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STABILITY OF LINEAR DIFFERENTIAL EQUATIONS

WITH PERIODIC COEFFICIENTS
IN HILBERT SPACE

GERT ALMKVIST

In this paper we study the stability of the solutions of
the differential equation

(1) u'(t) = A(t) u(t)

for ί ^ 0 in a separable Hubert space. It is assumed that
A(f) is periodic with period one and satisfies the following
symmetry condition: There exists a continuous constant in-
vertible operator Q such that

A(t)* = - Q A(t) Q-1 for all t £ 0 .

We use a perturbation technique. Let A(t) = Ao(t)-\-B(f) where
Ao(t) is compact and antihermitian for all t. We denote by
Uo(t) the solution operator of uι(t) = Ao(t)u(t). It is shown
that (1) is stable if B(t) satisfies a certain smallness con-
dition involving the distribution of the eigenvalues of Ϊ7o(l)
and the action of B(t) on the eigenvectors of ϋi(l). The
results can be applied to the second order equation

y" + C(f)y = 0

where C(t) is selfadjoint for all t.

Throughout this paper we consider the differential equation (1)
where u is a function from the positive reals, R+, into a separable
Hubert space X with norm | |g | | = (x, x)iβ. A is a function from R+

into B{X), the algebra of continuous linear operators on X. We
assume that A(t) is Bochner integrable on every finite subinterval of
R+. Then for a given initial value w(0), there exists a unique solution
of (1) (see [4, p. 521]).

Further we always assume that A(t) is periodic. It is no restric-
tion to assume that the period is one, that is A(t + 1) = A(t) for all
t e R + .

The equation (1) is said to be stable if for every initial value
w(0), there exists a constant ikf, such that | |tt(ί) | | ^ M for all ί e R + .
It is convenient to study the equation

(2) U(t)'= A(t)U(t) , U(0) = I

in B(X). Using the principle of uniform boundedness it is easily seen
that (1) is stable if and only if the solution of (2) is bounded.

Received June 20, 1964,
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384 GERT ALMKVIST

Let Φ(A) = lim orH] 11 + ccA \ \ - 1)
a-++0

denote the Gateau differential of A. When X is a Hubert space Φ(A)
can be calculated by the formula Φ{A) = sup Re(Ax, x)

11*11=1

PROPOSITION 1. If Γ Φ(A(t))dt g 0 , then (1) is stable.
Jo

Proof. Let n be the greatest integer ^ t. Then using [1, Th. 4]
we get

|| ϋ(t) || ^ exp p0(A(«))cfe ^ exp (n(V(A(s))ds) exp Γ~V(A(β))&

^ exp Γ I *(A(«)) I rfs
Jo

which ends the proof.
From now on we assume that A(t) satisfies the following symmetry

condition:
There exists a constant continuous operator Q such that Q"1 is

continuous and

(S) A(t)* = - QA{t)Q-' for all t ^ 0 .

Here A* denotes the adjoint of A.

PROPOSITION 2. Condition (S) is equivalent to

U(t)* = QUity'Q-1 for all ί ^ 0 .

Proof. We have *7*(0)QE7(0) = Q because 17(0) = I. But

A(Z7(t)*QET(i)) = U(t)*A*(t)QU(t) + U(t)*QA(t)U(t) = 0
at

if and only if

A*(ί)Q + Qii(t) = 0 .

Let σ(U) be the spectrum of 17. From Proposition 2 it follows
that σ(ϋ*(t)) = σ{QU~\t)Q-1) = σ(U'\t) that is λeσ(Z7(£)) implies

PROPOSITION 3. If Q is positive definite, then (1) is stable.

Proof. Q has a positive definite square root S, that is Q = S2.
Moreover S"1 exists and is continuous. From Proposition 2 we get
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U* =

and after some calculations (SUS*1)* = (SUS~ι)~\ that is SUS"1 is

unitary and hence || U(t)\\ ^ | | S | | US"1!! for all t ^ 0.

The uniqueness of the solution of (2) implies that

U(n + t) = U{t)U(iγ for n = 1, 2,

Hence (1) is stable if and only if there exists a constant M such that

II U(l)*\\ ^M for n = l ,2, •••

Since || U(l)n\\ ^ (v(U(l)))n, where ι> is the spectral radius, it follows
that σ(U(ΐ))d{X; | λ | ^ 1} is necessary for the stability of (1). When
(S) is satisfied σ(U(l))is symmetric about the unit circle and hence
σ(U(ΐ))c:{X; | λ | = 1} is necessary.

