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STABILITY OF LINEAR DIFFERENTIAL EQUATIONS
WITH PERIODIC COEFFICIENTS
IN HILBERT SPACE

GERT ALMKVIST

In this paper we study the stability of the solutions of
the differential equation

(1) w'(t) = A(®) - u(®)

for ¢t = 0 in a separable Hilbert space. It is assumed that
A(t) is periodic with period one and satisfies the following
symmetry condition: There exists a continuous constant in-
vertible operator @@ such that

A*=—- Q- AQ®) - Q™ for all t=0.

We use a perturbation technique, Let A(f) = Ao(t)+ B(t) where
Ao(t) is compaet and antihermitian for all {. We denote by
Uy(t) the solution operator of /(%) = Au)u(t). It is shown
that (1) is stable if B({) satisfies a certain smallness con-
dition involving the distribution of the eigenvalues of Uy(1l)
and the action of B() on the eigenvectors of Uy(l). The
results can be applied to the second order equation

Y+ Coy =0
where C(f) is selfadjoint for all ¢,

Throughout this paper we consider the differential equation (1)
where u is a function from the positive reals, R+, into a separable
Hilbert space X with norm ||2]|| = (x, ). A is a function from R+
into B(X), the algebra of continuous linear operators on X. We
assume that A(¢) is Bochner integrable on every finite subinterval of
R*. Then for a given initial value u(0), there exists a unique solution
of (1) (see [4, p. 521]).

Further we always assume that A(¢) is periodic. It is no restric-
tion to assume that the period is one, that is A(t + 1) = A(¢) for all
teR*,

The equation (1) is said to be stable if for every initial value
#(0), there exists a constant M, such that ||u(?)|| < M for all teR*.
It is convenient to study the equation

(2) Uty = A@)U) , U@y =1

in B(X). Using the principle of uniform boundedness it is easily seen
that (1) is stable if and only if the solution of (2) is bounded.

Received June 20, 1964,
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384 GERT ALMKVIST
Let O(4) = lima(| I + A || — 1)
@—+0

denote the Gateau differential of A. When X is a Hilbert space @(4)
can be calculated by the formula @(4) =“sup Re(Ax, x)

zll=1
ProPoOSITION 1. If Sl(D(A(t))dt <0, then (1) is stable.
0

Proof. Let n be the greatest integer <{. Then using [1, Th. 4]
we get

t 1 t—n
1) 1| < exp | @(A(s)ds < exp (n] sA(e)ds) - exp | "s(4(s)ds
< exp | [0(4() | ds
which ends the proof.
From now on we assume that A(f) satisfies the following symmetry
condition;

There exists a constant continuous operator @ such that Q' is
continuous and

(S) A = — QA(H)Q™ forall ¢=0.
Here A* denotes the adjoint of A.

ProrosiTiON 2. Condition (S) is equivalent to
vy = QU@ forall t=0.
Proof. We have U*(0)QU(0) = @ because U(0) = I. But
-%(U(t)*QU(t)) = Uty A*®)QU() + U®)*QAW®) U = 0
if and only if
A*(H)Q + QA@) =0

Let o(U) be the spectrum of U. From Proposition 2 it follows
that o(U*(t)) = a(QU-(t)Q) = o(U~*(t) that is Aeo(U(t)) implies
e o(UR)).

ProposiTiON 3. If @ is positive definite, then (1) is stable.

Proof. @ has a positive definite square root S, that is Q = S%
Moreover S—! exists and is continuous. From Proposition 2 we get
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U* = S'US

and after some calculations (SUS-)* = (SUS-")", that is SUS is
unitary and hence || U(t)|| = || S| - ||S~'|| for all £ = 0.

The uniqueness of the solution of (2) implies that
Umn+ t) = UR)UQ) for n =1,2, .-
Hence (1) is stable if and only if there exists a constant M such that
o || =M forn=1,2, ---

Sinee || U(1)*|| = (»(U(1)))*, where v is the spectral radius, it follows
that o(U(1))c{\; |A]| <1} is necessary for the stability of (1). When
(S) is satisfied o(U(1))is symmetric about the unit circle and hence
o(UQ))c{n; |A]| = 1} is necessary.

Now we study the stability of (1) with a perturbation method,
due to G. Borg [3] in the finite dimensional case. In order to state
the next theorem we introduce some notations. Let the equation be

(3) w'(t) = (Ay(t) + B(t))u(t)
We assume that

(a) Ayt) and B(t) are periodic with period one.
(b) A\t) is compact and antihermitian (A,(£)* = — A.(?)) for all ¢.

Let further Uyt) be the unique solution of Uj(t) = Aut) Uyt),
Uy(0)= I. Suppose that

(¢) U(1l) has only simple eigenvalues, \,, all # 1.
(d) Aft) + B(t) satisfies condition (S).

Let further e, be the eigenvector with norm one of Uy(l) cor-
responding to the eigenvalue \,. Put

b= | I BOUe. I dt

K= g exp [2§ O(B(s))ds ]dt

T =2_l§£&'f17\’n— NIl:l .
THEOREM. If (a), (b), (c), (d) and

(e) K- sup 500 — M| — 1)t < 1
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and

(f) S birst < oo

n=1

are satisfied, then (3) is stable.

REMARK 1. The theorem is true if K and b, are replaced by

K’ = exp {2 max Sldi(B(s))ds} . b= So | B®) Ust)e, || dt .

0sStsl Jit

It is easily seen that K < K’ but b, <b,.

REMARK 2, If X is finite dimensional, then condition (f) is auto-
matically fulfilled.

REMARK 3. K- 3 rbir;? <1 implies both (e) and (f).

Proof of the theorem. The rather lengthy proof is divided in
eight parts.
(i) U(t) is unitary for all t.

A calculation shows that Uy(t)™ = V(t)* where V is the unique solution
of V'=— A¥@)V, V(0)=1. But since — AFf = 4, it follows that
Uy(t)™ = Uyt)*.

(ii) U 1) — I is compact.

We have U,(1) — I = Sle(t) UJt)dt. The integral is compact because
[
it is the limit of compact operators of the form >, Ay(%;) Us(t;) 4¢,.

From (i) and (ii) we conclude that {e,}i” is an orthonormal set and
indeed a basis because Uy1l) — I is compact and 1 is not an eigenvalue
of U, 1). Further limx, = 1. Since U(t) is unitary

-0

NN =1U)"}l=1 for all ¢t and |X\,]=1.
Put W(t) = U(t) — Uy(t). Further it is convenient to write

Ul)=U, U(l)="U, and W(1) = W. Let C, be the circumference
of a circle with center A, and radius 7,.

(ili) R, = (I — U)~* emists if » e UrC,.

Put R, = (M — Uy)™*. For a \ such that R} and (I — WER)™
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exist, we have
R, = RY(I — WE)™
It is clear that R} exists whenever A e U7 C, and if || WRY|| < 1 it

follows that R, exists. Since {e.}i" is an orthonormal basis it follows
that

| WR2F < 31| WRe, IF.
But
| WRen || =N — Mo |7 - || We, ||
since
Rf(\)en = (7\‘ - 7\:,‘)—16” .
One verifies that W(¢) satisfies the equation
W'(¢) = (Aq(t) + B(2)) W(t) + B(t)Ui(t)
which has the solution
W= W(l) = S:U(l) U(s)"B(s) U(s)ds
Then we get
| We. || = SOHU(l)U(S)“‘H | B(s)Ui(s)e, || ds.
From Theorem 4 in [1] we find

| U U(s) || < exp Si¢(Ao(t) + B(t)dt .

But @(A,(t) + B(t)) = @(B(t)) since A,t) is antihermitian. We finally
get

1 Weu i < {[  exo [ | 0(B®)at ] 11 B&) Uslen I ds}
= ([ exp (2] oBt)ands - {11 Bs) Ustslends = K - .
From condition (¢) we conclude that
S WRe, | < K- S8 —n

éK'S}clpibf,(P\:k—)\m! -7y <1
n=1
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and hence || WR}|| < 1 for all xe UF C,. Thus we have shown that
R, exists if e U5 C,.

(iv) U — I is compact.

From (iii) it follows that >\ || We, ||' = K > b2 < o since (e) implies
that >7b% < . Hence W belongs to the Schmidt class, cf. [5], and
is compact. Further U— I = (U,— I) + W is compact since U, — I
is compact (ii).

Put D, ={\ [AM— N | < 7).
(v) U has exactly one eigenvalue, «,, in D, and «, is simple.

Since U — I is compact and 1¢ D, it follows that there is only a finite
number of eigenvalues of U in D,.

Now it is convenient to introduce a parameter g in the equation.
Thus we study U’ = (4/(t) + p¢B@t))U, UQO) =1 where 0 = <1, A
simple calculation shows that R,(#) is a continuous function of p.
Hence the projection

E(p) = @ri) [ Ry

is also continuous in [0,1]. Further we can find a partition
O=p, < << py=1
such that
| Eu(ttoe) — Ba(ar) || < @M)™ for v=1,2, -+, k,

where M = max || E,(¢)||. According to a well known lemma (see [6,
0SHs1

p. 424)) it follows that dim E,(x,+,)X = dim E,(¢,)X if both sides are
finite. This is the case here because U(y) — I is compact for 0 < p =1
and D, contains only a finite number of eigenvalues. Now dim E,(0)X =
1 and hence, dim E,(1)X = 1 by induction. Thus there is exactly one
point a, € o(U) in D, and this «, must be simple.

(vi) |ea,|=1

Assume that |a,| > 1. Then it follows that &;'eD,. But due
to (S) we find that &,'€ o(U) and there will be two points belonging
to o(U) in D,. This is impossible.

Assume now that |a,| < 1. If @;'eD. we can apply the same
argument as above. If &;'¢ D, it is easily seen that &;'¢o(U). In
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fact we show that if x¢ UrD, and N = 1 it follows that a¢a(U).
We need only consider N with [A| > 1. Let D, be the circle closest
to . Then it is clear that {x — X, | = || N, — N | — 7| for all » and
we get

K3 | WRie, F S K80 = N |7 S K300 — | =m0 < 1

due to (e). Hence R, exists.

Now we have proved that o(U) consists of simple eigenvalues on
the unit circle with limit point 1. In the finite dimensional case it
follows immediately that (3) is stable (see Boman [2]). In the infinite
dimensional case we have to use condition (f).

Put E,0)=F, and E,(1)=F,. If Fe,+*0 we put ¢, = Fle,
and if F,e, = 0 we choose ¢, as an arbitrary eigenvector of U cor-
responding to a,. We have K¢, = ¢, and Ugp, = a, p,.

(vii) STl pn — enll* < oo,
(Fy = Boe, = @zi)™ | (B — Redn.
On
A calculation shows that
R, — R} = R)I— WR)WRY.
Thus
[ (Fa — Ee, || < (2m)~ Sa R - (| (T— WR)| - || WRie, || - |dN|
= (@2m)~rtsup (1 — || WRR|)™ - KV, 17277,
AE0,
= const - b,7r;*.
Here we used the fact that || R?|| = r;* for all nee¢,. Then
S| (Fy — Eoe, |IF < const. 3% brs® < o0 due to (f) .
1 1
It follows that F,e, = 0 only for a finite number of » and hence
;H¢n_ 6,,,”2<°° .
We define a linear operator P by the relation Px = 37" ¢,p, where
x=3>rce and >7]c, [P <o, We recall that an operator T is called

injective if Tx = 0 implies = = 0.

(viil) I — P is compact and P is injective. Hence P~ is continuous.
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S~ P, = Slle, = 9l <0 due to (vii) .

Thus I — P belongs to the Schmidt class and is compact (see [5]).
Assume now that Pr = > c,p, = 0. We apply the projection F, and
get

szlj, C.P, = e Fvp, = cpr =0
and ¢, = 0 for every k. Hence ¢ = 0 and P is injective.

Now we end the proof of the theorem. We have to estimate
|| Urx|| for an arbitrary xe€ X. Put y = P~'z and assume that y =
S ae,. We get ¢ =Py=>rap, and

Urg = UPy = i a, U, = i a,a'p, = Pi a.are, .
Further
1Tl S 1PY - (S | was 1 = | Pl - (] 0,
=[Pl -llyll = P]-IP]-ll=z]l,

which implies that || U*|] < || P||||P~*|| for every n and the proof is
finished.

REMARK 4. If C = (K-35 bir;)" < 27, then ||U*|| < (1 — 20)

Proof. From the proof of (iii) it follows that || WR}|| = C for
all xe Ur C,. Further we get

| (Fa — Een|l = (1 — O K¥b,r* < 1

for all n since
- C)—zKi Brt=C1-0)2<1.
Hence F,e, # 0 and ¢, = F,e, for all n. Then
11— Pl = Slle — el < C(1 - O

and
IPl=1+CQ1-C)*=(1-0)".

Further
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WPl =lI—-I=-P)*ll=Q—-[[I-PiH"=1-0O01A-20)".
Finally ‘
1o =pPll-I1Pl=1—20)".

An interesting application of the theorem is the second order
equation

¥’ + Cly =0
in a Hilbert space Y, where C(t) is selfadjoint. Put X =Y H Y and
(Y
U = (y’) Then we get

This equation satisfies the symmetry condition (S) with @ — (_(} g)

Acknowledgements. 1 am very grateful to Professor G. Borg who
proposed this problem and whose encouragement has been of great
value to me.
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A TRANSPLANTATION THEOREM FOR
ULTRASPHERICAL COEFFICIENTS

RICHARD ASKEY AND STEPHEN WAINGER

Let f(6) be integrable on (0, ) and define

= Sxf (6) cosmd do b, = ni/? Y JF (@) P,(cos 0)(sin 0)'/2d6
1] 1]
where P,(x) is the Legendre polynomial of degree n. Then

(1) es 35| a,.r<n+1)w/z,|b|»(n+1)w<c
n= n=0

for 1< p< o, —1<a< p—1, where C and ¢ depend on p
and a but not on f, From this we obtain a form of the
Marcinkiewicz multiplier theorem for Legendre coefficients.
Also an analogue of the Hardy-Littlewood theorem on Fourier
coefficients of monotone coeflicients is obtained. In fact, any
norm theorem for Fourier functions can be transplanted by
(1) to a corresponding theorem for Legendre coefficients,

Actually, the main theorem of this paper deals with ultra-
spherical coefficients and (1) is just a typical special case,
which is stated as above for simplicity.

Let P} (x) be defined by (1 — 2r2 + 7*)~* = iz, PMx)r for » > 0.
The functions P}(cos§) are orthogonal on (0,7) with respect to the
measure (sin 8)**d6 and

. v oonan T+ 29T + 1/2) 1o
(1) § [Pieos o) sin 0> ds = LA BNLLBLGALD g

Observe that t} = An'~* 4+ O(n~*) where A will denote a constant whose
numerical value is of no interest to us. For simplicity we set @)(4) =
tAP)cos 0)(sin 8)*. The functions {p)(8)}r., form a complete orthonormal
sequence of functions on (0, 7) which for A=1 reduce to {4 sin (n+ 1)},
Also lim,_, ¢}(f) = Acosnf so the functions @}(6) are generalizations
of the trigonometric functions which are used in elassical Fourier
series. For uniformity we define ¢5(8) = (2/7)* cos nd. Later we shall
state an asymptotic formula for @}(@) which shows another close con-
nection with trigonometric functions. In essence it says that @}(6)
looks like cos [(n + N\)0 — w(7\/2)]. All of the facts about ¢} that are
quoted without reference are in [15]. Since @}(4) are a bounded
orthonormal sequence we may consider their Fourier coefficients. Let
fe L0, ) and define

Received October 5, 1964. The first author was supported in part by N.S.F.
grant 3483, The second author was supported in part by N.S.F. grant 1685.
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394 RICHARD ASKEY AND STEPHEN WAINGER

@ = S:f(ﬁ)%é(ﬁ)dﬁ .

Let ||a,ll, = [0 ] @,|"]¥". Then using M. Riesz’s inequality [12] for
by = Siwn i/(m — k), L. ||bulls = Asll@nlls, 1 < p < oo, and Hilbert’s
inequality, i.e. if ¢, = Za,/(n + k) then ||¢c,|l, £ A, @]l 1 <0 < o,
it is easy to show that ||a.||, < A,||a.]|| and conversely ||al||, < 4,]||a%]|,,
1< p < . It is this inequality that we generalize to all » > 0. For
some of the applications we actually want a slight generalization of
the above. Instead of considering the I norm we work in a weighted

I* norm,
(2) [N PIEN R

These applications will be given in the last section.
Our main theorem is as follows.

THEOREM 1. Let fe LY0,7) and define a) as above. Then if
|| @, llp,« 28 defined by (2) we have

(3) A= lan|lse/llarllse = A
Jorall ,p=z0and 1<p< oo, —1<a<p—1

It will be sufficient to prove the inequalities (3) when <A< gt + 1.,
We first give in detail the proof when g =0 and 0 <A <1, The
formulas that we use in this case are all in the literature and are
reasonably well known. Also this proof is easier to follow than the
proof of the general case. Then we will sketech the proof for general
My, g <A< p+ 1, For simplicity we set a) = a, and use cosné
instead of @)(6).

Let £,(0) = Zi2,a,r*cosnd. Since f,(6) — f(f) almost everywhere
and boundedly in L' we have

a? = lim S £(0)PNO)do = lim ¢ S £.(6)P(cos 6)(sin 6)*d8
=1 Jo -1 0

= lim i a,rktd Sl PX(cos 8) cos k6 (sin 6)*d6 .
0

r=1 k=0
We break the sum up into three parts, 0 < k =< [n/2], [#/2] < k < 2n
and 2n < k. What we need in each of these intervals is a good
estimate for t)\ P2(cos ) cos k6 (sin )*d6 = G(k, n).

0
Consider first the case k = 2n. We use the following well-known
representation for P)(cos ) in terms of cos j6.

(4) P}Mecos ) = f_‘, a;e,_;cos (n — 27)0
=0
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where a; = (J),\/7! = Aj* '+ O(3**). Then
Gll, n) = 3, ety it S (sin 6)*
Jx [cos (B — n + 27)0 + cos (kK + n — 27)6]d6 .

Since Sx (sin 6)* cos r0d8 = O(r~-*) and k = 2n we see that
0

|Gk, n)| = Agjﬂ—l(n — JPimAgir
= O((n/k)*k™) = O(k™) .

For the theorem that we want the last estimate O(k~') is sufficient.
Observe however that we actually have a better estimate. Because
of this it is possible to change Theorem 1 to get similar theorems
where the Fourier coefficients are defined by S f(6)P)(cos 0)(sin 6)*n*db
0

for various values of @. A possible transplantation then goes to
S J(6)P)*(cos O)(sin )**Pn*~*df, Or the (sin@d)* can be omitted from
0
both of these integrals. We mention these facts only because in the
dual case different transplantation theorems have been considered by
. Muckenhoupt and Stein [11] and by the authors [3]. The reason that
both types of theorems are true is best seen in the proof of the present
theorem, which is essentially easier than either of the theorems in [11]
or [3].

Next consider G(k, n) for k < [n/2], This time we need a formula
of Szego. For 0 <A< 1

(sin 8)**~'P2(cos 6)

(5) _ 9222 F(n L) & o .
= o0 T T g 1) 2 e sin (n+ 24 + 1)6

where f?, = 1 and

£ _(A=MN2=N---(G—=M (m+1)---(n+7) ]
o ! m+x+1) e (m+N+7)

See [15, p. 96]. A simple estimate shows that
Sim =0 n + )~ *n?) .

