x S there is a number M such that, for each 0-sub-
division {a,x,y,b} of {a,b}, JI*(1 + G) and [,II* (1 + Q)] exist and
are bounded by M — 1, then Ge OM".

Proof. For each element {z,y} of S X S let F(x,y) =1+ G(z, y)
and H(x,y) = .I[*(1 4+ G) — [1 + G(z, y)]. If the theorem is false, there
is an element {a,b}€ S X S, a positive number ¢ and an 0-subdivision
D = {x;}*, of {a, b} such that >\7, | H(x;,, 2;)| > ¢ and, if {y;}’-, is a
refinement of D and 1 < ¢ < n, then

A1 F = 11 Fs 99| < /(4K

H F(yi—~19 yJ) < M ’

I=q;

and
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w11 F — %=, F'(Yia, ¥5) | < 1/(2MP) ,
where y;_, = x; for 7 = q,.

The following definitions are used to define a refinement D’ of D
which will lead to a contradiction. For each integer k,1 <k < K, let
A, be the set of integers such that 7€ A, only if

(LI F)H(%; -y ), 11 F)

‘is an element of R,. Since >, | H(x;_,, ;)| > ¢, there is an element
A of {AJE, such that >, | H(x;_;, x;)| > ¢/K. For each integer ¢,
1 <7 =<mn, let D, be a subdivision of {x;-,, x;} and k;, be an element
of R such that

(1) if 7€ A, then D, = {z,_,, x;} and k; = H(x;_,, x;); and

(2) if 1¢ A, then D, is an 0-subdivision {z;}7i, of {x;,_,, #;} such
that k; = ., 117 F — 1154 F(zi, 25) and |k; | < ¢/(2"4M*'K).

Let D' = U D; = {y;}?~,;; then D’ is a refinement of D and

c/(4M*K) > J]i F(y;_, y5) — JI° F'

= |0 [ F @i v | = T G117 F)|

D

= | S I Pl T Ty P, )
(Identity, Th 3.2)

1 I F,

J=i+1 Dj

v

S| = 5 LI F -

BB ST 'E

hence

25 1K 1/2M7) > ¢/2M*K)

> |3 (I Pk 1111 F

j=i+l D

=

S 7 Fh, ,,, TT° F]

— 3 LI Pl
> |3 (I P, 11 F)|
— M% | k| (1/2M°) .

M IR~ I F

Jj=i+1 Dj

Therefore
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WMD) 3 1| > | 5 I P, I1 )

= é | GIT7 Fkie,, J1° F) |
(See def. of A,, A and k;.)
= (1/M7) % | II%-t F)7|

X | QI By JT° F) [+ Gy TT° )7
= (/M) 25 1k

This contradiction proves that SblH | = 0 and that Ge OM°.

5. Integral equations; special uses. In this section several
theorems are proved showing that product integrals can be used in
solving integral equations. Then these theorems are used to show
that a nonsingular m X m matrix of complex numbers has n distinct
nth roots and that, with some restrictions, >\, A, exists if and only if

2.1 4+ A,) exists. The first four theorems show interdependencies
between equations containing sum integrals and equations containing
product integrals. Since the proofs of these theorems are similar ex-
cept for minor algebraic manipulations, the proof for Theorem 5.1 is
given and the other proofs are omitted. We are indebted to the re-
feree for the proof of the following lemma which is used in the proofs
of the next four theorems.

LEMMA. Suppose the functions F,G and H are elements of OB°
such that F € 0A° and J1Y(1 + H), ,[I°1 + G) and

BR)|',I' L + 6)-F- I + H)
exist for {x,y}e S x S. If {a,b}e S x 8§, then

I|r@ v - @i+ o-Fara+ m|=o.

Proof. Let {a,b} be in S x S, M be a positive number, and V and
W be functions such that if {a,z,y,b} is an 0O-subdivision of {a,b} then
LIFA+ G| <M, [LII" A+ H)| < M,
vy =|F,

and

We,y) = BE)|,II' (L + 6)-F-II* (L + H) .
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Since F is in OA° it is clear that if {a, x, ¥, b} is an 0-subdivision of
{a, b} then

W, o) = BR)| 1A+ 6)-V-II' A + H),
and that the assertion of the lemma is equivalent to this:

§:|V—W|:o.