Now we study the stability of (1) with a perturbation method,
due to G. Borg [3] in the finite dimensional case. In order to state
the next theorem we introduce some notations. Let the equation be

( 3 ) u'(t) - (A0(t) + B(t))u(t)

We assume that

( a) A0(t) and B(t) are periodic with period one.
( b ) A0(t) is compact and antihermitian (AQ(t)* = — A>(*)) for all t.

Let further U0(t) be the unique solution of UJ(i) = A0(t)U0(t),
Z7o(O)= I. Suppose that

( c ) U0(l) has only simple eigenvalues, λΛ, all Φ 1,
( d ) Alt) + B(t) satisfies condition (S).

Let further e% be the eigenvector with norm one of Z70(l) cor-
responding to the eigenvalue λ%. Put

K = Γ exp Γ2Γ Φ{B{s))dsYt

kφn

THEOREM. If (a), (b), (c), (d) and

(e) K. supΣ 61(1 λ, - λ j - rk)-2 < 1
A: u = l
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and

( f ) Σδ 2 Λ~ 2 <oo

are satisfied, then (3) is stable.

REMARK 1. The theorem is true if K and bn are replaced by

K' = exp J 2 m a x \φ(B(s))dλ , δί = Γ || J5(ί)U0(t)en \\dt.
I o^ί^i Jt J Jo

It is easily seen that K ^ K' but 6̂  ^ 6Λ.

REMARK 2. If X is finite dimensional, then condition (f) is auto-
matically fulfilled.

REMARK 3. K ΣΓ δ2

wr"2 < 1 implies both (e) and (f).

Proof of the theorem. The rather lengthy proof is divided in
eight parts.

( i ) U0(t) is unitary for all t.

A calculation shows that UΌ(t)-1 = V(ί)* where V is the unique solution
of V' = -Aϊ(t)V, F(0)=I. But since - A} = A* it follows that

yi = J7o(ί)*.

(ii) Z70(l) — I is compact.

We have Z70(l) — 1 = 1 A0(ί) U0(t)dt. The integral is compact because
Jo

it is the limit of compact operators of the form 2 "

From (i) and (ii) we conclude that {e»}Γ is ^ n orthonormal set and
indeed a basis because Z70(l) — / is compact and 1 is not an eigenvalue
of C7Ό(1) Further lim λΛ = 1. Since U0(t) is unitary

II UQ(t) || = II Uoit)-1 II = 1 for all t and | λΛ | = 1 .

Put W(t) = U(t) — Z70(t). Further it is convenient to write
17(1) = U, U0(ΐ) = C70 and W(l) = W. Let C* be the circumference
of a circle with center Xk and radius rk.

(iii) jRλ = (λ/ - V)-1 exists ifXe \J? Ck.

Put Ri = (λJ - C/o)-1. For a λ such that R°κ and (7 - WEI)'1
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exist, we have

It is clear that i2£ exists whenever λe \jTCk and if || WR£\\ < 1 it
follows that Rκ exists. Since {eu}Γ is an orthonormal basis it follows
that

WP°\\2 < V II WR°t>WJΛβK\\ ^ ,2-1 II WJ*λβ*

But

since

Ble% = (λ - \n)~ιen .

One verifies that W(t) satisfies the equation

W'(t) = (Λ(ί) + B(t))TΓ(ί) + B(t)UQ(t)

which has the solution

Then we get

|| Wen\\ £ ίl||l7(l)J7(β)-MI \\B(s)U0(s)en\\ds.
Jo

From Theorem 4 in [1] we find

|| U(l)U(8)~ι\\ ̂  exp

But Φ(Ao(t) + S(ί)) = Φ(B(t)) since Λ>(ί) is antihermitian. We finally
get

Wen ||
2 S {\[ exp

exp

From condition (e) we conclude that

|| B(s)UQ(s)en \\

K - λn | - n ) " 2
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and hence || WRl\\ < 1 for all λ e \jTCk. Thus we have shown that
22λ exists if λ e \jΓCk.

(iv) U— I is compact.

From (iii) it follows that Σ Γ II Wen\\* ̂  KΣΓK < oo since (e) implies
that ΣiTK < oo. Hence W belongs to the Schmidt class, cf. [5], and
is compact. Further U — I = (Uo — I) + W is compact since UQ — I
is compact (ii).