Then
Gk, m) = OL% A A A S (sin 6)-
x [sin (n + 25 — & + 1)6 + sin (n + 25 + & -+ 1)a]da]
= 0[7% fialn + J)‘“*]
= O~ + o(i §7 + 9y = 0@ .
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As usual in results of this nature the region where % and »
overlap is harder to handle. This is because a Hilbert transform of
some sort always seems to arise. This time we not only have the
usual Hilbert transform but we also get a strange variant of it. The
transformation we encounter is

2n n

1
b, =— 1 .
n k=[n/z]ak ¢ ln—k+ 2+ 1]

In §2 we prove the following lemma, which we will use in the follow-
ing argument,

LEMMA 1. If {a,}el™, 1< p< oo, —1l<a<p—1, and

b,,=-—1- f‘, a, log "
n k<l In—k+x+1]

then H bn HP,a = AP ” a, Hp,a-

For reference we state a form of the asymptotic formula for
P)cos ) which we will use, [15, p. 195].
For 0<a <1, 1/n=60<7m/2

AT
I+ 2 [A cos {(n + N — —é—}
I(n+x+1)| (sin 6)*
B cos {(n +r+ 18—+ 1)_7‘_}
(n + X\ + 1)(sin 6)**

P2}Mcos §) =
(6)

+

+ O(n~*(sin 6)—"—2):’ .
where 4 and B depend upon )\ but not on #.

From this we have

taP)(cos 6)(sin 6)* = A cos {(n + N8 —-%T}

(7) Bcos{(n+7\+1)t9(>u+ l)i}

+ - + O((n6)~") + O(n™) ,
n sin 6

where 1/n < 6 < /2 and the O terms are uniform in » and 4. Also
we shall use the fact that ¢3P)(cos §)(sin #)* are uniformly bounded
functions, [15, 7. 33, 6]. Instead of considering

tr Y P (cos 6)(sin 6)* cos k6d6
0

z/2
we may consider since the integrand is either even or odd with
1]
respect to 8 = w/2. Using (7) we get
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th Sm P)(cos 8)(sin 8)* cos kOdo
[}

/2 . 1
=t S P)(cos 6)(sin 8)* cos k0d6 + 0<__)
i/n n

=/

2 A
=A g cos {(n + N8 —E} cos kfdo

1/n

2 CO8 {(n + A+ DI —- N+ 1)%} cos k8d6o

+B Slln n sin 6
)2
off,. )+ o3) -

The last two terms are O(1/n) and the first is A’/(n — k + \) + O(1/n).

We need to consider the second term. Using the addition theorem
/2

for cos & we get B/n S [{cos (n — k + 1)6}/sin §]d6 + three more terms
1

which are similar but easier to handle. Since 1/singd — 1/6 is a
bounded function for 0 < 4 < 7/2 we may instead consider

=__liS"/2 cos(n—k+x+1)0d0
n Jin /) ’

Assume first that ¥ <n + 1+ A. Then changing variables by
(m—k+ N+ 1)0 =y, we find

B gl cos ydy T B S""‘“*‘ cos ydy

(n—k+A+1)/n Y n Ji Y

n
The second term is O(1/n) by an integration by parts. The first term is

1 1
BP o dol] )
n (n—k+A+1)/n y n (n—=k+A+1)/n

z%logn—k2x+1 +0<31§>'

If >n+ N+ 1 we get instead that

B " 1
=—=1 —).
n ogk—n—x—l+o(n)
Using all of the estimates, we have
N _ —]:— [n/2] ] A 2n ak
n O[n g‘;mkl + = n—k 4+ A
B 2n

— a. lo L
* M P g.|'n,——k:+7\.—|—ll

n
+ o[l S la |] +lim S aurt Ak, n)
n [n/2] r—1 k=2n

k=[n/
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where A(k, n) = O(k™).

To show the I”* boundedness of these sums we need two forms
of Hardy’s inequality and M. Riesz’s inequality for the discrete
Hilbert transform as well as Lemma 1. The relevant forms of Hardy’s
inequality are in [6], p. 255, #346 (a), (b), part (a@). The continuous
analogue of the I”* boundedness of the diserete Hilbert transform is
in [5].

Using these inequalities we see that the first and fourth terms
are bounded by Hardy’s inequality. By dominated convergence we
may let »— 1 in the fifth term and it is bounded in [*»* by Hardy’s
inequality. The second term is just the discrete Hilbert transform
plus two terms like the first and last terms, Thus it is bounded in
[*=, The third term is handled by Lemma 1,

In actual fact the second and third terms given above are not
exactly right since the terms in which & and »n have opposite parity
are zero, The notation to include this is too cumbersome to be worth
including and this point causes no trouble.

To show that ||a, ||« = A4||a}}l.,. observe that (formally)

a, = gﬂf (6) cos k6d0 = 3, aXt S P.(cos 6) cos kf(sin 6)*d0 .
0 1n=0 0

We have the same G(k, n) that we analysed above and so no more
work need be done on it. However there is the problem of Abel sum-
mability of ultraspherical expansions. Estimates for the Poisson kernel
which allows us to prove the dominated L' convergence of the Abel
means are in [11, §4]. The argument that is needed to prove this is
well known.

We now consider the general case of Theorem 1 with g <A < £+ 1,
"The proof proceeds along the same general lines but the formulas for
P} that we need are considerably more complicated. To take the place
of (4) we need the following result of Gegenbauer [4].

If 0<a< B then

n/2]
(8) Ps(cos8) = St @, P2, (cos )
=

where

g l@n—2i+a)G+B—)(n—3+8
! rBIreE—aajlfn—j+a+l)

Instead of (5) we need a result that follows from (8) and is given in
[2]. If (B—1)/2 < a < B then

(9) (sin 6)* P%(cos 6) = ﬁ; B;PE,,(cos 6)(sin 6)**
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where

g, = LB2ZF >+ 2)\n+2/+ B+ 200 (n+j+ B (j+B—a)
! ' —al(@jnln+j+ a+ DI'n+ 25 + 25) ’

Observe that B; is positive if @ < £. This result also holds for & > 8
but then the coefficients are no longer positive and changes must be
made for a =8 +1, 8+ 2, ---, since the right hand side is then a
finite sum. A simple computation shows that

(10) & ~ (n = 2j + @) -t
and
(1) By ~ (n+ 2ttt 4 et (n 4 f)RmemtemtjEmact
fora< B, Fora>Banda#=pF+1,8+2 ---, we have
B3]~ (4 ypemijpmant
By a; ~b; we mean 0 < ¢ = a;/b; =C < .
If in (9) we let n = 0 and use (1) we have

(12) ' S" (sin 6)** Pi(cos 0)dg | = O(g****%) .

Next we need something to take the place of coszcosy =
[eos (x + y) + cos(x — ¥)]/2 and sinx cosy = [sin (x + ¥) + sin (x — y)]/2.
For the first we use a formula of Dougall which is given in [9] and
reduces to it for A —0. If A > 0 then

Pia) PMz) _ i P@)
(13) Pr) Pa) s O ™) B

where c,(k, m, n) = 0 and >, c\(k, m, n) = 1. We define ¢,(k, m,n) = 0
if k<|n—m| or k>n+ m and then we may sum on all non-
negative k. The numbers ¢, are known [9], but we shall not need
them in our argument.

For the second formula above we use the following substitute
which again reduces to it for x— 0. If A > 0 then

P)(x) Pi(x) _ nEm P)(x)
o Brr(D) Pal)  wiis P By

where dy = 0if n = m — 1. Thisis found in {1]. From (14) it follows
that S, d\(k, m,n) = 1 where d\(k,m,n) =0if k<|n—m|—2or
k > n + m. Finally recall that

(15) PM1) ~ nrt,
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These results are sufficient to allow us to estimate Y a0 (6)do for

p<rx<p+1and k=n/2 or n <k/2. To estimate this integral
for k/2 < n <2k we use the following asymptotic formulas due to
Szego.

LEMMA 2. Let p >0, ¢ not an integer. Then

I'(n 4 2p)

Pi(cos ) = -2_— sinmp &)

- z
x{}i F(m + ) lm — 1+ 1) cos[(n+m+p)¢9 (m+p)2]J+R
a0 I'(n + m + g+ Lym! (2 sin )™+ ?

where
l RP ! = O[(Sln 0)—p—l‘nu—ﬂ—1]

and the O holds uniformly for 0 < 6 < 7.
For £ =1,2,3, .-+ we have

LEMMA 3.

P}(cos ) = 2210(—1)"»(’" +w;; - 1)<n + 2p — 1)

p—m+1
cos [(n +m+ o — (m + p)-g—]
[(2sin 6)(m + )]

The same estimates hold for an error term in Lemma 3 as in
Lemma 2 if one stops before m = ¢ — 1. These two lemmas are in
[14, p. 49 and p. 59]. In fact we do not need the full force of either
of these Lemmas but they are relatively inaccessible and not as well
known as they should be.

Now to complete the proof of Theorem 1. Let <A< p+1
and f,(0) = S, atir*ph(0). Then by dominated convergence and the
boundedness of the Abel means of an ultraspherical expansion we
have

a = lim [ £.O)p20)0 = lim 5 atr*" gt(O)P20)0 .
r=1= Jo r=1" =0 (1]
As above we need to estimate | @3 (0)ph(0)d6 = G(k, n) for three cases,
0

k=n/2, n/2<k<2n, and 2n < k. Consider the third case first.
Using (8) and (13) we have
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Gk, n) = £3t: S P (cos 6) P(cos 0)(sin 6)M+d0

(n/2] T
= 2(,) ththa; S #(cos 0) P}, ;(cos 0)(sin §)*+d0
J= 0

= S nna,PEOPLLM 5 e, k1 — 2)[PrO]
=0

j=

o

M

A\ P{(cos 0)(sin §)*~*(sin §)**d8 .
0

Then using (10), (12), (15), and recalling that ec.(, %k, n —27) =0
unless k —n+27<1l<k+mn—275 and so l ~ k.

For simplification of printing we use #, &, j in the following argu-
ments instead of » + 1,k + 1,5 + 1, ete. This leads to some infinite
terms which clearly aren’t infinite and they are to be interpreted in

the obvious way.

(Gl m) | = 5 (=== = 25 + (@)~ =+~ — 2=
s Am/k)Mk)™ < Ak) .
Next we consider G(k, n) for k < n/2. Using (9) and (14) we have

Gk, n) = i tathB; SK P} (cos )Pl (cos §)(sin §)*—2+2d6
j=0 0

= 308, PEOPEND) 34l by w o+ 2)[PEHOT

=
. g" P’f“(cos 6)(sin g)u——k(sin )+2dg .

0
This time d\(l, k, 7 + 25) = 0 unless n/2 + j =1 < 2n + 47 (actually

it is zero for many values in this range also but that doesn’t matter)
and so I ~n + 2j and thus using (11), (12), and (15) we obtain

|G, m) | = 35 (np=)=(0y=~'8; || Pii(cos 6)(sin 0)#—+2d0.
= g (1) (F) ()2 Hm + ) +(F)* S: Pi3i(cos 0)(sin )*—+:dg
= (n)"(k)“go (H)Mn + J)~AHm + J) Tt

=< W] 5 G+ 56
< @RI + ()= < e/l ()
For the terms with %/2 <% < 2k we use Lemmas 2 and 3. As

in the case £ =0, 0 <\ <1 we first reduce the integral to

[ p0)p1(0d0 + 000~
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and then terms of the same type as previously appear. The proof is

then finished by the same appeal to Hardy’s inequality, M. Riesz’s
ineguality, and Lemma 1.

Theorem 1 then follows by a repeated application of the inequalities
just proven.

2. A lemma. We now give a proof of Lemma 1. Recall that

2n

1 n
b, = — 1 .
nk=[n/zlak ogl’n-{—k—l—l-—kl
We define A, = 3% (5 @;. Then
1 & n 1 n
b, = — A, — A, )1 Qe JOg ——————
nk:t}/‘;}ﬂ( r — Ai_y) log |n+>\.+1—kl+na[/2] og%+x+1
1 = [ n n ]
== Al —1
D T R Mt nt 1k  Elnta—k
1 A,
-+ O(-/;L"a[n/ﬂ) + O(——n2 )
1 2 n+rx—=~k
=+ L1 3 41 [ ' R,
+nk=wzz £ 108 n+rx+1—k *
where R, is a bounded sequence in I** if {a,}el”*. But
B i ati—k - Ly
1 1
= o .
+k—n—?»+ (F—mn—2\)}
So we have '
_-——1— 2n Ak -—1— 29 Ak R
b, = n k< n+r—k nw%m (k—n—N)z'—*- "

The second term is a bounded sequence in [** by [6, p. 198, ¥ 274].
We write the first term as

—A,
1 2n Ak _ 2n (k — )\‘) 2n Ak

nem n+n—k mmant+rn—k  ofem nl—N)

But A,/(k — ) is in [* and so we have that {b,} is an ["* sequence
by Hardy’s inequality and M. Riesz’s inequality for the discrete Hilbert
transform.

A similar proof also shows that
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2n ak n
Cp = =k log¢g — —
k=%‘l] k g]n‘——lc—i—a[

is a bounded operator for « not an integer. If « is an integer the
transformations are bounded if the term when the logarithm is un-
defined is dropped.

A similar theorem is also true in the continuous case where an
integration by parts takes the place of our summation by parts.

3. Applications, Our first application is an analogue of a theorem
of Hardy and Littlewood concerning the Fourier coefficients of even
functions, monotonically decreasing in (0,7), [16, p. 130]. Their
theorem is

THEOREM A. If f(6) is a decreasing integrable function on (0, )
and if a, are the Fourier cosine coefficients of f, then

[S1a.00+ 1]
18 finite if and only if
[[7176) pooeea0]”
18 finite, L< p< oo, —1l<a<p—1.
From this and Theorem 1 we obtain

THEOREM 2. Let f(6) be decreasing and integrable on (0, w) and
a, = t*E F(6)P(cos B)(sin 6)°d6, 0 <. Then [z‘, la, |’ + 1)a] is
finite 1f and only if U If(ﬁ)]"ﬂ”—z—“dﬁ] 18 finite, 1 < p < oo,
—1l<a<p-—1.

Another application is the analogue of the Marcinkiewicz Multiplier
theorem. In the case of Fourier coefficients it is due to Sunouchi [13]
for {a,} €1” and to Igari [10] for {a,}<cl™".

THEOREM B. Let £(8)c L¥0, 7), a, = S £(6) cos néds, |4(8)] = C,

Sﬂ—n Idt(e)lécy n:Oyly"'
x2—n—1

Then if b, = gkt(ﬁ)f(ﬁ) cos nddl and {a,} €l”*, 1<p< o, —1<a<p—1,
we have {b,} el and ||b, ||« = All @y l5.ae

From this we get a form of the Marcinkiewicz theorem for ultra-



404 RICHARD ASKEY AND STEPHEN WAINGER

spherical coefficients.

THEOREM 3. Let f(0)e L'0,7), a,=t) Y S(6)P}Meos 6)(sin 6)*d8,
A>0, (80| =C,

[ laoi=c, n=01,--.
2N

Then if b, = t) Sx t(0) f(6)P)(cos 0)(sin 6)*d6 and if {a,} € l”*, 1<p< o,
0
—1<a<p—1then {b}el” and ||b,|ls« = Alla,|ls.e

For p =2 Hirschman has already obtained a form of the
Marcinkiewicz theorem. If we let

1 0<6<1r

Mm:% r<6<m

then we get the projection theorem of Hirschman [8] but only for
ultraspherical coefficients. Hirschman proves his result for Jacobi
coefficients and presumably Theorem 1 is also true for Jacobi poly-
nomials. However this is still open.
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TWO NOTES ON REGRESSIVE ISOLS

JOSEPH BARBACK

This paper deals with regressive functions and regressive
isols, It was proven by J. C. E. Dekker in [2] that the collection
Agr of all regressive isols is not closed under addition. In the
first note of this paper we shall given another proof of this
fact by considering a new relation, denoted by %, between
infinite regressive isols. Let A and B denote infinite regressive
isols. The main results established in the first note are:

(1) As*B=—= AX B, yet not conversely.

(2) A+ Bedrp== A X B, yet not conversely.

(3) There exist infinite regressive isols which are not X related.
(4) Ag is not-closed under addition.

In addition, the following result is stated.

(5) A+ Bedr=—=min(4,B)< A + B, yet not conversely.

In the second note we consider the <* relation between
regressive isols, A natural question concerning this relation
is whether A <* B, where A and B are regressive isols, is a
necessary or a sufficient condition for the sum A + B to be
regressive, In the second note we show that this condition is
neither necessary nor sufficient.

We shall assume that the reader is familiar with the
notations, terminology and main results of [1] and [2].

Preliminaries. Let € ={0,1,2,3, ---} be the set of nonnegative
integers (numbers), A one-to-one function ¢, from ¢ into ¢ is regressive
if there is a partial recursive function p(x) such that ot & dp and
p(ty) = &, (VR)[0(¢,.+) = ¢.]. The function p is a regressing function
of t, if p has the following additional properties: o0p < dp and
(vo)[x e dp — @n)[p~*'(x) = p™(®)]]. It is known (ef. [1]) that every
regressive function has a regressing function. A set is regressive if
it is finite or the range of a regressive function. A set is retraceable
if it is finite or the range of a strictly increasing regressive funetion.
Let p be a regressing function of ¢,, then the funection p* is defined
by: dp* = op and p*(x) = (un)[p"*(x) = p"(x)]. It follows that p* is
a partial recursive function and (vn)[p*(¢.) = n].

Let s, and ¢, be two one-to-one functions from & into &. Then
s, <*t,, if there is a partial recursive function f such that

(1) ps S of and (V)[f(s.) =t.].

Also, s, and ¢, are said to be recursively equivalent (denoted s, ~ t,)

Received October 5, 1964. Most of the results contained in this paper were ob-
tained while the author was a student of Professor J. C. E. Dekker at Rutgers
University. Research on this paper was supported under NSF Grant GP-266.
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if there is a one-to-one partial recursive function f such that (1) holds,
Let o0 and 7 be two sets. Then ¢ <*r, if either ¢ is finite and card.
¢ < card. 7z, or o is infinite and there is a partial recursive function
S such that o S df, f is one-to-one on ¢ and f(0) =7. Let S and T
be two isols. Then S <* T, if there are sets 0 € S and 7 € T such that
o =*7. The following propositions will be useful:

(a) Retraceable sets are either recursive or immune,

(b) Every funection recursively equivalent to a regressive function
is regressive,

(¢) Every set recursively equivalent to a regressive set is re-
gressive,

(d) Let o = ps, and 7 = pt, where s, and ¢, are one-to-one re-
gressive functions, Then ¢ <*7 if and only if s, £*¢,, and 0 = 7 if
and only if s, =~ ¢,.

(e) Let s, and ¢, be one-to-one functions from ¢ into €. Then
s, =~ t, if and only if s, <*¢, and ¢, =<*s,.