Since H is in OB’, there exists a function 8 such that if {a, x, v, b}
is an 0-subdivision of {a, b} then B(x, y) is the least number @ such that,
for each 0-subdivision {t,}; of {x, ¥}, 3\ | H(ts_, t,) | = Q. If {a,x,y,z, b}
is an O-subdivision of {a, b} then B(x, ¥) + B(y, 2) =< B(x, z); hence noting
that if {¢,}; is an O-subdivision of {x, y} then

S Htysy 1) | S 3 Bltrss )

one readily finds that |1 — JI"QA+ H)| =M SyB. Similarly there is

a function « such that if {a, 2, v, b} is an 0-subdivision of {a, b} then
a(x, y) is the least number @ such that, for each O-subdivision {¢,}7

of {&, 9}, S| Glts )| =@, and |1 — ,II* (L + G)| = Mg”a.
Suppose that ¢ > 0; let

aft+ u( g+ wfaror+aivi=c,
and » be a positive integer such that
SZa<nol, S:,8<nd, and Siiw < nd.
Now, let [a, b] denote the subset of S to which % belongs only in
case {a,u,b} is an O-subdivision of {a, b}, and let A be the collection

to which X belongs only in case either

(1) there is a positive integer 7 less than n such that X is the
subset of [a, b] to which % belongs only in case

i—pfazsmfa<@fa,
or (2) X is the subset of [a, b] to which % belongs only in case

(n — I)S:a < (n)gza < (n)S:a )
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Note that A is a finite collection of mutually exclusive subsets of [a, b]
filling up [a, b] such that

(1) if X and Y are members of A, then either {u,} is in 0 for
each % in X and each » in Y, or {v, %} is in O for each 4 in X and
each v in Y, and

(2) if {a, u, v, b} is an 0-subdivision of {e, b} and there is a member

of A to which both % and v belong then Sva < d.

Let B be the collection obtained in this way by considering Su,B, and
C the corresponding collection obtained by considering Sul V. "Let D
be the collection to which T belongs only in case there exists a member
X of A, a member Y of B, and a member Z of C such that T is the
set to which u belongs only in case u belongs to X, to Y, and to Z.
Now, D is a finite collection of mutually exclusive subsets of [a, b]
filling up [a, b] such that

(1) if X and Y are members of D, then either {u, v} is in 0 for
each % in X and each v in Y, or {v,u} is in 0 for each % in X and
v in Y, and

(2) if {a,u,v,b} is an O-subdivision of {a, b} and there is a mem-
ber of D to which both % and v belong then

Sia<d, SZB<d, and SZ|V1<d.

If D has only one member, let ¢ be the 0-subdivision {a, b} of
{a, b}. Otherwise, let N be an integer such that D has only N+ 1
members, {X,}¥ be a simple ordering of D such that if u, is in X,
(p=20, +-+, N) then {a, %, *--, Uy, b} is an 0-subdivision of {a, b}, and
{t,}¥ be an 0O-subdivision of {a, b} such that ¢, is in X, (p=0,--+, N).
Let {r,}i be a refinement of .

Suppose, temporarily, that p is a positive integer less than m -+ 1,
and let {s;}¢ be an 0-subdivision of {r,_,, +,} such that

W(rps 1) = 32, 11 (L4 6 Visios, 59+ T2 (L+ H)| < djm.
Denote
V(s ) — 30, T1 (L + G) Vi, 59+, J17 (1 + H)
by U, so that
101 =[5V 50 = I+ @) Vs, 8-, 17 (L + B} |

k
= 51 Vsiosr )|
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X {1~ JIe (L + H) | + 1~ T (L + 6)| T (L + H))
= 33 Visi, 30 | {M] 78 + 32| 7} .

If there exists a member of D to which each of r,_, and 7, belongs,
then

|U| = El:] | V(s;_1, 8:) | {MS% B+ MZS::_ICZ}

Tp—1
< d{MS”‘ g +m|” a} .
Tp—1 Tp—1
Otherwise, there exist members X and Y of D and a positive integer

J in [0, m] such that s; is in X for 0=Z¢<J and s; is in Y for
j =1 = m, whence

U1 = S Vi) | {M]” 8+ Mga}

Tp—1 "p

+ZlV(sL 1,5)]{ S +M2SSJ }

gd{M&_3+M2S —a}+g VM + My

p—1 Tp—1 Tp—1
Therefore, in either case,
I V("'p—ly 7‘1’) - W(/":n—n 'rp)}
< d{l/m + MS”’ 8+ MS a+ (M + M?)S"‘ | Vi} )
Tp—1 Tp—1 Tp—1

From the considerations of the preceding paragraph it follows that
SV, ) = Wiy 75) |
<aft+ Ml g+ (a4 v} =
and the proof is complete.