Put Dn = {λ; I λ - λw | < rn}.

(v) U has exactly one eigenvalue, an, in Dn and an is simple.

Since C7 — / i s compact and 1 ί Dn it follows that there is only a finite
number of eigenvalues of U in Dn.

Now it is convenient to introduce a parameter μ in the equation.
Thus we study U' = (A0(t) + μB(t))U, 17(0) = / where 0 ^ μ ^ 1. A
simple calculation shows that 22λ(μ) is a continuous function of μ.
Hence the projection

En{μ) = (2πi)-λ Rλ{μ)d\

is also continuous in [0,1], Further we can find a partition

0 = μi < μt < < μk = 1

such that

|| En(μu+1) - En(μ>) II < <22lf )~ ι for y = 1, 2, . , fc ,

where M = max || £?Λ(//) | |. According to a well known lemma (see [6,

p. 424]) it follows that dim En(μv+1)X = dim En{μ,)X if both sides are
finite. This is the case here because U(μ) — I is compact for 0 ^ μ 5Ξ 1
and Dn contains only a finite number of eigenvalues. Now dim En(0)X =
1 and hence, dim En(ϊ)X = 1 by induction. Thus there is exactly one
point an e σ( U) in Dn and this an must be simple.

(vi) | α . | = l.

Assume that | an \ > 1. Then it follows that a'1 e Dn. But due
to (S) we find that ά^eσiU) and there will be two points belonging
to σ{U) in Dn. This is impossible.

Assume now that | an \ < 1. If α"1 e Du we can apply the same
argument as above. If a~ι£Dn it is easily seen that a^ζσiU). In
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fact we show that if λg \jTDk and λ Φ 1 it follows that X£σ(U).
We need only consider X with | λ | > 1. Let Dk be the circle closest
to X. Then it is clear that {λ — Xn | ^ 11 Xn — Xk \ — rk | for all n and
we get

bl | λ - Xn |~
2 ^ K± b\{\ Xn - Xk I - r&)-2 < 1

1 1 w = l

due to (e). Hence Rκ exists.

Now we have proved that σ{U) consists of simple eigenvalues on
the unit circle with limit point 1. In the finite dimensional case it
follows immediately that (3) is stable (see Boman [2]). In the infinite
dimensional case we have to use condition (/).

Put ^(0) = E% and EJX) = Fn. If Fnen Φ 0 we put φn = Fnen

and if Fnen = 0 we choose φn as an arbitrary eigenvector of U cor-
responding to an. We have Enen = en and Uφn = an <pn.

(vϋ) Σ?\\<P«-en\\2<oos

(Fn - En)en = (2πi)-> \ (Rk - Rl)endX .

A calculation shows that

R, - i?λ° = JBjf(I - WR!)-1 WRl.

Thus

|| (Fn - En)en || ^ (27Γ)-1 ί || Λj{ || . || (/ - WR^1 II II WBle% \\ | dX \

( || ll) n n

\eσn

= const bnrzι.

Here we used the fact that \\Rl\\ = r"1 for all λ€cΛ. Then

Σ || (F. - j&Jβ. ||2 S const. £ δ2r;2 < oo due to (f) .
1 1

It follows that Fnen = 0 only for a finite number of n and hence

We define a linear operator P by the relation Px = Σ Γ <*V9>V where
* = Σ Γ cuev and Σ Γ \cu |

2 < oo # We recall that an operator T is called
injective if Tx = 0 implies # = 0.

(viii) I — P is compact and P is injective. Hence P*1 is continuous.
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£ II ( I - P ) β . |Γ = Σ II β. - ?>. II2 < - due to (vii) .
1 1

Thus /— P belongs to the Schmidt class and is compact (see [5]).
Assume now that Px = ΣΓ cvφv = 0. We apply the projection Fk and
get

Fu Σ c»Φ* = okFkφh = c f e ^ = 0

and ck = 0 for every &. Hence $ = 0 and P is injective.

Now we end the proof of the theorem. We have to estimate
|| Unx\\ for an arbitrary xeX. Put y = P~ιx and assume that y =
2,Γ αvev. We get a? = Py = XΓ α^v and

TTit/y* TTn "Pil \ ' fi TTnf7i \ * ft /γnm "P \ ' rt SVn£>

1 1 1

Further

II TTnr II < II P\\ . ί V I a /rn\2\1^ — II P l l . / V I n IH1'2

Σ

which implies that || Ϊ7Λ | | ^ | | P | | || JP""X || for every n and the proof is
finished.