Proposition (a) is proven in [3]. Propositions (b) and (c), and the
second part of (d) are proven [1]. Both (e) and the first part of (d)
are given in [2]. :

Two sets a and B are said to be separated (denoted a | B) if there
are disjoint r.e. sets a* and B* such that a £ a* and S < £*. Two
functions a, and b, are said to be separated (denoted a,|b,) if their
ranges are separated sets. We will use the familiar primitive recursive
functions j, k and ! defined by

ji@y) =+ @+ y)x+y+ 1)/2,
J(k(n), Un)) = n .

The function j maps & one-to-one onto e.

Note 1. The ¥ relation.

DEFINITION 1. Let a, and b, be any two one-to-one functions from
¢ into &, Then a, & b, if there is a partial recursive function p(x)
such that

(vn)la, € dp and p(a,) =b,) V (b.€dp and p(b.) = a,)] .

The following proposition can be readily proven using the definitions
of the concepts involved. Its proof will be omitted.

ProrosITION 1.1. Let a, and b, be any two one-to-one functions
from ¢ into &. Then

(a) @, &b, —b,3a,,

(b) a,=*b,=—a,%b,,
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@y L bay
(¢) a,=a,, b,=b,,} =—a,Eb,.
@y | bay @ | br,

DEFINITION 2. Let A and B be any two infinite regressive isols.
Then A X B if there are regressive functions a, and b, such that

oa,c A, 0b,efB, a,/b, and a,%0,.

RERARK. In view of Proposition (d) and part (¢) of Proposition
1.1, we see that if A and B are infinite regressive isols, then A ¥ B
means that a,* b, for every pair a, and b, of separated, regressive
functions ranging over sets in A and B respectively.

THEOREM 1.1. Let A and B be infinite regressive isols. Then

A<*B—AYB.

Proof. Let a, and b, be any two (one-to-one) regressive functions
ranging over sets in A and B respectively and such that a, <*b,. Set
a, = 2a, and b, = 2b, + 1. Then a, = a,, b, = b, and a,|b,. Taking
into account Propositions (b), (¢) and (d) it follows that a) and b are
separated, regressive functions which range over sets in A and B re-
spectively. In addition, a, <* b, implies a, <* b, By Proposition 1.1
(b) this means a, ¥ b,, and therefore A% B.

THEOREM 1.2. For all infinite regressive isols A and B,

A+ Bedy— AL B,

Proof. Let A and B denote two infinite regressive isols whose
sum is also regressive. Let a, and b, be regressive functions with
a=pa,cA B=pb,cBand «|B. Then a+ BcA+ B and a+ 8
is a regressive set. Let ¢, be a regressive function ranging over the
set @ + B and let p(x) be a regressing function of ¢,. Set

0= f{x| (@ = a, and p*(b,) < p*(@,)) V (@ = b, and p*(a,) < p*(3.))} .

We note that 6 & o + 8 and that for each number n, exactly one of
the numbers a, and b, belongs to 6. Let the function f with domain
0 be defined by

b,, if z=ua,,
Sle) =

a, if x=25b,.

It is easily seen that if f has a partial recursive extension then a, ¥ b,.
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Since a, and b, are separated functions this fact would also imply that
A ¥ B. Hence to complete the proof it suffices to show that f has a
partial recursive extension. For this purpose, assume that x €. Since
« and B are separated sets we can determine whether xea or x€p.
First suppose that € . Taking into account that a, and ¢, are re-
gressive functions, we can find the numbers % and v such that 2 =
a, = ¢,. The number a, belongs to 6 and therefore

bue (co, Cyy **°, cv_-_l) = {pr(x) I 1 é r é 'U} .

The members of the set on the right side can be effectively obtained
from x, since p is a partial recursive function. In addition, using once
again the separability of the sets @ and B, and the regressiveness of
the function b,, it follows that we can find the number b,. This gives
the value of f(). In a similar fashion one can determine the value of
Sf(x) in the event x€ 8. From these remarks we can conclude that f
will have a partial recursive extension. This completes the proof.

REMARK., We shall state without proof, two additional facts
which can be established in the proof of Theorem 1.2. These are

(a) d emin (4, B) ,
(b) dl@+p) —9.
Since @ + Be€ A + B, these facts imply that
(*) min (4,B) £ A+ B.

In the proof of Theorem 1.2, 4 and B were assumed to be infinite re-
gressive isols. However, it is easily seen that the relation denoted by
(*) is also true in the event either A or B is finite, for in this case
min (A, B) assumes one of the values (4, B). From these remarks one
has the following

THEOREM. For all regressive isols A and B,
A+ Bed,=—min(4,B) < A+ B.

The statement obtained by reversing the implication in the above
theorem is false, for in the second note it is shown that there are
two infinite regressive isols which are comparable relative to the <*
relation, hence their minimum assumes one of these two values, and
yet whose sum is not regressive. According to Theorem 1.1, this also
means that reversing the implication in Theorem 1.2 yields a false
statement as well.

THEOREM 1.3. There exist infinite regressive tsols A and B which
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are not X related.

Proof. Let {p;} be an enumeration of partial recursive functions
of one variable such that:

(a) every partial recursive function of one variable occurs at
least once in {p;},

(b) »(1)=3 and p,3) #=1.
We shall define two functions a, and b, such that the recursive
equivalence types, A = Req pa, and B = Req pb, satisfy the conditions
of the Theorem.

Put a, =1 and b, = 3. We note that (b) implies

(1) Do(@) # b, and py(by) # a, .

Let £t = 1 and suppose that a,, -+, a,_, and b, -- -., b._, have already
been defined. We define a, and b, by setting

@, = §(@s, W) ,

be = J(brs, vs)
where the numbers #, and v, will be defined in such a manner that
(2) pla,) #=b, and p,b,) #a,.
The definition of u, and v,. Set

77 = {u I j(at——b u) € apt} ’
= {v]3(®., v) €dp} .

We consider three cases:

Case I. 7’ +# ¢. Let w be the smallest number belonging to 7',
Then p,j(a,_;, w) is undefined.

Subcase I.1. There exists a number v such that
P:eJ(be—s, V) # §(@es, W)
Set
Uy = U,
v, = (D5 (s, ©) # J(Bey, W] -
Subcase I1.2. For all numbers v,

D30y ¥) = J(A_y, %) .

Consider the number j(a,_;,  + 1). Since j maps & one-to-one onto &,



412 JOSEPH BARBACK

it follows that j(a,_,, # + 1) # j(a,_,, w). Hence for all numbers v,
DeJ(bieyy v) # J(@yy u + 1) .
Clearly there exist numbers v’ such that j(b,_,, ¥') # p(a,_,,  + 1).

Set
U =u+1,
vy = (V) G(be—yy V") # DJ(Qry u + 1)] .

Case II. '+ ¢. Here we proceed in a fashion similar to Case I.
The details are omitted.

Case III. v’ = = ¢, i.e.,, n=( =g, i.e,
(VW)[5(@.-s, w)€0] and (vO)[j(b.-,, v) €],

where 6 = 6p,. The numbers in the following four lists:

L1, j(a't—n 0), j(at—n 1), .-
L2, 0:5(be—s, 0), DJ(bss, 1), = -+
L3. 30—y, 0), 5By, 1), -
L4. DeJ(@sy 0)y DeJ(Bery 1), - =+

are therefore all defined. Since the function j(z, ¥) is one-to-one, all
numbers in L1 are distinet and all numbers in L3 are distinet.

Subcase III.1. L1 contains a number which does not oceur in L2,
Set

Uy = (ﬂu)(vv)[j(az—u u) +* pzj(b-—u ’U)] .
Since all of the numbers in L3 are distinct, it follows that
@AV bs-1, V) # 0.5 (Fs, )]«

Set
Ve = ({1’0)[.7.(6,_1, V) # P, J(Us, ut)] .

Subcase II1,2, Every number of L1 occurs at least once in L2.
Since L1 contains infinitely many numbers this implies that L2 contains
infinitely many numbers. Hence, not only

(vw)@v)[5(a;_,, w) # D, 5.y, V)],
but also
(Vu)@3 infinitely many v)[5(@.—;, %) # 0,5(b;—, V)] .

This must be true in particular for u = 0. Thus there exists an infinite
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sequence vy, V;, ¥,, «++ of distinet numbers such that

(vm)[j(a,—,, 0) # 0,5 (b,—s, v.)] .

Let
n* = (ﬂn)[j(b:—n vn) 7 ptj(at—ly O)] .
Define
u, =0,
Ve = Vps &

This completes the definition of the numbers %, and v,, and hence also
of the functions a, and b,. It is readily verified that the numbers a,
and b, have been so defined as to satisfy (2), that is

p(a,) # b, and p,b,) #* a,.
Combining this fact with (1) gives
(3) (vn)lp.(a,) #= b, and p,(0b,) *= a,].
Let
«=pa, and B =pb,.

We claim:

(a) a, and b, are strictly increasing regressive functions and «
and B are retraceable sets,

(b) a|B,

(¢) a, and b, are not ¥ related,

(d) «a and B are immune sets.

Re (a);: It follows from the definition of the function j(x, y) that
z < j(x,y) for € > 0. Moreover, we have

a, > 0 and (vn)(gu)[an+1 = j(am ’U/)] ’
bo > 0 and (Vn)(a'v) [bn+1 - j(bn’ Iv)] .

Hence
A < 8 < A< +++ and b, < b, < b < o+,

and therefore a, and b, are strictly increasing functions. Set

@) Qg, if z=a,,
X)) =
? k@), if ©%*a.

Clearly q(x) is a recursive function and it can be readily shown that
q(x) is a regressing function of a,. By replacing a, by b, in the de-
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finition of ¢(x) yields a regressing function of b,. Hence, a, and b,
are each strictly increasing regressive functions and therefore a and g8
are retraceable sets.

Re (b): As a consequence of the definition of the functions a, and
b,, we have

acizlz=1V @)ke = 1]},
BCiz|z =3\ @k @) = 3]}.

The sets appearing on the right sides are clearly r.e. Also, since
k(B) =0, k(1) = 0 and k(0) = 0, they are disjoint. Hence a| .

Re (¢): Suppose that statement (¢) were false; this would then
mean a,* b,. Hence there would be a partial recursive function p(x)
such that

(4) (vn)[p(a,) = b,) V (p(0,) = a,)] .

Assume that the index of p in our enumeration is 7, i.e., p(x) = p;(x).
In view of (4), we would have

pi(a;) = b;- or p(b) =a;.

However, according to (38) this statement must be false., This con-
tradiction establishes the desired conclusion that a, and b, are not %,
related.

Re (d): By part (a), each of the sets @ and B is retraceable and
hence is either recursive or immune. If one of these sets is recursive
then the strictly increasing function ranging over the set would be a
recursive function. Thus, if @ were a recursive set then a, would be
a recursive function. In this event, we would have that

b, =* n, since b, is a regressive function,
n <*a,, since a, is a regressive function,

and, by the transitivity of the <* relation, also that b, <*a,. By

Proposition 1.1 (b), this means that a, b,, which is not possible

according to part (¢). Therefore @ must be an immune set. In a similar

way it can be shown that B is also an immune set. This verifies (d).
To complete the proof, let

A=Reqa and B =ReqpB.

By statements (a) and (d) it follows that A and B are infinite regressive
isols. In addition, combining statements (a) and (¢) with the Remark
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following Definition 2 implies that A and B are not ¥, related. Hence
A and B satisfy the requirements of the Theorem.

REMARK A. In[2, Theorem T2] it is shown that both the collection
A, of all regressive isols and the collection .{;, of all cosimple regres-
sive isols are not closed under addition. We note that the first of
these results can be obtained by combining Theorems 1.2 and 1.3.

REMARK B. It is readily seen from Definitions 1 and 2, that the
<, relation for infinite regressive isols is both reflexive and symmetric.
The following Corollary to Theorem 1.3 shows that * is a not a transi-
tive relation,

COROLLARY. There exist infinite regressive isols A, B and W
with AE W, BE W, while A and B are not ¥, related.

Proof. Let A and B be any two infinite regressive isols which
are not ¥ related. Set W = min (A4, B). Then W is an infinite regressive
isol with

W=<*A and W=*B.

Hence, by Theorem 1.1
W¥A and W& B.

According to our choice of A and B, the proof is complete.

Note 2. The main results of this note will establish the fact that
A <* B (where A, Be A;) represents neither a necessary condition nor
a sufficient condition for the sum A 4+ B to belong to 4,. In the
following discussion we will use the notion of the degree of unsolvability
of a regressive isol. This concept is studied in [2]. If A is a regres-
sive isol, then 4, will denote its degree of unsolvability.

THEOREM 2.1. There exist regressive isols A and B with A <* B,
yet whose sum A + B 18 not regressive.

Proof. Let P and @ denote two (infinite) regressive isols with
different degrees of unsolvability, i.e., 4, # 4,. Set

A =min (P, Q).
Then A is an infinite regressive isol such that
A=Z*P and A<*Q.

To complete the proof we need only show that at least one of the two
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isols A + P and 4 + @ is not regressive. To prove this fact, let us
suppose otherwise, namely that both A + P and A + @ are regressive
isols. Then according to [2, Proposition 17(d)], it follows that

4,=4p and 4,= 4, ,

and therefore 4, = 4,. This last equality contradicts our choice of P
and Q. Hence, either 4 + P or A + Q is not regressive. If we define
B to be Pif A+ Pe 4, and to be @ otherwise, then A and B will
satisfy the requirements of the Theorem.

REMARK. It is proven in [2] that there are cosimple regressive
isols with different degrees of unsolvability. Moreover, the minimum
of two cosimple regressive isols is again a cosimple regressive isol.
Thus, as a consequence of the previous proof, we see that the following
result is also true.

THEOREM. There exist cosimple regressive isols A and B with
A <* B yet whose sum A + B is not regressive.

THEOREM 2.2. There exist regressive isols S and T which are
incomparable relative to the =<* relation and whose sum is regressive.

Proof. This shall be a constructive type of proof and we shall
use a technique introduced in the proof of [4, Theorem 95]. The proof
will progress in four steps.

Step I. In this step we shall define a particular function a, from
¢ into &, and show that it is strictly increasing and regressive.

Let p;(x) denote a function of the two variables ¢ and « such that
every one-to-one partial recursive function and no other function appears
in the sequence {p;}. For any numbers ¢, ---, ¢,, 1; max* {p;,(t), -,
p:(t.)} is defined to be O if none of the m + 1 numbers p;(t,), -, D:(tn)
is defined; and is defined to be the maximum of those numbers
2:i(ty), * -+, vi(t,) which are defined; if at least one of them is defined.

The function a, is defined by,

a=1,
Qrss = J(@r, Urs)) , Where
Uy, =0, if either k=4n + 1l or k=4n + 3,
Uiy = () 5(ax, y) >max* {p,(a), * - , pu(@,)}], if either k=4n or k=4n+2.
It is readily seen that a, is an everywhere defined function from ¢ into

é. Moreover, just as the function a, in the proof of Theorem 1.3 was
shown to be strictly increasing and regressive, it can be shown that
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a, is also strictly increasing and regressive.

Step II. Let the four sets o, 0, 6. and o0, denote the ranges of
the functions a,,, @1, @4ie and a,,., respectively. Since each of the
functions 4n, 4n + 1, 4n + 2 and 4n + 3 is strictly increasing and
recursive, it follows that each of the functions a.,, @+, @,4, and a,,.,
is regressive. Hence the four sets d,, 4,, d, and ¢, are each regressive,
We shall now prove:

(a) mnot [4, = 4],

(b) not [d, = 0],

(e) a, ranges over an immune set.

Re (a): To prove statement (a), let us suppose that it is false.
Then, by the enumeration in Step I, there would be a number ¢ such

that
d,Cop; and pi(d) = 4, .
One consequence of this fact is

( 1 ) (pi(ao)y pi(a4)) tty pi(a4i)) c 81 .

By the definition of the function a,, it follows that a,., would exceed

each of the numbers p;(a,), p.(a), «--, pi(a;). Since a, is strictly in-
creasing, the same would be true for a,;., with 7 = 1. Hence from
(1) we can conclude that

(pi(ao)y pi(a4); Ty pi(a4i)) jo (au gy * 0, a4(i—-1)+1) .

However, the set on the left side has exactly 4+ + 1 members while the
set on the right side has only ¢ members. This contradicts the fact
that p; is a one-to-one function. This means that statement (a) must
be true.

Re (b): We can prove statement (b) in a way similar to the one
used to prove (a). Assuming that statement (b) is false implies that
there is a number ¢ such that

62C 6?9«:, and pi(az) = 53 ’
and
( 2) (pi(az); pi(as)a ct pi(a4i+z)) c 33 .

The definition of the function a, implies that .., will exceed each of
the numbers p,(a,), pi(@s), * -+, p:(24..), and since a, is strictly increasing,
the same will be true for a,;., with j = ¢. Hence from (2) we can
conclude that



418 JOSEPH BARBACK

(Pi(@y), (@), **+, Di(Ay1s)) C (@sy A7y ==+, Bygipyvs) -

Yet the set on the left side has exactly 7 + 1 members while the set
on the right side has exactly + members. This contradicts the fact that
»; is a one-to-one function. Therefore (b) must be a true statement.

Re (¢): Since a, is a strictly increasing regressive function it
ranges over an infinite retraceable set. We know that this set will
be either recursive or immune. But it is easily seen that if a, ranges
over an infinite recursive set then each of the sets 6, and 6, will also
be infinite and recursive, According to statement (a), this is not
possible. Hence a, ranges over an immune set. This verifies (¢) and
also completes Step II.

Step III. Let
c=0,+0, and 7 =20,+ d,.

We shall now prove:
(d) o and 7 are infinite regressive sets,
(e) olr,
(f) not [o =*7],
(g) not [z =*a].
For this purpose, let

@) (4n if ©=2n,

X)) =

g i4n+3, if x=2n-+1,
4 1, if =2n,

h<x>={”+ o=

im+2, if z=2n+1.

Then

(3) O0ym =0 and PGy, =T.

We also note that the functions g and h are each recursive and strictly

increasing. In addition, their ranges are disjoint and the union of their
ranges is €.

Re (d): Since both g and & are strictly increasing, recursive
functions and a, is a regressive function it readily follows that both
@, and a,., are regressive function. By (3), this means that ¢ and
7 are infinite regressive sets.

Re (e¢): From the two facts, a, is a regressive function, and the
ranges of the recursive functions g and h are disjoint, one can easily
show that the two functions a,,, and a,, are separated. This means



TWO NOTES ON REGRESSIVE ISOLS 419

that o and © are separated sets.

Re (f): Suppose that statement (f) were false, namely assume
that ¢ <* . According to Proposition (d), this implies that @, =* Gpm.
Comparing the definitions of g(x) and h(x), we can conclude from this
fact that

Ay =5 Ay o
Clearly,
Q1 =7
and hence by Proposition (e),
Ay, = Aty »
According to Proposition (d), this implies that J, ~ ¢, which is not

possible in view of part (a). Therefore statement (f) is true.

Re (g9): To verify (g) we can proceed as in the previous case.
Suppose that statement (g) is false. This will imply that @, =* @y,
and this fact gives

Clearly,

and hence
a4n +2 = a4n+3 .

This means that ¢, = ¢, which is not possible in view of part (b). This
contradiction establishes (g) and also completes Step III.

Step IV. Let
S=Reqo and T = Reqr~.