THEOREM 5.1. Suppose

(1) aeS, fand h are functions from S to N such that f(a) =
h(a) and dhe OB®,

(2) G,H,A and B are functions from S X S to N such that
(1—H)™* exists and is B,B is bounded, (dh)B <€ OA’, and for {x,y}e Sx S
A, y) =1+ Gz, »)][1 — H,y)]* and A —1eOB’, and

(3) ks a constant function or 1Y A exists for each {x,y}e Sx S.
The following statements are equivalent:

(1) f@)H(,y) + f(@)G(z, y) € OA® and
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@ = (@) + (RL)| (FH + £6)

for each element {a, x} of S x S; and
(2) if {a,x,y} is an O-subdivision of {a,y}c S X S, then

@I 1O A —A¢, N1=0
and
F@ = £@) I A+ ®)| [@n)B 11" 4] .

Furthermore, if f exists and is bounded, then (A — 1)c OM°.

Proof. We will consider the statements concerning OA° and OM°
after the other parts of the theorem have been proved.

1—-2. If {a,y}eS x §, {a, z,y} and {x;}-, are 0-subdivisions of
{a, y} and of {x, y}, respectively, and 1 < ¢ < n, then

@) = Fla) = o) = M) + (BRI (FH + £G) 5
Ti—1

hence
(5.11) fi= fio +dh; + f;H; + fi.G; + ¢

where dh; = h(x;) — h(x;_,) and

o= BL)|" (FH + £G) — (FH, + fiG) ;

hence,

fi=dh(l — H)* + f, 1+ G)1— H) ™" +¢(1—H)™
= fim4; + (dh; + ¢;)B; .

By iteration, using 1 = 1,2, ---, n in order, we obtain

(5.12)  fo=f11 A+ 3 dhB; 11 A+ 3 0B 11 4;.
1= =1 =i+ 7=1

J=i+1

Since the product integral ,[[* A exists, dhe OB°, B is bounded,
(A—1)eOP° and >\2,|c;| can be made arbitrarily small, it follows

that (R) Sy(dh)BzH”A exists and that
f@) = @) T 4+ ®| @B 4.

Equation 5.12 shows that if % is a constant function, the requirement
that ,J[Y A exists is not needed.
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2—1. If {a,2}eS x S, {x;}7-, is an O-subdivision of {a,x} and
1=<7=<mn, then

f@) = fe) . 154+ ®)|" @B I+ A

Zi—1

= fi—-l(l + Gw)(l - Hi)—l + f'—1d1; + dhiBi + ¢,

where
d; = zi_lﬂzi A — Ay, )
and
€ = S” [(dr)B JI% A] — dh;B; .
Ti—1
Hence,
f«;(l - H«;) = fi——l(l + G,-)
+ fiedi(1 — H;) + dh; + e(1 — H)) ,
and
; — fioo = FH; Gy
(5.13) fi— fioo=FH + S

+ fiedi(1 — H;) + dh; + e(1 — H;) .

Since >\, |fi_d;| and, by using the lemma, >7,|e;| can be made
arbitrarily small, it follows that

f@ = h(z) + RD)| (FH + £6) .

To prove the statements concerning the sets OM° and OA°, we
combine equations 5.11 and 5.13 and obtain
¢; = fidi(1 — H;) + e(1 — H)) .

A review of the definitions of ¢;, d; and e; shows that if ¢ and d are
defined as functions, then S l¢| = 0 if and only if (L)S | fd| = 0; also,
S |d]| =0 if f~' exists and is bounded.

REMARK. If N is the field of complex numbers, then
1;[ A; = g[ Q+G)(1L-H)'= IDI 1+ Gi)/]l;I (11— H)

and

JIPA=11°A + QLI - H) ;

for the special case where



INTEGRAL EQUATIONS AND PRODUCT INTEGRALS 313

(RL)| (7H + 76) = 0| T,
qFA =00 (1+ £ F)LI (1 - 5 F).