REMARK 4. If C = (ϋΓ Σ Γ δ 2 ^ 2 ) 1 ' 2 < 2-1, then || Un | | < (1 - 2C)-1.

Proo/. From the proof of (iii) it follows that || WRZ\\ ^ C for
all λ e UΓ Ck. Further we get

|| (Fn - En)en || ^ (1 - Q -

for all n since

(1 - C)~2KZKr;2 = C2(l - C)-2 < 1 .
1

Hence Fnen Φ 0 and <pn = Fnen for all w. Then

I I I - Pll2 ^ Σ I l 9 v - βvll1 ^ C2(i - C)-2

and

Further
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IIp-1 ii = ii(I- (i- P))-1!! ^ (l - II / - Pi!)-1 ^ (i - C)(i-2C)-1.

Finally

An interesting application of the theorem is the second order
equation

y" + C(t)y = 0

in a Hubert space Y, where C(ί) is self ad joint. Put X — Y® Y and

u = {ιfy. Then we get

0 I\

of-
This equation satisfies the symmetry condition (S) with Q — ( _ r Λ ).

Acknowledgements. I am very grateful to Professor G. Borg who
proposed this problem and whose encouragement has been of great
value to me.
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A TRANSPLANTATION THEOREM FOR
ULTRASPHERICAL COEFFICIENTS

RICHARD ASKEY AND STEPHEN WAINGER

Let f(θ) be integrable on (0, π) and define

an = [' f(β) cos nθ dθ , K = «1/2 ί* /(<?)P»(cos 0)(sin θγ'HΘ
Jo Jo

where Pn(x) is the Legendre polynomial of degree n. Then

(1) c ^ ±\an\Kn +

for 1 < p < oo, —1 < a < p — 1, where C and c depend on p
and a but not on / . From this we obtain a form of the
Marcinkiewicz multiplier theorem for Legendre coefficients.
Also an analogue of the Hardy-Littlewood theorem on Fourier
coefficients of monotone coefficients is obtained. In fact, any
norm theorem for Fourier functions can be transplanted by
(1) to a corresponding theorem for Legendre coefficients.

Actually, the main theorem of this paper deals with ultra-
spherical coefficients and (1) is just a typical special case,
which is stated as above for simplicity.

Let Pn

λ (x) be defined by (1 - 2rx + r2)~λ = 2,Γ=o P£(%)rn for λ > 0.
The functions P^(cos θ) are orthogonal on (0, π) with respect to the
measure (sin0)2λeί0 and

Observe that t« = Anl~K + O(n~κ) where A will denote a constant whose
numerical value is of no interest to us. For simplicity we set ψn{θ) =
ί£P^(cos 0)(sin θ)κ. The functions {ψn{β)}ζ^ form a complete orthonormal
sequence of functions on (0, π) which for λ = l reduce to {A sin (n+l)θ}ϊ.
Also limλ̂ o <Pn(θ) = A cos nθ so the functions φ^(θ) are generalizations
of the trigonometric functions which are used in classical Fourier
series. For uniformity we define φl[θ) = (2/π)m cos nθ. Later we shall
state an asymptotic formula for φ^{θ) which shows another close con-
nection with trigonometric functions. In essence it says that ψn{θ)
looks like cos[(w + λ)0 — ττ(λ/2)]. All of the facts about φ\ that are
quoted without reference are in [15]. Since φ\(β) are a bounded
orthonormal sequence we may consider their Fourier coefficients. Let
fe L\0, π) and define

Received October 5, 1964. The first author was supported in part by N.S.F.
grant 3483. The second author was supported in part by N.S.F. grant 1685.
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394 RICHARD ASKEY AND STEPHEN WAINGER

Let || α j | p = [ΣΓ=o I <*>n Γ]1/P T h e n using M. Riesz's inequality [12] for
K = Σik+* a>kl{n - k), i.e. || bn \\P ̂  Ap \\ an ||p, 1 < p < oo, and Hubert's
inequality, i.e. if cn = JSαJίn + fc) then || cn \\p ̂  Ap || an ||p, 1 < p < oo,
it is easy to show that 11 a\ \\9 ̂  Ap \\a°n || and conversely 11 a°n \\9 ^ Ap 11 a\ \|Pf

1 < ί> < °°. It is this inequality that we generalize to all λ > 0. For
some of the applications we actually want a slight generalization of
the above. Instead of considering the V norm we work in a weighted
V norm,

( 2 ) H α . | | , i β

These applications will be given in the last section.
Our main theorem is as follows.