Both ¢ and 7 are infinite subsets of the immune set oa,, and therefore

are themselves immune sets. Also, by part (d), ¢ and ¢ are regressive.
Hence

(1) S and T are infinite regressive isols.

Combining [2, Proposition P 10] and statement (f) and (g), implies
that

(ii) S and T are incomparable relative to the <* relation.

In view of (i) and (ii), in order to complete the proof it remains
only to show that
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(i) S+ Ted,.

Since ¢ and 7 are separated sets, it follows that ¢ + e S + T.
Moreover, o + 7 is a regressive set since 0 + 7 = pa,. Hence S+ T
is a regressive isol. This verifies (iii) and completes the proof.
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ALLEN R. BERNSTEIN AND ABRAHAM ROBINSON

The following theorem is proved.

Let T be a bounded linear operator on an infinite-dimen-
sional Hilbert space H over the complex numbers and let
p@) + 0 be a polynomial with complex coefficients such that
p(T) is completely continuous (compact)) Then T leaves
invariant at least one closed linear subspace of H other than
H or {0}.

For p(z) = 2* this settles a problem raised by P. R. Halmos
and K. T, Smith.

The proof is within the framework of Nonstandard Analysis.
That is to say, we associate with the Hilbert space H (which,
ruling out trivial cases, may be supposed separable) a larger
space, *H, which has the same formal properties within a
language L. L is a higher order language but *H still exists
if we interpret the sentences of L in the sense of Henkin.
The system of natural mumbers which is associated with *H
is a nonstandard model of arithmetic, i.e., it contains elements
other than the standard natural numbers. The problem is
solved by reducing it to the consideration of invariant sub-
spaces in a subspace of *H the number of whose dimensions
is a nonstandard positive integer,

1. Introduction. We shall prove:

MAIN THEOREM 1.1, Let T be a bounded linear operator on an
infinite-dimensional Hilbert space H over the complex numbers and
let p(z) = 0 be a polynomial with complex coeffictents such that p(T)
18 completely continuous (compact). Then T leaves invariant at least
one closed subspace of H other than H or {0}.

For p(z) = 2* this settles Problem No. 9 raised by Halmos in [2]
and there credited to K. T. Smith. For this case, a first proof was
given by one of us (A.R.) while the other (A.R.B.) provided an alter-
native proof which extends to the case considered in 1.1. The argument
given below combines the two proofs, both of which are based on
Nonstandard Analysis. The Nonstandard Analysis of Hilbert space
was developed previously by A.R. as far as the spectral analysis of
completely continuous self-adjoint operators (compare [7]) while A.R.B.
has disposed of the spectral theorem for bounded self-adjoint operators
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by the same method. The general theory will be sketched here only
as far as it is required for the proof of our main theorem.

Some of our arguments are adapted from the proofs of the theorem
for p(z) =z, i.e., when T is itself completely continuous, which are
due to von Neumann and Aronszajn for Hilbert space, as above, and
to Aronszajn and K. T. Smith for general Banach spaces [1].

The particular version of Nonstandard Analysis which is convenient
here relies on a higher order predicate language, L, which includes
symbols for all complex numbers, all sets and relations of such numbers,
all sets of such sets and relations, all relations of relations, ete.
Quantification with respect to variables of all these types is permitted.
Within this framework, a sequence of complex numbers, y =s,, © =
1,2,3,--., is given by a many-one relation S(n, y) when % varies over
the set of positive integers, P. The separable Hilbert space, H, may
then be represented as a set of such sequences (i.e., as [,) while a
particular operator on H is identified with a relation of relations.

Let K be the set of sentences formulated in L which hold in the
field of complex numbers, C. K includes sentences about, or involving,
the sets of real numbers and of natural numbers, since these may be
regarded as subsets of the complex numbers which are named in L.
It also includes sentences about Hilbert space as represented above.

Nonstandard Analysis is based on the fact that, in addition to C,
K possesses other models, which are proper extensions of C. We single
out any one of them, *C, calling it the nonstandard model, as opposed
to the standard model, C. However, *C is a model of K only if the
notions of set, relations, etc. are interpreted in *C in the sense of the
higher order model theory of Henkin [3]. That is to say, the sets of
sets, relations, ete., which are taken into account in the interpretation
of a sentence in *C may (and will) be proper subsets of the corresponding
sets over *C in the absolute sense. The sets, relations, ete. which are
taken into account in the interpretation in *C will be called admisstble.

The basic properties and notions of Nonstandard Analysis which
are expounded in [4] and [5] are applicable here. Thus, an individual
of *C (which will still be called a complex number) may or may not
be an element of C, i.e., a complex number in the ordinary sense or
standard number, briefly an S-number. Every finite complex number
a is infinitely close to a unique standard complex number, °%a. That is
to say, if |a| is smaller than some real S-number, then there exists
a complex S-number, °a, the standard part of a, such that |a — ‘a|
is smaller than all positive S-numbers. A number which is infinitely
close to 0 is wnfinitely small or infinitesimal. In particular, 0 is the
only S-number which is infinitesimal. A complex number a which is
not finite, i.e., which is such that |a| is greater than any S-number,
is infinite. There exist elements of *C which are infinite.
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Every set, relation, ete. in C possesses a natural extension to *C,
This is simply the set, relation, ---, in *C which is denoted by the
same symbol in L. At our convenience, we may, or may not, denote
it by the same symbol also in our notation (which is not necessarily
part of L). Thus, we shall denote the extension of the set of positive
integers, P, to *C by *P but if ¢ = {a,} is a sequence of complex
numbers in C then we shall denote its extension to *C still by ¢ = {a,}.
According to the definition of an infinite number which was given
above, the infinite positive integers in *C are just the elements of
*P— P,

The following results are basic (for the proofs see [5] and [6]).

THEOREM 1.2. The sequence {a,} in C converges to a limit a
(@ an S-number) if and only tf the extenston of {a,} im *C satisfies
the condition that |a — a,| is infinitesimal for all infinite n.

THEOREM 1.3, Let {a,} be an admissible sequence in *C such
that a, s infinitesimal for all finite n. Then there exists an infinite
positive integer w (t.e., w € *P — P) such that a, is infinitesimal for
all m» smaller than w.

{a,} is called admissible in *C if the relation representing {a,}
belongs to the set of relations which are admissible in the sense ex-
plained above. Admissible operators, ete., are defined in a similar way.
1.3. shows that the sequence {a,} which is defined by a, = 0 for finite
n and by a, = 1 for infinite % is not admissible in *C.

2. Nonstandard Hilbert space. The selected representation of
the Hilbert space H consists of all sequences {s,} of complex numbers
such that ||o | = 7., ]s,|* converges. The corresponding space *H
over *C consists of all admissible sequences {s,} in *C such that
1ol = 2|8, |* converges, i.e., such that it satisfies the formal
(classical) definition of convergence in L.

Among the points of *H are the extensions of points of H (as
sequences). We identify the points of H with their extension in *H
and may then regard H as a subset (though not an admissible subset)
of *H.

A point ¢ of *H is called norm-finite if || o|| is a finite real
number in the sense explained in section 1, o is mear-standard if
|| 6 — ¢°|| is infinitesimal for some ‘¢ e H. If such a % exists then it
is determined uniquely by o¢. It is called the standard part of o.

Applying 1.2. to the partial sums of any point ¢ = {s,} in H, we
obtain:
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THEOREM 2.1. For any o = {s,} in H and any infinite positive
integer w, the sum >, |8, |° s infinitesimal.

Next, we sketch the proof of:

THEOREM 2.2. A point ¢ = {s,} in *H is near-standard if and
only if it is norm-finite and tf at the same time >.7., |8, |* is infini-
tesimal for all infinite w.

Suppose that ||o — % || is infinitesimal for some % in H. Then
oll=llo=‘c+%0|[sllo—="a|[+[l%0|l<1+|%]| so that o is
norm-finite. Also, let o = {s}}, then 37, | s, |* is infinitesimal for infinite
w, by 2.1, Also, > |s, — s, |* is infinitesimal since this sum cannot
exceed ||o—"’||*. But

o o0 1/2 o 1/2\ 2
Slar=s((Sls—ak) +(Sisr) ),
showing that the conditions of 2.2 are necessary.

Supposing that they are satisfied, || o || is finite, hence | s, | is finite
for any n and s, possesses a standard part, °,. Consider the sequence
{’s,} in C. It can be shown that >, |%, |* converges in C and hence,
represents a point ¢’ in H and *H. Thus, if ¢’ = {s)} then s| =",
for finite 7 but not necessarily for infinite n. Since, for all finite k,

k|8, — Sh|P= k|8, — %, |* is infinitesimal, it follows from 1.3
that >, |s, — s, |* is still infinitesimal for some infinite k, k = 0w — 1,
say. On the other hand, >, |s,|* is infinitesimal by assumption, and
Sie-w | 81 |* is infinitesimal, by 2.1. The inequality

oo w-—1
lIU—G'H“—-;m—-szlzé’;isn—szlz

(i) (G4

then shows that ||o — ¢’|| is infinitesimal, ¢ is near-standard with
standard part %¢ = a’. ‘

The following theorem is proved in [7] for general topological
spaces but under somewhat different conditions.

THEOREM 2.3, Let A be a compact set of points inm H, Then
all points of *A (i.e., of the set which corresponds to A in *H) are
near-standard.

Indeed, suppose that A is compact but that o€ *4 is not near-
standard. Then there exists a standard positive » such that || — 7|} > »
for all e H. This is trivial if ¢ is not norm-finite. If ¢ is norm-
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finite, then by 2.2, there exists an infinite positive integer @ such
that >, |s,|* > 2r* for some standard positive number ». For any

n=w

t = {t,} in H, >, |t,|* is infinitesimal. Hence

z(Sis) = (S1tr) >

lo—zii= (s —t

On the other hand, since A is compact it possesses an r-net, i.e.,
for some finite number of points in 4,7, -+-,7,, and for all & in A4,
[l& — ;]| < r for some 4, 1<i<m. But, for the specified z,, +--, 7,
this is a property of H which can be formulated as a sentence of K.
It follows that for all points & of *A also ||§é — 7;|| < r for some
1, 1=<1=<m. This contradiction proves the theorem.

3. Operators in nonstandard Hilbert space. An operator from
H into H may be regarded as a relation between elements of H, i.e.,
between sequences of elements of C (which are themselves relations).
The corresponding operator in *H, which is denoted by the same
symbol in L, will be denoted here also by 7. This cannot give rise
to any confusion. For if ¢ = To in H then 7 = To also in *H since
© = To can be expressed by a sentence of K.

In particular, let T be a bounded linear operator defined on all
of H. For the assumed representation of H by sequences, T has a
matrix representation, T = (a;x),7,k=1,2,3, ---. The coefficients of
this matrix satisfy the conditions:

!ajkiz<°° j=13273)"°

Ms

3.1.

by
I

1

1a'jkl2<°° k:1,2731"'

1M

<
I

In *H these subscripts of (a;;,) vary also over the infinite positive
integers. By 3.1 and 2.1., 37, |@;|* is infinitesimal for infinite o,
provided j is finite. This is not necessarily true for infinite j as
shown by the matrix for the identity operator.

THEOREM 3.2. Let T be a completely continuous (compact)
linear operator on H. Then T maps every mnorm-finite point in
*H on a near-standard point.

Proof. If o is norm-finite then ||g|| < r for some positive S-number
7. The sphere B = {&|||¢]| < 7} is bounded in H and is mapped by T
on a set whose closure, A, is compact. If the corresponding sets in
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*H are *B and *A respectively then *B contains ¢ (since o satisfies
the defining condition of B) and so *A contains T0. But *A contains
only near-standard points, by 2.3, so To is near-standard, proving 3.2.

In a somewhat different setting [7] the converse of 3.2 is also true.

THEOREM 3.3. If T = (a;) ts a completely continuous linear
operator on H, then a;, is infinitesimal for all infinite k (j finite
or tnfinite).

Proof. For finite j, this follows from the fact that 32, |a;.|* is
then infinitesimal, For infinite j, define 0 = {s,} by s, =0 for n # k
and by s, =1. Then ||o]| =1, so 7 = {t;} = To must be near-standard,
by 3.2, where t; = >, @;,8, = @;. But then ¢; = a;, must be infini-
tesimal for infinite 7, by 2.2.

An operator T = (a;;,) will be called almost superdiagonal if a;, =0
for j>k+1,k=1,2,8,--.. This definition depends on the specified
basis of H.

THEOREM 3.4. Let T be a bounded linear operator on H which
ts almost superdiagonal, Let

3.5. pR)=¢ + g+ o + " C,FO,m=1

be a polynomial with standard complex coefficients such that p(T)
28 completely continuous. Then there exists an infinite positive
integer @ such that a..,. s infinitesimal.

Proof. Put Q = (b;,) = p(T). We show by direct computation
that, for any h = 1,

3.6. brrmn = Conpt, 1 Qhro,hc1@hsnre *** Chtmohtmei o

By 8.8, by is infinitesimal for all infinite k. Sinece ¢, is not
infinitesimal, one of the remaining factors on the right hand side of
3.6 must be infinitesimal, e.g, @) 1,125, 0 <J<m. Setting w =h + 7,
we obtain the theorem.

4. Projection operators. Let E be any admissible closed linear
subspace of *H within the nonstandard model under consideration.
The corresponding projection operator, which reduces to the identity on
E, will be denoted by P;. Given E, we define a subset °E of H as
follows. For any o€ H,o¢c °FE if and only if ||o — ¢’|| is infinitesimal
for some ¢’ ¢ E. Since, by a familiar property of projection operatcrs,
"o —0'|| = ||o — Pgol|, it follows that o € °E if and only if |6 — P,o |
is infinitesimal. In that case, ¢ = °(P,g). More generally, if 7 is a
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near-standard element of E then °te °E,
The tools developed so far suffice to establish the following theorem,
4.1, as well as the subsequent theorems, 4.2 ond 4.3.

THEOREM 4.1. Given FE as above, the set °E is a closed limear
subspace of H.

Proof. Let o,, 0, be elements of °E. There exist elements 7,, 7.
of E such that ||o, — ., and | 0, — 7,|| are infinitesimal. Then
T, + 7, belongs to £ and

H(O-l‘{“az)_(t;'l‘fﬂ)‘i §H0'1_71H+ Ho'z_z"zH

so that the left hand side of this inequality also is infinitesimal.
Hence, o, + 0, belongs to °E. Again for 0e€°FE and )\ standard
complex, there exists 7€ E such that || — || is infinitesimal. Then
AMe R and ||[Mo — Al = | N ||o — 7| is infinitesimal and so Ao € °E.
This shows that °E is linear in the algebraic sense.

Now let ¢, — o, where the o, are defined for standard natural n
and belong to °E, and o belongs to H. In order to prove that °F is
closed we have to show that ¢ belongs to °E. By assumption, the
distances || o, — Py0,|| are infinitesimal for all ne N. Hence, by
Theorem 1.3 there exists an infinite natural number ® such that
lio, — Pgo,|| is infinitesimal for all n < w. The sequence of points
{0.} in °E < H extends, in *H, to a sequence of points defined for
all ne *N. Moreover, by 1.2 above, the fact that ¢, — o in H implies
that || o, — o|| is infinitesimal for all infinite n. Hence, for all infinite
n less than w, |0 — Pgo,||, which does not exceed

lio — 0.1l + [ 0. — Pso.ll,

also must be infinitesimal. But Ppo,€ E and so o€ °E, as required.
This completes the proof of 4.1,

Let w be an infinite natural number. The closed linear subspace
of *H which consists of all points ¢ = {s,} such that s, =0 for n > w
will be denoted by H,. The corresponding projection operator, which
will be denoted by P maps any ¢ = {s,} in *H into the point ¢’ = {s;},
where s, =s, for n < w and s, =0 for n > w. For any point c€ H,
|6 — Po|| = (Ziewsr | 8. 19)Y* is infinitesimal, by 2.1.

For any bounded linear operator T' on H let T' = PTP, and let
T, be the restriction of T’ to H,. Then ||T'|| < |PI*I T =||T|
and so || T.|| < || T .

THEOREM 4.2, Let E be an admissible closed linear subspace
of H, which is tnvariant for T, t.e., T.ES E. Then °E 1is
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wmvariant for T, T°E < °E.

Proof. Let oc€°E, then we have to show that Toe°E. By
assumption, there exists a 7€ E such that || — 7|| is infinitesimal,
Then T.,ce E, ie., PTtrc E. Thus, in order to show that To¢ is
infinitely close to F, we only have to establish that the quantity:
a = || To — PT7|| is infinitesimal, Now

@ =|To — PTt|| = || To — PTo + PT(c — 7)||
=||To — PTo ||+ [|P|[[IT]|||o — 7|

and ||T|| is a standard real number, while ||P|| <1 and ||jod — 7]| is
infinitesimal. At the same time 7o is a point of H and so the
difference To — PTo is infinitesimal, as shown above. It follows that
a is infinitesimal, and this is sufficient for the proof of 4.2.

The number of dimensions of H, as defined within the language L
is w, d(H,) = w. In this sense, H, is “finite-dimensional”. Similarly,
with every admissible closed linear subspace E of H,, there is associ-
ated a natural number d(E) in *C, which may be finite or infinite,
and which has the properties of a dimension to the extent to which
these can be expressed as sentences of K.

THEOREM 4.3. Let E and E, be two admissible closed linear
subspaces of H, such that ES E, and d(E)) =d(E)+ 1. Then °E <
°FE, and any two points of °E, are linearly dependent modulo °KE.

Proof. Since E £ FE,, it is trivial that °£ < °E,. Now suppose
that °FE, contains two points ¢, and ¢, which are linearly independent
modulo °E. Then o, and o, are infinitely close to points z,, 7, of E,,
respectively. Since the dimension of E, exceeds that of E only by
one, there must be a representation

4.4. Ty = Nfl + T

or vice versa, where e £ and )\ is an element of *C. Now if \
were infinitesimal (including M = 0) 7, would be infinitely close to E,
and so o, would be infinitely close to £ and would belong to °E. This
is contrary to the assumption that o, and o, are linearly independent
modulo °E. If )\ were infinite, then the relation

T,= N7, — N7t

(in which A\-! is infinitesimal and A~'z belongs to E) would show that
o, belongs to °E., Note that both 7, and 7. are norm-finite since they
are infinitely close to the standard points o, and o,, respectively.

We conclude that ) possesses a standard part, °\, and that °\ = 0.
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Also, T = 7, — \r, is infinitely close to ¢ = ¢, — °\o,, since

lt—oll =llt. = Nty — (0 — Ny ||
Silte— ol + (Ml — ol + IN=°N ] a4 ]|

so that ||z — o] is infinitesimal. It follows that ¢ belongs to °E and
that o, and o, are linearly dependent modulo °E. This contradiction
proves the theorem.

5. Proof of the main theorem. We are now ready to prove
1.1. To begin with, we work in the standard model, i.e., in an
ordinary Hilbert space H over the complex numbers, C. Our method,
like that of [1] is based on the fact that in a finite-dimensional
space, of dimension s say, any linear operator possesses a chain of
invariant subspaces

5.1, ECcEcCEg<c.--CFE

"

where d(E;) =7, 0 <Jj < p, so that E, = {0}.