THEOREM 5.2. Suppose

(1) acS, fand h are functions from S to N such that f(a) =
h(e) and dhe OB°, and

(2) G,H, A and B are functions from S X S to N such that
(1 — H)* exists and is B, B is bounded, B(dh)ec OA°, for {x,y}e S X S
A(y, ) =[1 — H(z, ][l + G(x, y)] and A — 1€ OB° and

(8) his a constant function or ,[1' A exists for each {x,y} e SXS.
The following statements are equivalent:

(1) H, 9)f) + G, y)f(x) e OA’ and

@ = h) + (RD)| (HS + Gf)

for each element {a,x} of S X S; and
(2) af {a, x, y} is an 0-subdivision of {a,y}€ S X S, then

@' |ma—ac, o) =o
and
) = (I Af(@) + B [I1 HB@n)] .
Furthermore, if f- exists and is bounded, then (A — 1) OM".

THEOREM 5.3. Suppose

(1) acS, fand b are functions from S to N such that f(a) =
h(a) and dhe OB° and

(2) G,H,A and B are functions from S X S to N such that
(1—H)* ewists, B(y,x) =[1—H(z,y)|™", 1—H)'dhc OA’, (B—1)c OB",
(B—1)eOM’, GeOB,GeOM* and A =1+ G. The following state-
ments are equivalent:

(1) H(z,y)f(y) + f(x)G(x, y) € OA® and for each element {a, x} €
S xS

f@) = h(z) + (RL)S:(Hf +fG);  and

(2) if {a,z, y} is an 0-subdivision of {a,y}€ S X S, then
f) = (117 B)f(z)(. 11" 4)
+ @R IGIT B — H)-@n( 11" 4)]
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THEOREM 5.4. Suppose

(1) aeS, fand h are functions from S to N such that fla) =
ha) and dhe OB’ and

(2) G,H,A and B are functions from S X S to N such that
(1 — H)™* exists and is B, (B—1)e€ OB, (B—1)e0M°, dhBe OA°,
Ge OB, GeOM® and A(y,z) =14+ G(z,y)eS x S. The following
statements are equivalent:

(1) fwH(x,y) + G(x, y)f(x) e OA® and for each element {a, x}<c
S xS

f@ = @) + D (FH+ G and

(2) if {a,x, y} is an 0-subdivision of {a,y}e S X S, then
f) = (II* Af(x)(. 11" B)
+ (BR)| [(II* A@mB(IL B .

REMARK. The integrals (R)Sx 76, (L)S”fG, (R)S”Gf, (L)Sfo, (M)Sfo
and (M )S Gf are special cases of the integrals (RL)S ( fI:Z + fG) and
(RL)S (Hf + Gf) used in Theorems 5.1 and 5.2. Hildebrandt [4, p.

354] o'izeﬁnes a modiﬁed Riemann-Stieltjes integral as follows [g(x) has
bounded variation and g.x) denotes the continuous part of g(x)]: «If

' fdg. exists as an R — S integral, then for any closed interval (c, d)
of (a,b) we define

[ 7@ag@) = | @) + F@lgte + 0) ~ g(0)]
+ 2 f@lg(@ + 0) — g(z — 0)]
+ F(d)g(d) — g(d — 0)] .7

This integral also simplifies to a special case of (RL)Sd( fH + fG) be-
cause the right member can be simplified as follows: ’

E — 5| fa)dg(z) = 1/2(R)] fd.

+ 120 fdg. + 3 f@lo@) — ol — 0)]
+ 5 S@le + 0) — g(o)]

= 1/2(R)| sdg.

+ 120 fdg. -+ (B)| fag, + D) sdg.
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— @D 1d/20. + 9) + FAL/29. + )]
= (L) (/H + £6) ,

where g, and g, are the functions of the “left breaks” and the “right
breaks”, respectively.

THEOREM 5.5. IfacS,fand h are functions from S to N and f—
exists and is bounded, H and G are functions from S X S to N such
that H and f(x)G(x, y) are elements of OA°® and, for each {a,x}€ S X S,

S”H+ h(zx) = (L)S”fG, then for {a,a}e S x S
W+ @[ ={e,
provided two of the integrals exist.