THEOREM 1. Let fe L^O, TΓ) and define α£ as above. Then if
| |a Λ | | p , a is defined by (2) we have

(3) A ^ | | a i | | p . β / | | a ϊ | | , f β ^ A

for all λ, μ ^ 0 and l < j > < o o , — 1 < # < j> — i#

It will be sufficient to prove the inequalities (3) when μ < λ < μ + 1.
We first give in detail the proof when μ = 0 and 0 < λ < 1. The
formulas that we use in this case are all in the literature and are
reasonably well known. Also this proof is easier to follow than the
proof of the general case. Then we will sketch the proof for general
λ, μ, μ < λ < μ + 1. For simplicity we set a°n = an and use cos nθ
instead of φl(θ).

Let fr(θ) = χ : = o α Λ r Λ cos nθ. Since fr{θ) -+f(θ) almost everywhere
and boundedly in L1 we have

αi = lim (" fr{θ)φκ

n{θ)dθ = limίi [" fr(θ)P£(cos θ)(sin θ)λdθ
r-»l JO r-*l Jo

= lim ahrH\ Γ P£(cos θ) cos kθ (sin
Jo

We break the sum up into three parts, 0 ^ k ^ [w/2], [̂ ι/2] < fc < 2n
and 2^ g k. What we need in each of these intervals is a good

estimate for ί£ Γ PΛ

λ(cos ̂ ) cos fc(9 (sin θ)xdθ = G(fc, n).
Jo

Consider first the case k ^ 2n. We use the following well-known
representation for P*(cos θ) in terms of cos jθ.

(4) PΛ

λ(cos Θ) = Σ *&«-icos (n -
io
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where aό = (j)Jjl = Aj^1 + O(jλ~2). Then

G(k, n) = ± aja^tϊ Γ (sin 0)λ

j=0 JO

x [cos (k - n + 2j)θ + cos (k + n — 2j)θ]dθ .

Since I (sin 0)λ cos rθdθ = CKr"1-*) and A; ̂  2w we see that
Jo

Σi

For the theorem that we want the last estimate CHλr1) is sufficient.
Observe however that we actually have a better estimate. Because
of this it is possible to change Theorem 1 to get similar theorems
where the Fourier coefficients are defined by 1 f(θ)P£(cos 0)(sin Θ)λna dθ

Jo

for various values of a. A possible transplantation then goes to
\'f(θ)Pϊ+β(cosθ)(sinθ)λ+βna-βdθ. Or the (sin0)λ can be omitted from
both of these integrals. We mention these facts only because in the
dual case different transplantation theorems have been considered by
Muckenhoupt and Stein [11] and by the authors [3]. The reason that
both types of theorems are true is best seen in the proof of the present
theorem, which is essentially easier than either of the theorems in [11]
or [3].

Next consider G(k, n) for k ^ [n/2]β This time we need a formula
of Szego. For 0 < λ < 1

(sin 0)2λ-\P.λ(cos Θ)

where fo\ = 1 and

/•x _ (1 - λ)(2 - λ)» - (3 - λ) (n+l)" (n + j)

See [15, p. 96], A simple estimate shows that

Then

G(k, n) = θΓ£ n^fλn*-1 Γ (sin θ)^
Lj=0 J 0

x [sin (n + 2j - k + 1)0 + sin (n + 2j + k + l)θ]dθ\

V=i /
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As usual in results of this nature the region where k and n
overlap is harder to handle. This is because a Hubert transform of
some sort always seems to arise. This time we not only have the
usual Hubert transform but we also get a strange variant of it. The
transformation we encounter is

n fc=[n/2] I n — k + λ + 11

In § 2 we prove the following lemma, which we will use in the follow-
ing argument.

LEMMA 1. If {αj e lp>°, Kp< ooy _ i < α < p _ i, and

& = Σ α l o g n

n *«[n/2j I n — k + λ + 11

then | |6JU,α S Ap\\an\\p,a.

For reference we state a form of the asymptotic formula for
PΛ

λ(cos0) which we will use, [15, p. 195].
For 0 < λ < 1, ljn ^ θ ^ π/2

A cos

Γ(n + X + 1) (sin

ΰcos + λ + 1)^ - (λ + 1)-|Λ

where A and B depend upon X but not on n.