The proof of 1.1. is trivial [1] unless for every o # 0 in H, the
set A= {o,To,T%,---,T"0,---} is linearly independent algebraically
and generates the entire space. Assuming from now on that this is
the case, we choose o such that ||o|| =1, and we replace A by an
equivalent orthonormal set B = {6 = 9,7, 3, *** 7, * - +} by the Gram-
Schmidt method. Then {c, To,---, T"'c} and {n,, 7., + - - 7} are linearly
dependent upon each other, We deduce without difficulty that T is
almost superdiagonal with respect to the basis B. Representing any
7€ H by the sequence {¢,}, where ¢, = (z,%,), we may then identify H
with the sequence space considered in the preceding sections, Thus, if
T = (@;) in this representation, then a;, = 0for y >k +1,k=1,2,3,..-
and, passing to *C and *H, there exists an infinite positive integer w
such that a,,,, is infinitesimal, by 3.4. ® will be kept fixed from
now on, and for it we consider the space H, and the operators P and
T’ = PTP introduced in Section 4 above.

Let &= {x;} be any norm-finite element of *H., Consider the
difference

(TP-TNYe=(I—-P)TPE=C(=1{z,}.

We obtain by direct computation that z,,, = @¢,,,.%, and z, = 0 for
n#w+ 1. Hence ||[{|| =|@inollléll, so that { is infinitesimal,
Using the equivalence relation 7, ~ 7, for points of *H such that
|| 7, — 7.|| is infinitesimal, we have shown that TP& ~ T'&, where the
points on both sides of this equivalence are norm-finite., We then
prove by induction that:
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5.2, T"P:¢~ (T")¢ for norm-finite &, r=1,2,8,..-.

The case r =1 has just been disposed of. Suppose 5.2 proved for
r—1,r=2. Then

TTPE ~ T(TI)T—IS — TP(T')'"IE ~ T'(T')T_IE — (T’)rf

where we have made use of the first equivalence for (7'')"~*£ in place of
¢. Applying 5.2 to the monomials of p(T), and taking into account
that P ~ & for £€ H,, we obtain

5.3. p(T)é ~ p(T")é for norm-finite & in H, .

Let T, be the restriction of T’ to H,, as in Section 4. Since H,
is “finite” more precisely w-dimensional in the sense of Nonstandard
Analysis, there exists a chain of subspaces as in 5.1 with ¢ = w, such
that T.E; S E;,5=0,1,2,---,w. The E; are also linear subspaces of
*H, They are finite-dimensional, hence closed, in the sense of Non-
standard Analysis, i.e., they satisfy the formal condition of closedness
as expressed within the language L. Let P; be the projection operator
from *H onto E;,5=0,1,2, -+, ®, so that P,= P.

Suppose p(z) is given by 8.5. For any £+ 0 in H, p(T)é must be
different from 0 otherwise &, T'¢, ---, T*¢ would be linearly dependent,
contrary to assumption, Choose & in H with ||¢|| = 1. Since ¢ ~ Pg,
2(T)e ~ p(T)PE, so p(T)P¢ is not infinitesimal and by 5.3, p(T)Pé
and hence p(T’')¢ is not infinitesimal., Thus, ||p(T')é|| > r for some
standard positive . Consider the expressions

5.4. r;=|p(T"e — p(TPi|,5=0,1,2, -+, 0,
and note that r; < ||p(T")||||& — P;¢|l. We have »,=|p(T")¢|| so
ro>r. Also |[§ — Pt =& — P¢|| is infinitesimal, hence 7, < 7/2.

It follows that there exists a smallest positive integer N with may be
finite or infinite, such that », < /2 but r,_, = /2.

With every E;, we associate the closed linear subspace °E; of H
which was defined in Section 4. Now °E,_, cannot coincide with H,
more particularly, it cannot include £. For if it did, then ||§ — P,_£ ||
would be infinitesimal, so 7,_,, which is bounded by || p(T") || || § — Px_.é ||
would be infinitesimal, contrary to the choice of A.

On the other hand °E, cannot reduce to {0}. Consider the point
n = p(T')P\é. nekE, since P,éc E, and E, is invariant under p(T.)
and, equivalently, under p(T’). Also, since P,f€ H,,

7 =p(T")P§ ~ p(T)P¢ ,

where the right-hand side is near-standard, by 3.2, since P,§ is norm-
finite and p(T) is completely continuous. It follows that 7 possesses
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a standard part, °», and that °» belongs to °E,. Again, °p = 0 would
imply that » is infinitesimal. Hence, by 5.4

2 [T — [ p(T)PE ] >r — 3

where { is infinitesimal. Hence 7, > /2, contrary to the choice of \.
We conclude that °E, contains a point different from 0, i.e., °7.

Both °E,_, and °FE, are invariant for T, by 4.2. If neither were
a proper invariant subspace of H for T we should have °E,_, = {0},
°FE, = H. But this contradiets 4.3, proving 1.1.
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INVARIANT SUBSPACES OF POLYNOMIALLY
COMPACT OPERATORS

P. R. HALMOS

This paper is a comment on the solution of an invariant
subspace problem by A. R. Bernstein and A. Robinson [2].
The theorem they prove can be stated as follows: if A is an
operator on a Hilbert space H of dimension greater than 1,
and if p is a nonzero polynomial such that p(A) is compact,
then there exists a nontrivial subspace of H invariant under
A, (““Operator’’ means bounded linear transformation; ‘‘Hilbert
space’’ means complete complex inner product space; ‘‘compact”
means completely continuous; ‘‘subspace’’ means closed linear
manifold; ‘“‘nontrivial”’, for subspaces, means distinct from {0}
and from H.) The Bernstein-Robinson proof has two aspects:
it is an ingenious adaptation of the proof by N. Aronszajn
and K. T. Smith of the corresponding theorem for compact
operators [1], and it makes strong use of metamathematical
concepts such as nonstandard models of higher order predicate
languages. The purpose of this paper is to show that by appro-
priate small modifications the Bernstein-Robinson proof can be
converted (and shortened) into one that- is expressible in the
standard framework of classical analysis.

A quick glance at the problem is sufficient to show that there is
no loss of generality in assuming the existence of a unit vector ¢ such
that the vectors e, Ae, A%, --- are linearly independent and have H
for their (closed linear) span. (This comment appears in both [1] and
[2].) The Gram-Schmidt orthogonalization process applied to the se-
quence {e, Ae, A%, - --} yields an orthonormal basis {¢,, ¢,, ¢,, -+ -} with the
property that the span of {e, --., A" '¢} is the same as the span of
{es, ++-, e,} for each positive integer n. It follows that if a,,, = (4e,, ¢,.),
then a,, =0 unless m <% + 1; in other words, in the matrix of 4
all entries more than one step below the main diagonal must vanish.
The matrix entries of the kth power of A are given by alf, = (A*e,, e,).
A straightforward induction argument, based on matrix multiplication,
yields the result that al = 0 unless m < #»n + k, and

o
o in = I 1@, e

(With the usual understanding about an empty product having the value
1, the result is true for %k = 0 also.) This result for powers has an
implication for polynomials. If the degree of p (the only polynomial
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needed) is k (= 1), and if the matrix entries of p(A4) are given by
a'’) = (p(A)e,, e.,), then a?), . is a constant multiple (by the leading coeffi-
cient of p) of a¥), .. Since || p(Ae,||— 0 as n — <= (because of the com-
pactness of p(A4)), there exists an increasing sequence {f(n)} of positive
integers (in fact a sequence with no gaps of length greater than the
degree of p) such that the corresponding subdiagonal terms @+, tend
to 0 as n tends to <=. (This very useful conclusion is one of the analytic
tools used in [2], where it is described in terms of “infinite positive
integers”.)

If H, is the span of {e, +--, €.}, then {H,} is an increasing se-
quence of finite-dimensional subspaces of H whose span is H. If P, is the
projection with range H,, then P, — 1 (the identity operator) strongly.
Since, for each n, the operator P,AP, leaves H, invariant, it follows that,
for each n, there exists a chain of subspaces invariant under P,AP,,

=HPcH C --- c H* =H,,

with dim H/» =14, 1=0,1, -++,k(n). (The consideration of such
chains is essential in both [1] and [2].)

If {f,} and {g,} are sequences of vectors in H, it is convenient to
write f, ~ g, to mean that ||f, — ¢.||—0 as n— . Assertion: if
{f.} is a bounded sequence of vectors in H, then

(1) AP,f, ~ P,AP,f, .

(Intuitively: H, is approximately invariant under A.) The proof is a
straightforward computation, based on the fact that P,f = 3.X™ (f, e;)e;
whenever fe H. Since AP,f, — P,AP,f, = 337 (fu) €5) Xiiim+::s€:,
since the largest j here is k(n) and the smallest 4 is k(n) + 1, and
since a;; = 0 unless 7 < 5 + 1, it follows that ||AP,f, — P,AP,f,|| <
HEall | @rny+1,0m |

The conclusion (1) can be generalized to higher exponents:

(2) A*P,.f, ~ (P,APf, , k=1,2,8, -+

the proof is by induction on %k and is omitted. For k =0, (2) says

that || P.f., — f.||— 0, which is a stringent condition on the bounded
sequence {f,}; if that condition is satisfied, then (2) implies that

(3) p(AP,f. ~ p(P.AP,)f, .

Return now to the unit vector e. Since P,e = ¢ for each n, it
follows that p(P,AP,)e ~ p(A)e. Since p(A)e = 0 (because the vectors
e, Ae, A’e, --+ are linearly independent), it follows that

¢ = lim, || p(P,AP,)e|| = || p(A)el| > 0.

Consider, for each n, the numbers
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| p(P,AP,)e — p(P,AP,)P%¢|| ,
| p(P,AP,)e — p(P,AP,)P, ¢ ,

| p(P,AP,)e — p(P,AP,)P,*™e || ,

where P." is the projection with range H., Since P)” is the zero
projection, the first of these numbers tends to . Since, on the other
hand, P/*" = P,, the last of these numbers is always 0. In view of
these facts it is possible to choose for each n (with possibly a finite
number of exceptions) a positive integer i(n), 1 < i(n) £ k(n), such
that

(4) | »(P,AP,)e — p(P,AP,)Pi™Ve| = _;_ ,
and
(5) | p(P,AP,)e — p(P,AP,)Pf™e|| < E ;

the simplest way to do it is to let #(n) be the smallest positive integer
for which these inequalities are true. (The construction of this particu-
lar “infinite positive integer” ¢ is the second major analytic insight
in [2].)

Since both {P/*™~Y} and {P,} are bounded sequences of operators,
there exists an increasing sequence {n;} of positive integers such that
both {P:;"~"} and {P;;""} are weakly convergent. Write, for typo-
graphical convenience, Q7 = P,ij.‘":‘)““ and Qf = P;jf"f”. Let M~ be the
set of all those vectors f in H for which Q;f— f (strongly), and,
similarly, let M* be the set of those vectors f for which Qff— f
(strongly). The purpose of what follows is to prove that both M-
and M* are subspaces of H, that both are invariant under A, and
that at least one of them is nontrivial.

Since linear combinations are continuous, it follows that M~ is a
linear manifold. To prove that M~ is closed, suppose that g is in the
closure of M~—; it is to be proved that ge M-, i.e., that Q;g — g.
Given a positive number 9, find f in M~ so that ||f— g < §/3, and
then find j, so that || Q;f — f|] < 6/3 whenever j = j,. It follows that
if § 2 ji, then ||Q7g—gl = 1@ — @5 fll + 1@ F — flI + | f— gl < b.
This proves that M~ is closed; the proof for M* is the same.

To prove that M- is invariant under A, suppose that fe M—, so
that Q;f— f, and infer, first, that AQ;f— Af, just because A is
bounded, and, second, that Q;AQ;f ~ Q7Af, because Q7 is uniformly
bounded. Then reason as follows: Q7Af ~ Q7AQ;f = Q7P, AP, Qi f
(because Q7 < P, ) =P, AP, jQ;f (because the range of Q; is invariant
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under P, AP,)~ AP, JQ;f (by (1)) = AQ;f— Af. This proves that
M- is invariant; the proof for M+ is the same.

The next step is to prove that M~ s H; this is done by proving
that ¢ does not belong to M~. For this purpose observe first that
the operators p(P,AP,) are uniformly bounded. (Observe that

H(P.AP,)" || = || P,AP,|* = || A|I*

and use the polynomial whose coefficients are the absolute values of
the coefficients of »p.) Now use (4):

-;— < | p(P,,AP, )| - e — Qjeli .
Since || p(P, jAPn )l is bounded from akove, its reciprocal is bounded
away from zero, and, consequently, |l¢ — @Q7e|| i3 bounded away from
zero, which makes the convergence Q;e¢ — e impossible.

The corresponding step for M+ says that M+ = {0}; the proof is
quite different. The choice of the sequence {n;} implies that the se-
quence {Q;e} is weakly convergent; the compactness of p(A) implies,
therefore, that the sequence {p(A)Qfe} is strongly convergent to, say,
f. The proof that follows consists of two parts:. (i) f# 0, (il) fe M+.
Part (i): p(A)Q;e~p(P,,jAP,,j)Qje (by (3)), which is within ¢/2 of
(P, AP, )e (by (5)), whose norm tends to ¢; it follows that || p(4)Qje
cannot tend to 0, and hence that f=# 0. Part (ii): Q;f ~ Q;p(4)Q}e
(since Qf is uniformly bounded) ~ Q;p(P, AP, )Qje (by (3), and, again,
uniform boundedness) = p(P, AP, )Qje (because the range of Q; is
invariant under p(P, AP, )) ~ p(4)Qje (by (3)) — f (by definition).

If M+ =+ H, all is well; it remains to be proved that if M+ = H,
then M~ {0}. If M+ = H, then Q,f— f for all f, and, a fortiori,
Q7 f — f weakly. At the same time the sequence {Q;} is known to
be weakly convergent to, say, Q. The operators Q; and Q; are
projections such that @; =< @; and such that Q; — Q; has rank 1. It
follows that, for each j, there exists a unit vector f; such that
@ — Q7)) = (f, fi)fi for all f. Observe now that Q;e cannot tend
weakly to e, for, if it did, then it would tend strongly to e (an
elementary property of projections), and that was proved to be not so.
This implies that Q¢ = ¢, or, equivalently, that (1 — @ )e = 0. Can
the numbers | (e, f;)| be arbitrarily small? Since |((@; — Q7)e, 9)| =
(e, fi)|-1llgll for all g, an affirmative answer would imply that
((L —Q)e, g) = 0 for all g, so that (1 — @~ )e = 0—a contradiction. The
fact so obtained (that the numbers | (e, f;)| are bounded away from
zero) makes it possible to prove that M~ = {0}; it turns out that if
9L (1—Q)e, then ge M~. Indeed, since (e, f5)(fi, 9)— (L —Q)e, g) =
0, it follows that (f;, g) — 0, and hence that (f, f5)(f;, 9)— 0 for all
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f- This implies that (1 —Q")f, 9) =0 for all f, and hence that
(1 —Q)g =0. In other words, Q79 — g weakly, and therefore strongly
(the same property of projections that was alluded to above); from
this it follows, finally, that ge M.

I am grateful to Professor Robinson for a prepublication copy of
[2] and for a kind letter helping me over some metamathematical
difficulties.
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NEW INFINITE CLASSES OF PERIODIC
JACOBI-PERRON ALGORITHMS

LEON BERNSTEIN

The question whether a system of n — 1 real algebraic
numbers (n = 2,3, ---) chosen from an algebraic field of degree
not higher than 7, yields periodicity by Jacobi’s Algorithm is
still as open and challenging as hundred years ago. The
present paper gives an affirmative answer to this problem in
the following case: let K(w) be an algebraic number field
generated by w = (D* — d : m)"/», where m, n, d, D are natural
numbers satisfying the conditions m =2 1,2 =23,d|D,1=d =<
D/2(n — 1). Then » — 1 numbers can be chosen from K(w),
so that their Jacobi Algorithm becomes purely periodic. The
length of the period equals n? (or n, if d = m = 1). This is
the longest period of a periodic Jacobi Algorithm ever known,
In three corollaries the following special cases are investigated

w = (D* — dr)» , r=0,1,---,n

w=<Dn,__er)l/n’ (7-:0,1,...,%_2)

w = (D* — pd/m)'/™ . (n = p*, p a prime,
u=1,2,---,m as before)

In all these three cases the Algorithm of Jacobi remains purely
periodic with length equal to n?,

The main tools in proving these results are the poly-
nomials

Ffw,D—1 =73 (” T 1+ ”‘)ws-i(D — i,
]
Fs(w,D)zi(n_szl_{_Z)wﬁDi, (s=1,---,m—1
0
of which each is an inverse function of the other,

This paper reveals new infinite classes of Periodic Jacobi Algorithms,
adding more and wider specific cases to already existing results explored
by the author in his previous works. For any given real number a©®
Euclid’s Algorithm, namely

1

1
a® = b(O) + o oo, a(v) — b(v) +

a(u+1)

, (=0,1,--+)

where b® = [a’] is the greatest integer not exceeding a, leads up
to Ordinary Continued Fractions. This Algorithm was generalized by
Jacobi [1], and its theory masterfully developed by Perron [2] for any
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number of # — 1 real numbers (n = 3) in the following way.

Let @} (k=1,2,:--,m — 1) be any set of n — 1 real numbers;
from this set (infinitely many) new sets a (v =20,1,--+;) of n — 1
real numbers each are being formed by the recursion formula

1
ath =

(1) o

apP = (@l — by
(v=0,1,--+; k=2,8,-+-,m — 1)

where again by = [a{”] is the greatest integer not exceeding a}”. For
n = 2 Jacobi-Perron’s Algorithm (henceforth denoted by JAPAL) is
Euclid’s Algorithm, namely a**" = 1: (a{” — b{). The JAPAL is called
periodic, if there exist two nonnegative integers t, m such that

(2) ay™™ =ap , k=12 ,n—Liv=¢tt+1,--+)
whereby the ¢ lines

a®, a, <., all, (v=0,1,--+,t —1)

are called the preperiod of the JAPAL, ¢ its length, and the m lines

a, a, .-, a, w=tt+1 ---,m+t—1)

are called the period of the JAPAL, m its length. the sum m + ¢
is called the length of the JAPAL. For ¢ = 0 the JAPAL is called
purely periodic. Whether or not there exist, for any » > 2, remarkable
classes of sets of » — 1 real numbers whose JAPAL becomes periodic,
could not be decided by Perron.

In eight previous papers |3] I succeeded to prove that the JAPAL
becomes periodic for certain sets of m — 1 Algebraic Irrationals of
degree n. Some specific results announced in my papers are the
following:

Let D, d, m,n be natural numbers such that

n=3; m=1l; d|{D; D=z=dC (C a positive constant)
and let w denote one of the following irrationals—
w= D"+ ad)y; D"+ d:m)"; (D*+ d*D)*»; (D" — d)*",
then the JAPAL of the » — 1 numbers
W, Wy eee, W

becomes periodic with the lengths 2n — 1; 2n — 1; 2n — 1; n* + (n — 1)*
respectively. Trying to enlarge the family of infinite algebraic fields
K(w) containing sets of % — 1 numbers whose JAPAL becomes periodic,
I naturally asked for the periodicity of (D* — d:m)", (D" — dF)»
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k=0,1,.--,m), (D - d*D)* (k=0,1, -.-,n — 2) and succeeded to
establish it. The results are announced in this paper. My previous
results thus become a special case of (D" — d:m)*" (m = 1); but here
I use much more refined methods to prove periodicity.