Proof. Since H and f(x)G(x,y) are elements of OA° for each
x€ S and for each O-subdivision {x;}’, of {a, 2} there is a sequence
{e;}2-, of element of N such that

H(x; ., 2;) + M) — h(x;_y) = f(@:_)G(w;y, 23) + €5
and
S @) g, o) + (2 )dh; = Gy, @) + F(%_y, @5)e;

Since f~* is bounded and since 37, |¢;| can be made arbitrarily small,
it follows that for each {a,2}eS x S

@\ ra+ @ ra={a,
provided two of the integrals exist.

THEOREM 5.6. Suppose {a,b}e S X S, F and G are functions from
S x S to N such that

[Fei=0, [iei=0,

FeOB, Ge OB, II°A + F) and ,II* (1 + G) exist and G(z, v), G(p, q),
F(x,y) and F(p,q) commute for all elements {x, y} and {p,q} of S X S;
then

(1) JII'A+ F)II'A+ G)=,II"[1 + (F+ G)];

(2) LII’A+G*=.11°1 + nG), for n a positive integer; and

(3) 1 —6)=[ITI"A + &), provided ,I]° (1 — G) exists.
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Proof of (1). If {x}7, is an O-subdivision of {a, b} then

n

Ha+FHa+6) -+ E+ 6

=

-

I+ F+ G+ FiG) — TT[1 + (Fi + G|

< M° 3| FiG| (Th. 3.2).

Since gbl FG| =0, it follows that
JIPA+ F) JIPA+ G) =11 [1 + (F+ G)].

Parts (2) and (3) are corollaries to part (1).

Theorems 5.7 and 5.8 are stated for matrices of complex numbers
but these proofs can be extended to other rings, provided a function
¢ exists having properties similar to those of the function g used in
these proofs.

TaeorREM 5.7. If A is a nonsingular m X m matrix of complex
numbers and n 18 a positive integer, then A has n distinct nth
r00ts.

Proof. Since A is nonsingular, there is only a finite number of
values of z for which det|1+ z(4A — 1)] is zero; therefore, since
det |1 + 2(A — 1)] is not zero for a complex number z near (0,0) and
(1, 0), there is a continuous function g from the real numbers to the
complex numbers such that g¢(0) = (0,0), g(1) = (1, 0), dgc OB® and
det |1+ g(x)(A—1)| # 0. Let M(x) =1+ g(x)(A — 1); then M(0)=1,
M(1) = A, and M~ exists and is bounded on {0,1}. Let H(x,y) =
M= @) M(y) — M(x)}; then M(z) = (L) 11" (1 + M™'dM) = (L) II* (1 + H),
He OM®, He OB°, S |H*| =0, H(p, q) and H(r,t) commute for all num-

ber pairs (p, ¢) and (?r, t). By Theorem 3.4, He QA% hence (1/n)Hec OA°,
(1/m)He OM® and (L), J1°[1 + (1/n)H] exists for 0 < x =< 1. For each
nth root a of the complex number (1, 0)

{a JI'[L + A/m)H]}}" = o™ JI' (A + H)
=M1l =A.

Since ¢ is continuous, {,]J]'[1 + (1/»)H]}* exists; therefore each distinct
nth root of the complex number (1,0) gives a distinct nth root of A.

THEOREM 5.8. If {4}, is a sequence of m X m matrices of com-
plex numbers such that >, A} exists and, for 0 <1 =7,]4;] < 1/4
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and A; and A; commute, then the following statements are equivalent:

(1) i A; exists and

(2) I:Il (1 + A,) exists.

Proof. Let g be the function from the real numbers to the com-
plex numbers such that g(x) = (x, 0) and let {#;}, be the sequence of
functions such that for each positive integer ¢, h,(x) = 1 + A,9(x). For each
integer ¢ and each number z, 0 <z <1, |4;9(x)| < 1/2, h,(0) = 1, k(1) =
1+ A, hi' exists on {0,1}, | ;7' (2)| < 2 and

hi(@) = hi(0)+(L) o117 (1 + h;'dh;)
= (L) II* m+@a+ A;9)'Adg]
= (L)ol1" {1 + [4; — (1 + Aig)""Algldg}
— (L) JIT* (1 + Aidg)-(L) TI* [1 — (1 + Aig)Algdg] .
For each pair m,n of positive integers, with m < n, there are ele-
ments a(m,n) and B(m,n) of N such that

10+ 4) = IT ()

= I (1+ 3 Adg) oIl [1— 3 (1 + Aig)~Atgd|
= II' (L + Bdg)[L + a(m, w)] ,
where
B=3 4,
= II* (L + Bdg) + £(m, )

and such that a(m,n)— 0 as m,n— o and, if ,JI*(1 + Bdg) is uni-
formly bounded as m, n — o, then | B(m,n)| — 0as m,n— .