I1. Statement of the main theorem. In order to state the
main result of this paper it is advisable to introduce the following
new notations:

DEFINITION 1. A matrix of n rows and # — 1 columns of the form

Au Aﬂ’ ct Yy An—i’ An—-l
01 0) M) Oy 1
(3) 0,0 .-, 0, 1

0, 0, MY 0, 1

will be called a fugue. The first row of the fugue will be called its
accumulator, and the numbers ”

Au AZ; Tty An—l

the first, second, --., n — 1st element of the fugue’s accumulator.

DEFINITION 2. The meaning of a combined sigma-sign is given by
the formula
t—1/n

t—1 n
(4) Zai:c;}al‘*"zai-
1= 1=t

i=uc

We are now able to state

THE MAIN THEOREM. Let m,n,d, D be natwral numbers satisfy-
wng the following conditions

m=z1l; n=38; dlD; 1=2d=D:2(n—-1.
Let us further denote

w= (D" —d.:m):",

) fs<w,D—1>=>i<”“l_s”

=0

] )w““(D-—l)ﬂ (s=1,-«-,n—1
7

then the JAPAL of the # — 1 numbers

1 For n =2 we get Euclid’s Algorithm leading up to the periodic Continued
fractions of a quadratic irrational. We shall demonstrate the validity of the Main
Theorem in this case, too.
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fiw, D = 1), f(w, D = 1), +++, fus(w, D — 1)

is purely periodic and its primitive length is %n®. The period consists
of n fugues. The » — 1 elements of the accumulator of the first
fugue have the form

n—1—k+1
7

(6) Ak=—1+ﬁ_o( )D"‘i(D—l)";(k:l,---,n——l).

The accumulator of the sth fugue (s =2, ..., 7 — 1) has the form:
the first n — s elements have the form

1=k
| (A

: )D"‘i(D——l)"; (k=1,---,n—3)

the following s — 1 elements have the form

t—1/n—s+t [(s—1—t+1 n X
An-—s = '_1 ""1 v Dn—l+t—l ;
(6¢) t + i=‘wz:'n:a (=1) ( % )(s — ¢+ 7,)

(t=1,2 ++-,8—1).

The n — 1 elements of the accumulator of the nth fugue have the
form

n—1 t=1 [r—1—=t+\[ n\_ .
6d) A,,_,,+,=—1+(~1)< . )—i—(m:d)%(—l)( . )(t_%)D :
(t=1!2y e, M — 1)

In the case of m = d =1 the primitive length of the period is =.
The period consists here of one fugue, and the elements of its aec-
cumulator have the form (6).

In the quadratic case (n = 2) we have, according to the Main
Theorem, as can be easily calculated by the reader,

w=D*—-d:m)*; 2d<D; d|D,
filw,D—-1)=w+D—1;

the accumulator of the first fugue has the form
A =2D-1);
the accumulator of the second fugue has the form
A =2(mD:d — 1) ;
therefore we have the development in a periodic continued fraction:

(6e) (D*—=(d:m)**+D—1=[2D—1),1,2(mD:d — 1),1].
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Illustration for (6e): D = 12; d = 3; m = 10,
V43,7~ 11 = [22, 1, 78, 1] .

Two conclusions which follow directly from the Main Theorem are
the following corollaries:

COROLLARY 1., Let n,d, D be natural numbers satisfying the
following conditions:
n=3; diD; 1=d=D:2n—-1),
and let denote
w = (D" — dr)in (r=0,1,---,n)
(5a) fiw, D —d) =d- z (" B 17;_ 5 i)w*‘i(D —dy ;

(s=1,--,m—1)
then the JAPAL of the n — 1 numbers

.fl(w’D - d)yf?(wyD - d)y "'7fn—1(waD - d)

18 purely periodic and its primitive length is n*. (the case d = 1 s
excluded). The period consists of n fugues. The m — 1 elements of
the accumulator of the first fugue have the form:

n—1—k+1
%

(7) Ak=—1+d-'~'>f‘;(

1=0

Jo= D=5 =1, m =)

the elements of the accumulator of the sth fugue (s =2,3, «++,n — 1)

have the form: the first n — s elements have the form—
—1—-k+1

(Ta) Ak:—1+d~ki<n i

=0

; )D"‘i(D—d)i; k=1,.--,m—3)

the following s — 1 elements have the form:
t—1/n-s+t fs—1—t+1 n D\ r—stt—i
An—-s+ = -1+ —1) . . '—'> .
(Tb) ‘ i:O/zd;‘_" (=1) < 2 )(S —t+ ’&>< d
(t:lyzy "'78—1)

the n — 1 elements of the accumulator of the mth fugue have_the
form:

-1
An-—s+t = —1 + (_1)t<n ¢ )

t—1 —1— 3 n—s8+t—1
o e g e
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COROLLARY 2. Let n,d, D be natural numbers satisfying the
following conditions:
nz3d; d|D; 2dn—-1)=D=sd", (r=0,:-+,n—2)
and let denote

w:(Dﬂ_er)lzn, (7‘20,1,"',71/—2)
b) ﬁ(wﬂ—d)-—dﬂi(""l;”z)ws-f(D—dr; (5=1,2, -+, n—1).

=0
Then the JAPAL of the n — 1 numbers
fl(wyD - d)yfz(wy D — d), "'rfn—l(’wyD - 1)

18 purely periodic and its primitive length is n*. The period consists
of n fugues., The n — 1 elements of the accumulator of the first
Sugue have the form:

(8) A, = —1+d—ki(”-lfk“)m—i(n—d)i; (k=1,2,-++,n~1).
?

1=0

The n — 1 elements of the accumulator of the sth fugue have the
form: (s =2,8, -+, n — 1) the first n — s elements have the form—

(8a) A,=—1+4+d*>

1=0

k (n—-l—k-}—i
%

)Dk.—i(D - d)t ’ (k:1,2,° * -,n—s) .

The following s — 1 elements have the form

t—1/n—g+t (s—t—1+1 n D \r—eii—i
A = -1 —1) . = ;
(8b) + i=0/dzﬂ:—r;u( ) ( 7 )(S -t 4+ %)(d>
t=1,2 51

The n — 1 elements of the accumulator of the mth fugue have the

Sorm:
t—1/n—s+t (s—1—t L+ 1 n D\ n—s+t—i
A4, =-1 —1) =
(8¢) t i i=°/§-f:v( : ( ¢ ) (s —t+ z)( d )
—1
+(—1)t(n t )' (t=1,2,»-','n—1)

It is obvious that all the elements of the accumulators (6) to (8a)
are integers., We shall prove that the elements of the accumulators
(8b), (8e) are integers, too. To this end we have to prove that

(d’n—-f : D)(D : d)n——s—t—i
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are integers. Denoting n—s+¢t —7=1u, we have 1=u=n—1;
further

(dn-—r : D)(D : d)u — Du—l . du—n-{—r .
Since d|D, we have to prove u — n -+ r =% — 1. But
h—n+rsu—m+n—2=u—2,
III. Auxiliary functions-notations and identities. The es-

sential tools used here to prove the Main Theorem and its Corollaries
are the following functions:

- ’I’L‘*S‘—l"{-i 8—1 —_ 7.
(9) f,(w,D——l):%( ; )w (D —1)y;

s=1,++,2—-1), fllw,D—-1)=1,

s (m—1—s+73\ .

. F(w, D) = z( i )w D
(3:17"'yn_1)’ F(,('w,D):l.

t—1/n—s+t [s—t—1+1
gn—-a.t(er) = Z ("‘1)1 . Fn—a+t-—i(wy D) H
(11) 1=0/m:d T
(8=2,3,:+,m; t=1,2, "’,8—1)
For any polynomial P.(w, D) in w, D with integers ¢; as coefficients,
namely

(12)  Pw,D)=S,ew—D';  (s=1,--+,m—1), Pw,D)=1;
i=0

the following abbreviations will be used
(12a) P(w,D)=P,; s=1,---,n—1, P,=1).
(12Db) P(D,D)=P,; (s=1,+---,m—1 B=1).

P,(D,D)—P,(W,D)___P-’“P, 1
12 =L — wp,
(12¢) PD.D)—Pw.D) B —P

(s=1,---,m—1; WP, =0),

w

The following identities are essential for the proof of the Main Theorem
and its corollaries:

(13) fs(Dﬂl,D—l)=<:>(D—1)s; (6—-0,1,:+,m—1).

Proof of (13). We have from (9):
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1=0

:(D—1)8§<%_1;s+i)=(D—1)*(7:),

(13a) Fs:<:)ps; (s=0,1,---,m—1)

s fm—1—84+14 ) )
f,(D—l,D—1)=Z( ; )(D—l)"’(D— 1y

Proof of (18a). This is completely analogous to proof of (13).
(14) WE = F,_,; (s=1,2,---,n—1).

Proof of (14). We have from (10)—

1 —2 3 .
F1=2(" i“’)wl—mz:wﬂn—lw;

F.=D+ (n—1D=uD;
Fl"_ﬁlzw_D.

We thus have to prove
F,—F, =(w-—D)F,_,.
We have

F, - ;(n—l.—sﬂ) ‘"‘D"—-(n)D';

7 8
=1 (N — 8+ 1 o
(w— D)F,_, = (w— D) % ( ; )w’“‘"‘D'

— ! (n - S + i)wa—iDi _ E (n - S + i)wa-—i-—l‘Di+1

o
|

1=0 1=0 ?

s-1 (N — 8 2 n—s8 ’l: - 1 .
— : ( + z)ws—-iDi — Z < . + )w:—th

i=o i= 2 — 1

e [T e
s-1<n— 8 : 1+ i)w‘*"’D"+ (n:1>D,_(’;’)Da
Z:‘('n—s—l—l- z) W=D — (?S@)D,.

) fi=3(-1 ("_1;‘8“)141_,-; (s=0,1,-r,n—1).

”
uM

lI
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Proof of (15). If we arrange the expression on the right hand of
the equation

s (m—1—s+1
fi=3 (-—1)’< . )F
1=0 2
.:28‘(_1){(”_ 1’.‘S+ ’0>§<’n— 1—-.9+'i+j)w,_i—jl)f
=0 % =0 J
in descending powers of w, we get

n—s—:l-{—j)(n—s—l—i—i)pi_j.

f= g;)w'“j:z;(—w( ; i

Now the identity holds:
(n—s—-l-{—j)(n—s—l—i—i): M—8—1+4+H(n—s—1+ )
i i—j (n—s— DG~ ln—s— 1+ j)!

_ _(m=—s—1+9)! _  (m—s—1+ 9!
Tl — 8 — 1)l(z —J)! (m— s — DIFIE — 5)!

()

In view of this identity we get

J=0

s (n—s—l—}—i
%

)w—*(p — 1),
16  of, = ’zjk—l)*‘(" TR %)F L =12 -1).

Proof of (16). We have from (15):

-1 (n—1—s+ 1 n—1
=S e T ras oY),
=0 2 S
— a1 (n—1—8+ 17\ n—1
£=5 (—1>*( . )F + (-1>:( ) .
1=0 (A S
In view of these two formulas and according to (14), we ‘get
n—1—s+ 1
%

= .21 ("'1)‘(’” -1 ; - ?;>Fa—1—i .

1

we = Sz S o s (_1)5( )(F,_,. —F,_):(D — w)
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(17) Ofy — Yfers = fomr « (s=1,2,.-,n—1).
Proof of (17). We have, on the basis of (16)
(l)faz'_ (l)fa—l

=1 fn—1—s+ 1
=3 (—1>*( : )F

-5 <—1>"(" e ’)F

i=

s=t fn—1—84+14
=Fas HEo(" T

s—2 n-—8-+1
- Fa-—l - gé (_1) ( + 1 )Fa—z—i
s=3 n—s+ 1
-Sen(" T R

—F 1_0( 1y ( — 8+ z) (’n - : + i))F._2_i

(
Fr- S (- 1)(" S )F
(

= s—1+2( 1)

g—1—1¢

n——s+z)

=5 1)( :“)F._l_--f,_l.

t—1 n—a4t~1 (s —t — 1 + 7
(1) —_ —1) .
(18) Gnesit = i=0/2m:d ( 1) ( ?; )Fn-—a+t—1-s

(=2,8,oe,m;t=1,2,++.,8—1).

Proof of (18). This follows directly from (16), if we interprete
e 88 (Fust ~— Gns,s) : D — w). (It will be shown later that this
interpretation is in acecordance with the general notation of P,

19) Do — Pfae = Guternn - (s=1,2-+,m—1).
Proof of (19). We have from (16), (18):
Vs — Dfas
R 1 M
d = )
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n—s—1 (8 — 1 + %
- 1% (_—1)‘< ?: )Fn——s—-—l—i

_om n—s—1 qyit s—1 + 'I:)F )
- —E'Fn_a + = ( 1) < 7: + 1 N—=g—1—1t

n—s— s—1+1

Z:l ( )Fn-a—l—i
B n—s=1 ier s—-1+i) (s—l—i—i))F '
- d + & D (( iv1 )7 i e
_m Sy S + 'I')F .
= —d—F + DY (-1 <i pop)fmmees

n—s (8 — 1 + 2

= TFn——s + = (—1)1‘< ’I; )Fn—a——i

Il

s—1+1
( 1)1( ) n—8—1i gn—(a+1) 1

(20) NG gets — Vnont = Fnotsrnier o
(322’ ,,.,n_l; t:]_’ -ao,S—l).

Proof of (20). We have from (18):

1 (1)
¢ )gn—a,t+1 — Gn_st

tin—s+t s—t—2+1
S (—1)( z )F

t=0/m:d
t—1/n—s+t—1 (s —t—14+17

- Z (—1)1’( . )Fu—ﬂ-t—l—i

i=0/m:d 7
(s —t—2+1
=0y (-1)*( : )F,,_m_,-
d i= 0
t-1 fs—t—14+1

- —g’l— = ("“1)"< . )Fn—c+t—1—1
n—s+t ,s—t—-2+’5

+ (—1)‘( )Fn—c+t—1
i=t+1
n—g+t=1 ~S‘—t—1+i

— 2 —1)'( )Fn—:+t—1—-1

= — _"1 ¢ Fn—a -3

" S (1) ( ; N

om & afs—t—2+1
7 ; ( 1) ( i — 1 Fn—-a+t—1
n—s8+t S t 2 + '&.

+ _;:_1 (—'1)'( )Fn—a-l-t [
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o iafs—t—2+74
'.ZIH ( 1) ,1: _ 1 Fn—a-H—i
m s—t—1474

d Fn-—s+t + "/"‘?“ ‘ngf (—1)1( 7: )Fn—s+t-—i

n—g4t S—'t'—1+7:
+ Z (—1)t( i )Fn—a+t—-i

t=t+1
t/n—s+t (s—t—1+1
= Z (——1)‘( . )Fn-—s+t-—i = GaetatDit+1 o
3=0/m:d 7
' t—1—q
(203') (l)gn—s.t - (l)gn-—a:q = % gn—(s+1),t—i . (q < t)

Proof of (20a). We have from (20)

t—1~

q
1 (1 —_ (1) (1
( )gn——nt - )gu—a,q - Z! ( Gn—s,t—i — )gn—l.t—i—l)

t=1—gq

— (1)
= 3 Vutstii-i

=0

(20b) “%d—“mm4=%%ﬂq. t=1,2 +-o,m—1).

Proof of (20b). From (18) we derive:

, t-1 n—t—14+1
Rl ‘% & (-1 ( i )Fz-1—z ’
t—2 n—t4+1
g = %’ & ("‘D'( i )Ft-—2—-i ’
Do — Vg0 t~1
o m—t—1474
> 1C (A |
=0 2
t=2 fn—t+1
SRl
1=0 ()
= [fn—t—1+1
= ln—Ft—i + o 2 (""1)1 . Fo
d d = 1
m =2 i n—t—1 -+ %
B M
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(200) g"—"s—lg gn;;,s—l +1 = Gn—ls+1)1s » (S = 27 3; e, M — 1) .

Proof of (20c). We have from (18) and the definition of w

On—s,s—1 — .‘_jn—s,a—i + 1 — 1 — (1)g
D—w D—w e
— w"! + w™2D 4 oeee D )
- n 2 = On—sis—1
D™ —w
— Fﬂ.—l — (l)g
D" — (D" — d:m) et
= %Fﬂ—l - (l)gn—a,s-—l
8~2/n—2
= F~ 5 (1) Fa.
d 1=0/m:d
m s—1/n—1 3
= "'_'Fn—-l + Z (_l)an-—1-i
d 1=1/m:d
3—~1/n~1 R
= . (-_l)tFu—-l—i = On—ts+1)rs o
i=0/m:d
20d Gon—s — Jonr + 1 = fi_,.
(20d) (m:d)yD — w) Fams

Proof of (20d). We have from previous proofs and formulas

a — (1)
1 . go.n—l go,n—l — gn—n,n-—l

(mww—w=ﬂﬂwm@w—m_ m:d
=L S (DFuai= B (D Furss;

i=0/m:d
therefore
Gon—1 — Jons + 1 =F . — tSH —1yF .
(m . d)(D . w) n—1 %( ) n—=2—~4%
n—1 .
= S () Fei= frs -
(172) O, = 0f, =3 fi lsg=s—1).
1=0

Proof of (17a). We have from (17)

8—g—1 g—q—1
(l)fa - (l)fq = Z‘g ((l)fs-—i - (l)fa—-i—l) = Z:) fs—-l—-i .
= =

T

B—=3—q—1

t—1
(209) (1)gn—8-t - (1)f<1 = g& gn—(s+1)t—i + gt‘) fn—a—l—i . (1 é q é n — S) .

Proof of (20e). This follows immediately combining (17a), (19), (20a).



452 LEON BERNSTEIN

IV. Inequalities, In this chapter we shall establish magnitude
relations between the auxiliary functions f,, F,, g._.... We first note
that

@) D—-1<w<D; D—1F<w<Dt, (k=12 -, n—1)

(21) follows directly from the definition of w. From (21) and the
definition of f, and F, follows further

f,(D—l,D—1)<f,<F,<F,; fs<f—'s<F'¢'

(22) (8=1,2,++.,n—1)

1 n—2
(23) (1+ D—l) <165 for2n—1)<D.

Proof of (23). Since D = 2d(n — 1), d = 1, we have D = 2(n — 1),
D—-1=22n—1) —1>2(n—2). Therefore

(1 + D 1— 1 >"—2 < (1 + 2('n1— 2)')”—2 - ((1 + 2(7,,1__ 2) )"""‘”)”

< €' =1,64872-+- < 1,65 .
(24) F,<Fy,(D-1,D~-1). t=0,1,---,m—2).

Proof of (24). We have to pfove, folléwing (13a):
n n
Di< D — 1)i+
(s, Yoo

(1+ Dilyé ?;f(p_l)’

qsi+lfy 1 ¥
D l_n—i\+D—l)°

We prove a fortiort, since (¢ + 1): (n — ) is an increasing function,

b-1= 2 ’ >n—i\+D—1)'

but

n—1

D—12z2dn~1)~122n—1)—1>165"—

F,<F,,,.

2
(242) (8=0,¢ee,m—2;t=1,ccc,n-1;1=s+t=n-—1)

Proof of (24a). It follows from (22), (24)
F3<Fa<Fa+1(D_1sD_1)<Fa+1’
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so that
Fa<Fs+1<Fs-FZ<"'<Fs+t'

(24b) fs<fs+to
s=0+,n—2;t=1, - ,n—1;1=s+t=n-—-1).
Proof of (24b). It follows from (22), (24)
fi< i<F,<FuD—-1,D-1)=f(D~-1,D—=1)< fis,.

(25) oF, , < -{%Fn_l .

Proof of (25). We have to prove
23 (6 + Dw== D < = S D"
=0 =0
and prove a fortior:

2"22(7’ + D =Di < 2(n — 1) "Z"‘lw,,_l__iD,-
=

1=0 D
< 711_ n_lwn——i—iDi .
=0
We thus have to prove
G+ DDt < LoD L B g

which is always true, since ¢t +1=n -1, 0 < (® — 1)w*Y/D,

(26) Wf,=F,,. (s=1,2,+--,m—1).
Proof of (26). We have from (15)
u)fs = Fs—l

-nizffn—8+ 21 — 2 m—s+2—1

— F,_, — o
= (( 2i — 1 ) - ( 2i )F 2'"’)

n—2 .
- e(s 1) , (¢ =0, when s is odd, =1 otherwise)

so that Wf, < F,_,, if we can prove that the expression under the
sigma sign is not negative. We shall therefore prove
n—s+ 2t — 2 n—s+ 2, —1
. Fs—zi o Fs—-2i-—-1 )
21 —1 21

or
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Fa—2i > 2,1: 8—2i—1 9

and prove a fortiort

Fo > ( " .)(D ey RS2 1( " ) D=t
8 — 21 %

s—21—1

n—s+2’£—1F

> - aminl
27’ 29—1

We thus have to prove

( n )(D — 1) > n—s+2—1 Dot

s — 2 23

or
D — 1)-% > (n—s+ 21 —1)(s — 29) D=t
( ) - 2tln — s+ 26+ 1)

or

D_lzn—s+2'i—1.8—2’l:/1 1 '_2‘—1.
( )_n—s+2'£+l 27 \+D—-1>

But from D = 2d(n — 1) we have

—3 n—s+20—1 s—21 1 s—2i~1
D—-1>"2—"°.165 . 1 )
3 T m s+ 2+l = (+D—1>

(27) (l)gn—a»t < (m . d)Fn—c+t—1 . (S = 2! 3’ ) In; t = 1) 2! M) 8 — 1) .

Proof of (27). We have from (18) for t =2r + 1
(l)gﬂ—s,t = (m : d)Fn—H't—-l

(s —t+ 2t —2 s—t+21—1
——(m . d) ;__;{(( )Fn-—s+t—2i - ( . )Fn—l+t—2i—l)

2t —1 2
n—s+2r S-—-t+2'l:_2 S—t+2i—1 \
e Z ( . Fﬂ-—s+t-—2i - ( . Fn—a+t-2i—1 .
i=ort 1 21 — 1 21

We shall now prove that the expressions under both the sigma signs
are nonnegative, so that Vg, _,. < (m:d)F,_,.,.,. We have to prove

s—t+2—2 s—t+21—1
( )Fn—s+t-—2i ( .

F—s —2i—1 9
2 —1 2 )"““

or

3 —8+t~2i—]
27’ n—3s

Fn—s+t-—2i >
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We shall prove a fortior:

n
F_' iy . D__ln—-s+t—-2i
n+t2>(8—t+2'b>( )
> s —t+ 21— 1( n )Dn—u+t—2i-—1
= 23 \s—t+2i+1
> s—t+.2z—1Fn—a+t—25—1 .
27

We have to prove

( n _)(D _ 1)1,,—-3+t-2i > s —t +‘2’I; -1 / n . )D’B—H-t-—?i—l ’
s—t+ 20 20 \s —t+2i+1

or

— ) — —_ I V'S N8t t—2i
D—lzs t+20—1 n—s+1¢ 21,'(1_*_ 1 ) +t 1’

s—t+20+1 21 D-1

which follows immediately from 2(n — 1) —1 < D — 1 and the upper
and lower bounds of s, ¢, as at the end of the previous proof.

For ¢t = 2r + 2 we have
(l)gn—nt = (m : d)Fn—c+t—1

r (([s—t+2t—2 s—t+21—1
—(m . d) Z (( . )Fn—-ﬁ-t—% - ( . Fn-—H—t—zi—l
=1 2?, -_ 1 2?:

(st e~ )

n—st2r+l [[§ —E 4+ 20 — 2 s—t+21—1
- F —8+t—2¢ N—gt—2i—
i=221-+3 (( 2?: _ 1 ) n—g+t—2: . < 2’i )F +¢—2 1) ,

so that in order to prove (27) in this case of { = 2 + 2 we have only
to add the proof of

Ot W LS Ly L ST 3

Since m = 1, we prove a fortiori
l<S - 2) n—sg g (s B 1)F'n—c—-1 b
d\t—1

t
Fn—a

e

or

—1)d
(S_?J_ P

v
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We prove a fortiori

n — 1)n—s (S _ 1)d n n—g—1
Fn_,>(s)<D ez B=1E (s+1)D ,

or

-1z i ()

which follows immediately from D — 1 = 2d(n — 1) — 1 > d(n — 2)-1,65.
(28) gn—a,t<(m:d)Fn—s+t- (8:2,3,"','n;t=1,2,'°',8—1).

Proof of (28). This is completely analogous to proof of (27).
(29) [fa]=_1+j_‘8' (S=1,2,°~',’n——1).

Proof of (29). We have to prove
(A) —1+j:<fl; (B) fs<fs'
To prove (A) we have to show that

fo—f.<1, or, dividing by D —w >0,
“f, < (m:d)F,;.

From (25), (26) we have
Wf, <F,_,<F,,<(m:d)F,,.

(B) follows from (22). Thus (29) is proved.
(30) [gn—-a,t] = —1+4 Gps - 8=2,:-+,n; t= 1: rrey 8 — 1)

Proof of (30). We have to prove
(A) -1 + gn—s»t < On—s.t 5 (B) [/ P— < g-n-nt .
To prove (A) we have to show

Toest — Juse < 1, or, dividing by D — w,
(l)gn-—ut < (m H d)Fn—l .

But from (27) we have
Bpey <(M:AF, oy s = (m:d)F, , < (m:d)F,_, .
To prove (B) we have to show, after dividing by D — w
e > 0.
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But for s< n
st Z Vet = Vncaitct = Gnoarne > 05
and for s=n
D0, Z Y0 — Vor = (M d)fl, >0,

(that the expressions g,_,,, are positive entities will become clear,later,
while carrying out the JAPAL for the f;).
- — o+ 1 . . .
(31) I’—-—‘——?—-————<1. (J<i<n—1;,7=1,+,n—2).
fi—fi+1

Proof of (31). It was shown that the denominator 1s positive.
We therefore have to prove, after dividing by D — w

Of; = ©f; >0,
which follows directly from (17a).

(32) %{%<1. (G=0,1,-,8—2 5=2,38,+,n—1).
Proof of (32). We have to show
D—-wf;i<fi—f+1, or, dividing by D — w,
Fi+ Of, <(m:d)F,_,.
But
fi+ % <fixt Firu<Foy+ Fo's <2F, . < (m:d)F,, .

33) 1<fi}f”_‘f;f—;*i1<2. G=1 -, m—1).

Proof of (33). We have to prove, since the left hand inequality
was proved in (31)

fin—Fia+1<2fi—F)+2,
or carrying over and dividing m by D — w

2:0f; = Vfi < (m:d)F,_, .

But
2.0f, —Of, | £2.9f, S 2F,, < %—Fn_l )
On—s.t — —g-n—s,t + 1 < 1 .

(34) fo—fa+1
(3=2,3,+ce,m t=1,2+40,8—1,9g=1,2 ¢¢c,n—3),
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Proof of (34). We have to prove
Gnmst = Jnoan + 1< fu— Fu+ 1,
or, dividing by D — w,
Vpee — Vfe >0,
which follows directly from (20e).

(35) [ gn-—syt ::: 12)< 1. (1 §j < tjé s—1 =n- 1)
Gn—si — Gn—s.i

Proof of (35). We have to prove
On—sst — gn—a,t + 1 < On—sii — gn—a,:’ + 1 y
or, after carrying over and dividing by D — w
(l)gn—a t u)gn—ni > 0 [
which follows directly from (20a).

(36) 1< fn—a—fn._g"'l <2. (822’3,01.,72).
Gnesin — Gn—sn1 + 1

Proof of (36). We have to prove
(A) On—s1 — g_n—a,l + 1< fn—a - ﬁb-—a + 1 3

(B) fn—s - f_-n—x + 1 < z(gn—hl - gn—a,l) + 2 .
To prove (A) we have to show, after carrying over and dividing by
D—w
(l)g'n—hl - (l)fn—c > 0 ’

But from (19) we have
(1)gn—n,1 - (1)f”_‘ = Gam(s+1)01 9 for s<n.
For m = s we have
o1 — Vo0 = m:d)yf, >1.
To prove (B) we have to show, after carrying over and dividing
by D —w
2'“)gn—3,1 - u)fn—-a < (m : d)Fn—l .
But
2°(1)gn—-s,1 - (1)fn-—3 é 2'(1)gn-—a.1 < 2Fn—s é 2Fn-2 < (m . d)Fn—l .
(D —_?’U)fr—l < 1 .
(37) On—st — Gn—sit + 1
r=1,2++-,n—88=23,.--,n—1,¢t=1,2,.+0,8—1),

2 While carrying out the JAPAL in the following chapter, it will become clear
that the numerator and denominator are positive entities.
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Proof of (37). We have to prove
D = wfroi < ot = Tnmse T 1,
or, after carrying over and dividing by D — w
Vst + oo < (m:d)F,_,,
or a fortiors
OGpat T o < Foors + Fr g <2F, , < (m:d)F,

— Gase + 1
1 < gn-—s,t gn 85t
(38) Gnesit+1 — Fn—sit+1 + 1

(322,3,"',7@; t:1,2,"',8—-2).

<2,

Proof of (38). We have to prove
(A) On—st — g’n—s,t + 1 > Gnesit+1 — gn—-s,c+1 + 1 ]
(B) On—s,t — gn—s,t + 1 < z(gn—syt+l - g‘n-—Byt""l) + 2 .

To prove (A) we have to show, after carrying over and dividing
by D —w

1 (1)
{ )gn—-s,t+1 - Gu—sst > O 3

which follows from

(1 (1) —
)gn—a,t+1 = st T Jn—ls+1)t4+1 > 0

for s < n — 1. For s = n the proof is exactly as before.
To prove (B) ‘'we have to show, after carrying over and dividing

by D —w
2'(1)gn—syt+1 - (l)gn—-s,t < (m : d)F —1

which follows from

2'(l)gn—s,t+1 - (1)gn—s.t é 2'(1)gn—s,t+1
<2F, .. <2F, ,<(m:d)F,_, .

V. The JAPAL of the f,, f2 -+, fu-:. We shall now carry out
the JAPAL of the numbers f,, f;, +- -, f._, and thus complete the proof
of the Main Theorem. To this end I shall introduce still a few more
new conceptions.

DEFINITION 4. The set of n — 1 numbers e (¢=1, .-, n — 1;

v=20,1, ...) shall be called the vth generator of the JAPAL, the
number a{® its ith element; the set of » — 1 numbers

b = [af]
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(¢, v as before) shall be called the wth genus of the JAPAL, b® its
tth element, The key to the final proof of the Main Theorem now

rests with the

LEMMA. Let the n — 1 elements of the vth generator fulfill the
following conditions:

() @ = P(w,D); P(w,D)=w+eD; Pfw,D)=Pw,D)=1;

(B) [a”] = —1 + Py(w, D).
(t=1,2,.-+,m — 1; ¢, a nonnegative integer)

Pt+k_:t+k+1 <1
P,— P, +1
=1, n—2;k=1--,n—2;t+k=n-1)

0 < (-D _ w)((l)P —1 T (I)Pq_z) < 1 :

© 0<

39 z
39) P,—-P +1
(q=2’3,"',t;t:2y35°"sn’—1)
P_,—P_ +1
| IR < 2. t=1,.---,n—1).
P,—P +1 (
Then the n genera
b{u+k)’béu+k),.,.’b;ﬁk) (k:O,l,"',’n—l)

form a fugue, and the elementé of the v + nth generator, namely
the af*t™ (1=1,2, ---,n — 1) have the form
aptm = Wp,.  — wp, . ¢t=1.0,m—2)

(40) gorn = Pay = Py 41
n—1 .
D—w

Proof of the lemma. In view of (39) (A), (B) and following
formula (1) the elements of the v + 1st generator have the form

P, — P, +1 ;
aé'o-}-l) — i4+1 _H—! , — 1, e, n — 2 ;
o) P_P +1 @ )
g = — 1
P —P +1

Since the elements of the v + 1lst generator fulfill the conditions (39)
(C), the elements of the v 4 1st genus have the form

(40b) b£”+1) =0 ; (1: = 1’ 2, oo M — 2) b;vj—ll) =1.

On the basis of (40a), (40b) and reminding from (39) that P, — P, =
D — w) =D — w)(P, ~ “P) we obtain, following (1), for the n —~ 1
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elements of the » + 2nd generator

P.,— P, +1 .
(0+2) — ite i+2 ; = 1, 2, e, — 3
% P,— P, +1 @ )
vt D — w)(WP, — “P)
40 (j»):( = ’
(40c) Bn—s P,— D+ 1
oo - =B+l
P,—D,+1

Now the elements af®** (1 =1,2, ---,n — 1) again satisfy conditions
(39) (C), and therefore the elements of the v + 2nd genus have the
form

(40d) b§v+2)=(); (/j:l,...,n_z) bt =1,

In view of (40c), (40d) and (1) the elements of the v + 3rd generator
have the form

o = B = Buad 1| (=1,2,-+,n—4)
3 3
s = (D= 0P, = P
' P,— P+ 1

40e
( ) a(v_+23) — (D _ w)((l)Pz - (1)P1)

P,—P +1 ’
a‘”_ﬁs’:—————-——P 132_,_1.
" P,—P +1

Continuing these considerations one arrives quite easily and by indue-
tion at the conclusion that the v + ¢th generator takes the form

arr = By e 2L (=1 n—t—1)
(40f) awd, = D —;’)(“’i ; (ll’P: 1) , G=1,-+,t—1)
a;‘v_-.l-lt) — Pt—-l — I_)_t—l + 1
P,—P+1 °
and that the » — 1 elements of the » + tth genus have the form
(40g) bt =0; (t=1,---,n—2) b =1,

Following the formulas (40f), (40g) and (1) we obtain that the » — 1
elements of the v + n — 1st generator have the form

aern=D = (D — w)(WP;, — WP;_))
P”“‘l - Pn—l + 1 ’

ai‘v_-}in—l) — Pn—2 — Pn—Z + 1
Pn—l - P’n—l + 1

(¢=1:-,m—2)

(40h)
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and that, on ground of (39) (C) the elements of the v -+ n — 1st
genus have the form

(40i) bt =0; (1=1,2 +++,m—2) brv=1,
Thus the » genera
bt b+ s D (7=0,1,.-+,m—1)

indeed form a fugue as was stated in the lemma., Now we have from
(40h)

g = D= WP —“P) _ __ D-—w

P'n—l—Pn—-1+1 Pﬂ—l_P‘u—l_‘_l’

so that on the basis of (40h), (40i), (40j) we receive for the n —1
elements of the v + nth generator

(40j)

aEtm = WP, — WP, (=1,2 -+, n—2)
(40k) a(v-*-ln) —_ P’n—l + Pn—l + 1 .
i D—w

By this the lemma is completely proved.

We are now able to prove the main Theorem quite easily in the
following steps:
(1) Let be

(41) P(w, D) = fi(w, D) = ;" . t=12--,n—-1).

Following (29), (31), (32), (33) the functions f; (¢ =1, --+, % — 1) indeed
fulfill the conditions (39) (A), (B), (C). Therefore, following the lemma,
we get for the n + 1st generator, which is the first generator of the
second fugue of the JAPAL

am = WOf,  — Of, t=12 +-+,n—2)
), = Jomt = Fams + 1
n D—w ’

so that on the ground of

Jocs — Jas + 1 — 1 —wf
D—w D—w "

=m:d)F,_, — :% (=1} F

0/n—1

(_l)iFn—l—i = G-z,

i=0/m:d

and on the basis of (17) we have for the » — 1 elements of the first
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generator of the second fugue of the JAPAL

(41a) a” = fi; (=12 ---,2—2) a® =g, 5, .
(2) Let

(41b) P(w,D) = f;; (2=12,---,m—2) P,_,(w,D) =g,_,,.

Following the formulas (29) to (37) the functions of (41b) fulfill the
conditions (39), and therefore the elements of the first generator of
the third fugue have the form

(42) o = Of iy — Vi (G=1,2-,n—39
S YL
U= Oy — Wfurp; o= Temm e T2
D—w

Following the formulas (17), (19), (20c) we get for the functions (42)
afm = f, ; (=12 -, n—3)
A2y = Gposzy A = Gugys »

(422)

In the same way we get from (42a) that the » — 1 elements of the
first generator of the fourth fugue have the form

a('an):f.. (’521,2,"',%—-4) a'ﬁza-ﬂ:gn-—hl;

1 79

(43) [S:1) — . (3n)
a’n—-z - gn—4,2 ’ a’n—l - gn—4.3 °

Continuing this process of the JAPAL we get from (43) that the
elements of the first generator of the sth fugue have the form (s =
2’ 3’ ) n)

afe=vm = f, t=1,2,---,m—8)

44
(44 e =g .. t=1,2---,5—1).

From (44) we finally deduce, for n = s, that the elements of the first
generator of the nth fugue have the form
(45) a.f',(“—”“) = gg,t . (t = 1, 2, .. ®y n — 1) .

But we have from (11)

o1 [ —2+ 1
Inni = Gou1 = Z ("1)l< . >F1—i
i=0/m:d 2
=m:)F,— (n — DF, = (m:d)F, — (n —1),
so that
gon — Joa = (md)(F’l - Fl) = (md)(D - w) .

With this and on the basis of the lemma, we get from (45) that the
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elements of the first generator of the n 4 1st fugue have the form

a™ = (Vo — Vo, )(m 2 d) ; (t=1--+,m—2)
(46) aﬁ[‘fi — Yom—s — oy + 1
(m:d)(D — w)
Now aceording to (20b), (20d) we have
(46a) a™ = fi; (t=1,2+,n—2) afi=/f.,.

From (41) and (46a) we have
(47) e = af”, (t=12---,m—1)

so that the n — 1 elements of the first generator of the first fugue
are identical with the » — 1 elements of the first generator of the
n + 1st fugue. Thus (47) shows that the JAPAL of the f; (2=
1,2,...,n — 1) is purely periodic with the length n* (n fugues), as
stated by the Main Theorem.