1—2, Since >\, A; exists, JI'(1 + S, A;dg) is uniformly
bounded as m,n— o and |B(m,n)|— 0 as m,n— . Let m,n be
an integer pair and f be the function such that, for 0 =2 <1,
f(x) = (L), II°* (1 + Bdg), where B = >\, A;; by Theorem 3.5 and 5.1,

f@) =1+ (L)So fBdg; hence,

n

II (1 + A4) = f(1) + B(m, n)

1=m

=1+ (L)S:deg + B(m, n),

and
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L@+ 4) 1| = || Bdg + g, m)
= | B|+] flmex* Zimax [ dg | + | B(m, m) |

Since there are maximum values for f(z) and 3 |dg| on {0, 1} which
are independent of m and » and since |B(m,n)| and | 3%, 4;| = | B|
can be made arbitrarily small, it follows that |[]7.,(1+ 4) —1]|—0
as m,n— oo, Since the sequence {{]1%, (1 + A4,)}7, is bounded,

lim IT (1 + 4,)

exists. Since for each integer 1
hi'(x) = hi(0)-(L) J1° (L — hi'dh;) ,

by repeating the above manipulations for 2;' and for Tz, (1 + 4,)7%,
we can show that lim, . [I%, (1 + A,)™" exists and then show that

lim T (1 + 4) = [lim fia+ A,-)] "

2—1., Since dge OB, JI'(1 + 3., Adg) exists for each pair of
positive integers m, n. Since []z. (1 + 4;) and [[]2, (1 + A,)] exists
and since |a(m,n)| — 0 as m, n— oo, it follows that {I]r, (1 + A4,)},
and {I17.(1 + A,)""}3, are bounded and |B(m, n)|— 0 as m, n— oo,

If 241, there is a positive number ¢ such that if J is an integer
there are integers » = m > J such that 1/4 > | >, A;]| > ¢. Therefore,
there are positive integers m and » such that ¢/6 > | [z, (1 + 4;) — 1],
¢/6 > |B(m,n)| and 1/4 > |>, A;] >c¢. Since J['(1 + >, 4idg)
exists, there is an 0-subdivision {x;}?-, of {0, 1} of evenly spaced num-
bers such that if v = g(x,) — g(,), B = >2... A, and

w=II" (L + Bdg) — [T {1 + Blo@)) — o(a: )]},
then
% = ,[I' (1 + Bdg) — (1 + Bv)?
and ¢/6 > |u|. Hence,

¢/6 > i§(1+Ai)~1

= [ II' @ + Bdg) + B(m, n) — 1|
z |1+ Bv)" — 1| — | B(m, n)| — %] .

By using the binomial theorem and the above inequalities, we obtain
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¢/2>|(1+ Bv)’ — 1]
= |1+ pBv + p(p — 1)(Bv)*/2!
+ p(p — )(p — 2)(Bv)*/3! + --+ + (Bv)" — 1|
=|B|—[|B}|pv||(p — Lv|/2!
+[BPlpv||(®@—Dv|[|(®—20[38l + -« +|B|"|v]].

If 0=<j=p|(p—Jw|=1 therefore,

_ 1.1 /1y 1 ] 1
¢/2 > |B| |B|[4 2!+(4> 5+ >1|B|.

Hence, ¢ > |B| = | >.t-n 4;| > ¢; this contradiction proves that 2— 1,

6. Solutions for integral equations. In this section we present
several examples to show how product integrals can be used in the
solution of several types of integral equations. In each example we
assume that all elements commute, that all the preceding theorems
hold when needed and that functions such as =nf, f*, and f—' exist

for m a rational number. Lower case letters will be used for func-
tions from S to N and capitals for functions from S X S to N. All

integrals will be of the type (L)Sb fdg and (L).I1° (1 + fdg). Observe
that

f(@) = f(a)(L) I (1 + f'df)
and that, under the conditions stated above,
Lf@]" = [f@]"(L) JII* A + nfdf)
= @I + ()| nfrds .