Now since
- s (m—-1- \
(48) ﬁ=2( sJ”’)D“(D (=1 --,n—1)
=0
N —lln-s+f s—t+1
gn—-s,t = ( l)b( ) n—s+t—i
—O/m d
—1/n-s+t s—t+n n )
48 —_ 1 [ Dn—a+t—| ,
(482) —O/md (=1)° ( )(s-—t—!—z)

§=2,8,---,m; t=12 2,81,

and since we have for the elements of the various genera of the JAPAL
either

_1+ﬁ or —1+gn—a,t

the pattern of the accumulators of the n fugues of the JAPAL as
indicated in the formulas (6) to (6d) becomes immediately obvious. If
m =d =1 we have

n—1
On_s,1 = Z ( 1) ne—l—i — Z.:l) (_l)iFn-—i—i = fn-—-l .

We therefore get from (41a) that in this case the elements of the
first generator of the second fugue have the form
aﬁ’”:f,-, (?::1,2,"',')’&—1)

so that here
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(48b) o =a, (i =1,2,---,m— 1)

as stated in the Main Theorem, which, through this final remark, is
completely proved.

Proof of Corollary 1. We make the following substitutions in
w= (D" —d:m)"*: Let T,t be natural numbers such that ¢|T,

t =1, let denote

(49) D=T:t; d=1; m=t"*. (k=0,1,---,m).

Following the conditions of the Main Theorem, we have here
1<t<T:2n-—1).

Further w takes the form

(49a) w=W:t; W= (T — th,

The functions f,, F,, g._.,. take the form

s fn—1—s+1
fs=t‘“2( .

1=0

)WM@—QH (s=1,+--,mn—1)
v
s (n—l——s+1}

4y F,=t 3% )WT =1, n—1)

=0

()
u—1/n—s+u 8 — U — 1 -+ ’i
(—1)‘(

Jn—s,u =

’b. >Fn—s+u—-i
(s=2,3,--+,m;u=12--+,8—1).

i=0/tn—k

If we substitute again in (49a), (49b)
(49c¢) D for T d for ¢ ; w for W,
we get from the Main Theorem, that the JAPAL of the # — 1 numbers

fi=d= 3

s (n—l—s-{—i
7

)ws—i(D _ d)i , w = (Dn __ dk)l:n
(8:1,2’ "',’)’L-'l; k:(),]_, ...,'n)
takes the form as indicated in Corollary 1.

Proof of Corollary 2. Here we make the following substitutions
in w, Let T,¢ be natural numbers, ¢|T; let
(50) D=T:t; d=1; m=t—":T. (r=0,1,---,m—2).

The reader should note that the condition that m is a natural
number is necessary only for the purpose that the elements of the
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accumulators in (6c), (6d) be integers. For the proof of the Main
Theorem we made use only of the fact that m = 1. The elements of -
the accumulators in (6¢), (6d) may be integers even if m is not an
integer, as was proved at the end of Chapter II. From1l <m =t T,
we derive

(502) T,

and from 1 £ D:2d(n — 1) and (50a)

(50b) 2n — ) T St*; t= (2(n — 1))ster-r-0

From ¢|T and (50a) we derive the condition of (50), namely » =
0,1,.--,n—2, For r=n—2 we have T = #*, w takes the form
(50c) w=W:t; W= (T"—-tT). (r=0,+-+,n—2),

If we again substitute
(50d) DforT; dfort; wfor W

and follow the proof of Corollary 1, the proof of Corollary 2 will be
completed,

COROLLARY 3. Let d, D, u, m be natural numbers and p a prime
number such that

(51) diD; uymz=1; dp=D:2p*—-1),
and let denote

w = (D* — pd :m)*™™,
52) fw,D—1) =3 (“ Thoe '”)w'-w —1y

=0

=1+, n—1),
Then the JAPAL of the n — 1 numbers

f;_('LU,D - 1)7f2(w7D - 1)1 "'1f(pu..1) (w7D - 1)

is purely wperiodic and its primitive length is p*™. The period
consists of p* fugues, each fugue being a matrix of p* rows and
p* — 1 columms. The accumulators of the fugues have the form as
those im the Main Theorem, wnamely (6) to (6d), where d is sub-
stituted by pd and n by p*.

Proof of Corollary 3. All we have to prove is to show that all
those integers which appear in the accumulators and are multiples of
d are also multiples of ». This concerns all the numbers
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(___1)i<s -1 " t+ 1,)( p* .)Dn_sw—i ,
7 s—t+1

(?I:O,l,---,t—l; t’—“l,Z,*“,S'—'l; 822:37"';1)“)

(52a)

where the decisive point is the relation
(52b) l1<s—t+e=p~1.

But since, as is well known,

(52¢) D

(Z) foru=1,2,.-;k=1,2..-,p*—1

it follows from (52¢) in view of (52b) that the numbers in (52a) are
all multiples of p.

We leave it to the reader to prove the interesting fact, that each
element of all the accumulators (6) to (6d) appearing in the Main
Theorem are multiples of p, if » = p* (p prime, v =1,2, -++)

V1. Illustrations. (1) To illustrate the Main Theorem let us
take n = 5. Then the Main Theorem would sound:
Let d, D, m be natural numbers such that

d|D; m=1l; 1=<d=D:8.
Let
w=(D*—d:m)*,

f,=i(4—z+i)w‘%0—1>f. (5=1,23,4).

3=

Then the JAPAL of the 4 numbers

w+4D—1); w+3wD—1) + 6D —1);
w4+ 2w (D — 1) + 3w(D — 1) + 4D — 1) ;
w+ w(D — 1) + w(D — 1) + w(D — 1% + (D — 1)

is purely periodic and its primitive length is 25. The period consists
of five fugues, and the accumulators of these fugues have the form:

First fugue

5D—1); 5D—1)@2D—1); 5D —1)2D*—2D + 1);
5D(D — 1)(D* — D + 1) ;

Second fugue
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5D—1); 5D—1@D—1); 5D —1)@D'—2D+1);
mD? . _1).
5D(T 2D* + 2D 1) ,

Third fugue

5D—1; 5D —1@D—1); 5D<27’;D3 — 4D* + 8D — 1) ;

5D(ﬁ§i(p —2)+2D — 1) ;

Fourth fugue
. (omD* . s(2mD* . 3
5(D — 1) ; 5( LD~ 3D+ 1) ; 5<___.d (D 2)) +15D — 5,

: 517(%.0_(1)2 — 2D +2) — 1) :

Fifth fugue
(M2 —1); 5(Z2@D-9+1); s72(er—4D+3)-1);

-5—"-’5-12-(D3 —2D* 42D —1).

In the case of n =5, m =d =1, the JAPAL of the 4 numbers

=3 (4 - : i i)W""(D -1 (6=1,23,4 w= D" -1

=

is purely periodic and its primitive length is 5. It consists of one
fugue, the accumulator of which has the form

5D—1); 5D —1)2D—1); 5D —1)@D*—2D + 1)
5D(D — 1)(D* — D + 1) .

To illustrate Corollary 3 we shall take »p = 2; v = 2, Then Corol-
lary 3 would sound:

Let d, D be natural numbers such that d|D, d < D:12 and let
w = (D* — 2d); then the JAPAL of the three numbers

w+3D—1); w+2wD—1) + 3D —1);
w* + w(D — 1) + w(D — 1)* + (D — 1)°

is purely periodic and its primitive length is 16, The period consists
of four fugues, the accumulators of which have the form
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First fugue
4D —1); 2D — 1)(3D — 1) ; 20— 1)2D* - D+ 1);

Second fugue
mD? .
4D —-1); 2D —1)BD—1); 2(7—30 +2D——1>;

Third fugue
4D —1); 3_";22_—81”2; -”%11(217—3)+2(2D—1);

Fourth fugue

mD mD mD
me _9)y. MI3p_4)+2: mZ op: — 3D -9,
2< 7 2) ; ¥ 3D )+ 2 ; 7 @D 3D 4 2) — 2
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PERMANENT OF THE DIRECT PRODUCT
OF MATRICES

RICHARD A. BRUALDI

Let A and B be nonnegative matrices of orders m and n
respectively, In this paper we derive some properties of the
permanent of the direct product A X B of A with B, Specifi-
cally we prove that

per(4 X B) = (per (4))*(per (B)™

with equality if and only if A or B has at most one nonzero
term in its permanent expansion. We also show that every
term in the permanent expansion of A X B is expressible as
the product of n terms in the permanent expansion of 4 and
m terms in the permanent expansion of B, and conversely.
This implies that a minimal positive number K,,, exists such
that
per (A X B) £ Kn,»(per (A)"(per (B)™

for all nonnegative matrices 4 and B of orders m and n res-
pectively. A conjecture is given for the value of K,,,.

 Definitions. Let A = [a;;] be a matrix of order m with entries
from a fileld F. The permanent of A is defined by

per (A) = 2ay; Qo+ Qs

where the summation extends over all permutations (%, 4,, -+, %,) of
the integers 1,2, ---, m. The set of elements

a‘lily azi,’ Ty amim

where (%, %, ***,%,) is a permutation of 1,2, «-., m is called a per-
mutation array of A, while their product

Ay Ooiy =+ * Qs

is a permutation product of A. The permanent of A is then the
sum of all the permutation products of A. The term rank p(A4)
of the matrix A is defined to be the maximal order of a minor of 4
with a nonzero term in its determinant expansion. By a theorem of
Konig [3] it is also equal to the minimal number of lines (rows and
columns) which collectively contain all the nonzero entries of A. Ob-
viously o(A4) = m if and only if A has a nonzero permutation produect.
A good discussion of these concepts is given by H.J. Ryser in [3].
If B is another matrix of order » with entries from the field F,
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then the direct product (or Kronecker product) of A with B is defined
by

a,B a,B +--a,B
AxB— a,m.B azz.B vee a2,,:B
a,,:lB am;B cee a,,,.,,,B
It is a matrix of order mn. The submatrix of A X B given by
[e.;B] (1=7%,5=m)

is called the (¢, 7)-block of A X B or sometimes simply a block of AX B.
Direct products are discussed by C.C. MacDuffee in [2]. We mention
those properties which will be of use to us. First it is readily verified
that an associative law is satisfied, so that 4, X 4, X -+ X A4, can be
defined unambiguously. If C and D are matrices of orders m and n
respectively, then

1.1) (A x B)(C x D)= AC x BD.

Thus if PAP, = A, where P and P, are permutation matrices of order
m and if QBQ, = B, where @ and @, are permutation matrices of order
n, then

1.2) (P x QA X B)(P, x @) =4, X B,.

This says that permutations of the rows and columns of A and B
induce permutations of the rows and columns of A X B.

It follows by inspection that a permutation matrix P of order mn
exists such

(1.3) ‘ PYAX BP=Bx A,

where PT denotes the transpose of P. That is, the rows and columns
of A X B can be simultaneously permuted to give B X A, From this
we immediately obtain

(1.4) per (A X B) = per(B X A).
A formula for the determinant of A X B is given by
(1.5) det (4 X B) = (det (4))"(det (B))™ .

The definition of the determinant is very similar to that of the perma-
nent, the only difference being that in the determinant we assign a
certain sign to the permutation products. It is therefore natural to
ask whether (1.5) has a counterpart for the permanent. It is this
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question that we consider for nonnegative matrices A and B. A non-
negative matrix is one whose entries are nonnegative real numbers.
Such matrices are discussed by Gantmacher in [1].

This paper is taken from a portion of the author’s doctoral dis-
sertation submitted to Syracuse University in June, 1964 and written
under the supervision of Professor H.J. Ryser. The author wishes to
take this opportunity to express his sincere appreciation to Professor
Ryser for his excellent guidance. The dissertation was written during
a period in which the author held a summer fellowship of the National
Science Foundation and a fellowship of the National Aeronautics and
Space Administration.

2. Preliminary theorems. A well-known theorem due to Fro-
benius and Konig asserts (in our terminology) that all permutation
products of A are zero if and only if A contains an s by ¢ submatrix
of O’s with s+ t =m + 1, m being the order of A. We divide the
opposite situation where A has at least one nonzero permutation pro-
duct into two cases.

THEOREM 2.1. Let A be a matrix of order m with entries from
a field F. Then A has precisely one monzero permutation product
tf and only tf by permutations of its rows and columns it may be
brought to the triangular form:

a’ll
a, 0
2.1) ’

*
T

where Ay, >+ Qpn = 0. In (2.1.), 0 denotes all zeros while * denotes
arbitrary elements.

Proof. We need only prove the necessity. Thus suppose A has
precisely one nonzero permutation product. If m = 2, the result is
readily verified. We may regard A as the incidence matrix of a collee-
tion of subsets S,, S,, --+, S, of the elements x,, x,, -+, 2,. Here z;
is a member of S; if and only if a;; # 0. The fact that A has pre-
cisely one nonzero permutation product means the subsets S,, S,, -+, S,
have exactly one system of distinct representatives. If all of the
subsets S,, S,, ---,S,. contained two or more elements, then by [3,
Thm, 1.2, p. 48] there would be at least two systems of distinet
representatives. Hence one of the subsets S,, S,, ---, S,, must contain
only one element. Therefore by permuting the rows and columns of
A we may assume A has the form
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"au|0 0---0
*
*
. Al
*
— J

where a,, # 0 and * denotes arbitrary elements. Now A' can have only
one nonzero permutation product otherwise A would have more than
one. Applying induction to A', we obtain desired result.

COROLLARY 2.2, Let A be a (0,1)-matrixz of order m. Then
per (4) = 1 if and only if the row and columns of A can be permuted
to yteld a triangular matriz with 1’s on the main diagonal and 0’s
above the main diagonal.

THEOREM 2.3. Let A be a matrixz of order m with entries from
an arbitrary field F. Then A has more than one monzero permuta-
tion product tf and only if the rows and columns of A can be
permuted to give a configuration of the form:

(ay, a:m A

(2.2)

ar+1.r+1

C amm -

where 2 < r < m and each a;; designated above is mot zero. All
entries not designated are arbitrary.

Proof.! Suppose A has more than one nonzero permutation pro-
duct. By permuting rows and columns we may assume to begin with
that the elements on the main diagonal of A are nonzero. The con-
clusion now follows by using the well-known fact that if @ is a permutation
matrix then there exists another permutation matrix P such that P"QP
is the direct sum of full cycle permutation matrices.

THEOREM 2.4. Let A and B be nonnegative matrices of order mn.
Then

2.3) per (AB) = per (A) per (B) .

1 The author is indebted to the referee for improving the exposition here.
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Strict inequality occurs in (2.3) if and only if there extists an integer
© with 1 =1 < n having the property that if A; denotes the matrix
A with column ¢ deleted and B,; denotes the matrixz B with row %
deleted, then

(2.4 per (A;B;) > 0.

Proof. Every permutation product of AB is the sum of %" terms,
each of which consists of the product of % elements of A and » elements
of B. Consider a term

(2.5) alu'lbiljl tee an«;nbina’n
of per (A4) per (B). Here (¢, +--,%,) and (J,, +--,J.) are permutations
of the integers 1, ..., n. The expression (2.5) is a term in the per-
mutation product of AB arising from the elements of AB in positions
1,7), --+,@,3.). From this and the fact that A and B are nonnega-
tive matrices, (2.3) follows.

Striet inequality occurs in (2.3) if and omnly if some permutation
product of AB contains a nonzero term of the form
(2.6) alilbilil ce a’ninbinjn
where (j;, <+, J.) is 2 permutation of the integers 1, ---, » and where
1<4,=n for s=1,---,n, but (¢, ---, %, is not a permutation of
of 1, ---,n. Thus there exists at least one integer k& between 1 and
n such that ¢; is different from k& for j = 1, -.., n. Let A, be the matrix
obtained by crossing out column k of A and B, the matrix obtained
by crossing out row % of B. Then a nonzero term of the form (2.6)
oceurs if and only if per (A.B,) > 0. This establishes the theorem.

3. Main theorems. We now prove the main result of this
paper.

THEOREM 3.1, Let A and B be monnegative matrices of orders
m and n respectively. Then

3.1 per (A X B) = (per (A))"(per (B))™ .

Equality occurs in (3.1) ¢f and only if A or B has at most one non-
zero permutation product.

Proof. We have

Ax B=(Ax L)I, x B),
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where I, and I, are identity matrices of orders m and n respectively.
Hence by Theorem 2.4,

(3.2) per (A X B) = per (A x L) per (I, X B).
But
per (I, X B) = (per (B))",
since I, X B is the direct sum of B taken m times. Also
per (A X L) = per (I, X A) = (per (4))"

by (1.4). This establishes (3.1).

We now investigate the ecircumstance of equality in (3.1). We
remark that equality occurs in (3.1) is and only if equality occurs in
(3.2). Necessary and sufficient conditions that equality occur in (3.2)
are given in Theorem 2.4. In proving that equality occurs under the
conditions stated in the theorem we may assume by (1.4) that A has
at most one nonzero permutation product. If all permutation products
of A are zero, then per (4) = 0 and the term rank p(4) of A satisfies
o(4) < m. It then follows by an easy application of Konig’s Theorem
that

p(A X B) £ p(An < mn .

Therefore per (A x B) = 0, and equality oceurs in (3.1). It A has
precisely one nonzero permutation product, then according to Theorem
2.1 the rows and columns of 4 can be permuted to give the triangular
matrix

(3.3)

where per (4) =a, ++- a,, 0. Since permutations of the rows and
columns of A induce in a natural way permutations of the rows and
columns of A X B, we may assume A has the form (3.3). From this
it follows equality occurs in (3.1).

Conversely, suppose both A and B have at least two nonzero
permutations products. Since permutations of the rows and columns
of A and B give rise to permutations of the rows and columns of
A X B, we may assume by Theorem 2.3 that
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(@ Oy
R 2N
a a
(3.4) A — rl rr
ar+1,r+1
~— A J
and
bll blﬁ )
b ¢ 23—1,3
(3.5) B — 81 88
bs+1ys+1
L bon )

Here 2<r<m and 2 <s <n. Each a;; and b, designated is not
zero while all other entries not designated are arbitrary. Consider the
matrices A X I, and I, x B. Cross out column one of A X I, to
obtain the matrix (A X I,), and cross out row one of I, X B to obtain
the matrix (I, X B),. The matrix (4 X L),(I,, x B), is of order mn
and we consider it to be partitioned into m*® blocks (submatrices) of
size n by n in the natural way. Just as in the direct product we
shall speak of the (¢, 7)-block of (A X I)(I, X B),, 1<4,7=<m. In
each of the (k, k)-blocks, k=1, ---, r — 1 select the last » — 1 main
diagonal elements; in the (7, r)-block select the elements in positions
@,2),:--,(8s—1,s8), (s+ 1,8+ 1), «-+, (n, n); in each of the (7,5 + 1)-
blocks, =1, «+-, r — 1 select the first main diagonal element; in the
(r, 1)-block select the element in position (s, 1); and finally in each the
(¢, t)-blocks, ¢ = r + 1, ---, n select all of the main diagonal elements.
It can be verified that each of the elements selected is different from
zero and that the collection form a permutation array of (4 X I,),(/. X B),.
Hence their product is a nonzero permutation product of (A X I,),(Z,, X B),
and

per (A X L),(I. x B),) > 0.
By Theorem 2.4 strict inequality occurs in (3.2) and thus in (3.1). This
concludes the proof of the theorem.

COROLLARY 3.2. Suppose both A and B have nonzero permanents.
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Then equality occurs in (3.1) if and only if by permuting rows and
columns A or B can be brought to triangular form with nonzero
elements on the main diagonal and zeros above the main diagonal.
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