Exawris L. (n+ D|'frdf = [fO1 ~ [f@].

Proof. [f@I* = [F@]"*.II"[1 + (n + 1)f~d]
= [F@1"* + (o + D fdf .

EXAMPLE 2. S:g—2(gd f — fdg) = f(b)g~(b) — f(a)g~(a) .

Proof. f(x)g7(2) = f(a) J1” A + f7'df)g(a) JI* (1 — g~'dg)
= f(a)g™(a) JI* A + fdf — g7'dg)

= f@g~@ + | fo(F-df — g7dg) .
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EXAMPLE 3. S"( fhdg + fdhg + dfhg) = fORB)IO) — fla)h(a)g(a) .

Proof. f(x)(x)g(x) = fla)h(a)g(a) JI° (1 + f~'df + g~'dg + h~'dh)
— fl@)h(@)g(a) + |"fhg(F-df + g~'dg + hdh).

ExAMPLE 4. If y(x) = y(a) + S (G + y"F) and n + 1, then

y(x) = aHz (1 + G){[y(a)]‘”” + (1 - 'I’L)S:[H (1 . G)]l—-nF}ll(l—M .

Proof. y(x) =y(a) 1" (1 + G + y"'F)
=y(a) JI* 1+ y"'F) 1" 1 + G)

(@) I (L = G = @] II* [L + (L — my™F]
= y@P— + @ —n)| 1 - OrF.

ExampLE 5. If & is a constant and
¥(@) = ¥@) + | + B + G,

then
y(@) + b = 1" [L + (F = W)G]
x @ + k17 = LI 1L+ (F — W61

-1

Proof.

y(@) + k = [y(a) + k] II"[1 + (hy + £)G]
= [y(a) + k] II° [1 + (hy + RE)G] 11 [1 + (f — RE)G]
{ly(e) + ElII°[1 — (f — RE)G]}™
= [y(a) + k711" [1 — (y + k)RG]

= [y(@ + B~ =TT [ + (7 — WR)GIAG .

ExaMpLE 6. If f(z)u(z) = f(a) +S’fﬂG, then f(z) = ? Indication
of proof. flx)u(z) = fla) + g [f*u’]u~"G; the remainder of this proof

is similar to Example 4.

ExampLE 7. If y(x) + (p + q)gzyG + pqrdtyG)G = f(x), where
p and ¢ are constants, y(x) = ?
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Indication of proof. The given equation can be rewritten
x £ t
[v@ + o[ v6]+ [ [u®) + o[ v6 |6 = 1@,

which is covered by Theorem 5.1 with »(¢) + pgtyG treated as one
function. Then Theorem 5.1 is used a second time.

EXAMPLE 8. If y(z) = ¢ + S”(y + )y + "G, and ¢, p and g
are constants, y(x) = ? ’

Indication of proof.
[y(e) + pI* = (¢ + p)* II° [1 + %(y + D)y + q)”zG]
=(c+ )"+ ‘;’S(y + @G .
Similarly,
@) + a1 = (e + " + | + pyec.
Substituting [y(¢) + ¢]** in the preceding equation gives
1/2 1/2 1 ® 1/2 1 t
@ + 21" = e+ " + L e+ o2+ L[ w + pr6e,

and this can be rewritten as a special case of Example 7,

{v@ + o1 — - @ + py6}

e 2ol

— (¢ + p)* + %Sx(c 1 )G .

ExAMPLE 9. If k is a constant and G, s and ¢ are functions such
that s(x) =k + S ¢G and c¢(x) = —S sG, then s*(x) + c*(x) = k.

Proof. Since s(z) =k II* (1 + s~%¢G), then
$(2) = k2, JT° (1 + 25~%¢G) = I + 2S”scG

— - 2S:(S:SG>SG — (Sw) — I — ) .
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REMARK. In the preceding examples the function G(x, y) was used
instead of the function dg because G(z, y) might be a more general fune-
tion such as

G(x, y) = fle)My)g(y) — 9(@)][p(®) + q(¥)] .
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