From this we have

έ£PM

λ(cos 0)(sin θ)λ = A cos Un + X)θ - ^ Ξ -

Bcos{{n+ X + 1)Θ(X+ 1)2-
+ i t

n sin

where 1/n ^ θ ^ π/2 and the 0 terms are uniform in n and ^. Also
we shall use the fact that ££P£(cos0)(sin0)λ are uniformly bounded
functions, [15, 7. 33, 6]. Instead of considering

Γ
Jo

Pw

λ(cos Θ)(BUL θ)λ cos Ίeθdθ

S jr/2

since the integrand is either even or odd with
o

respect to θ = π/2. Using (7) we get
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*'* PΛ

λ(cos 0)(sin θ)λ cos &0d0
o

= ί i Γ/2 PΛ

λ(cos 0)(sin 0)λ cos fcfcW + of—^
Ji/n \n/

= A f */2 cos Un + λ)0 — — 1 cos kθdθ
JI/Λ I 2 J

cos {(n + λ + 1)0 - (λ + 1)—} cos kθdθ
+ B\ i — 2J

The last two terms are O(l/n) and the first is A'/(n — fc +.λ) + O(l/n).
We need to consider the second term. Using the addition theorem

S ff/2

[{cos (n — k+ l)0}/sin ^]d^ + three more terms
lln

which are similar but easier to handle. Since 1/sin θ — 1/0 is a
bounded function for 0 < θ ̂  τr/2 we may instead consider

=zJL Γ/2

n Ji/»

c o s

Assume first that fc < w + 1 + λ. Then changing variables by
(n — k + \ + l)θ = y, we find

j = J L

The second term is O(l/ri) by an integration by parts. The first term is

cos ydy + ΰ; Γ«-*+λ+i cos ydy

i o g r + of

n n — & + λ + 1 \n

get instead that

n k — n — λ — 1

Using all of the estimates, we have

a
*«[n/2] n — k + λ

+ A v αfciOg
w *»c»/a] I n — & + λ + 11

+ θ\— Σ I ak ll + Km Σ αfcr
fcA(fc, Λ)
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where A(k, n) = Oik"1).
To show the lp'a boundedness of these sums we need two forms

of Hardy's inequality and M. Riesz's inequality for the discrete
Hubert transform as well as Lemma 1. The relevant forms of Hardy's
inequality are in [6], p. 255, #346 (a), (b), part (a). The continuous
analogue of the lp** boundedness of the discrete Hubert transform is
in [5].

Using these inequalities we see that the first and fourth terms
are bounded by Hardy's inequality. By dominated convergence we
may let r ~* 1 in the fifth term and it is bounded in l*>" by Hardy's
inequality. The second term is just the discrete Hubert transform
plus two terms like the first and last terms. Thus it is bounded in
l* ". The third term is handled by Lemma 1.

In actual fact the second and third terms given above are not
exactly right since the terms in which k and n have opposite parity
are zero. The notation to include this is too cumbersome to be worth
including and this point causes no trouble.

To show that | |α»||p,β ^ 4̂ | |αi | | Λ , β observe that (formally)

ak = \'fφ) cos kθdθ = £ α£ί£ Γ P»(cos θ) cos kθ{sin θ)λdθ .
JO n=0 JO

We have the same G(k, n) that we analysed above and so no more
work need be done on it. However there is the problem of Abel sum-
mability of ultraspherical expansions. Estimates for the Poisson kernel
which allows us to prove the dominated U convergence of the Abel
means are in [11, § 4]. The argument that is needed to prove this is
well known.

We now consider the general case of Theorem 1 with μ < λ < μ + 1.
The proof proceeds along the same general lines but the formulas for
P£ that we need are considerably more complicated. To take the place
of (4) we need the following result of Gegenbauer [4].

If 0 < a < β then

[n/2]

( 8 ) Pf (cos θ) = Σ α;-P«°-2,(cos θ)

where

- 2j + a)Γ(j + β - a)Γ(n - j + β)
a -

Γ(β)Γ(β - a)jlΓ(n -j + a+1)

Instead of (5) we need a result that follows from (8) and is given in
[2]. If (β - l)/2 < a < β then

(9) (sin θy*PZ(cos θ) = Σ βsPL^fiM 0)(sin θ)^
j0
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where

β _. Γ(β)22β~2a(n + 2j)! (n + 2j + β)Γ(n + 2α)Γ(M + j + /3)Γ ( j + £ - α)
Γ(/S - a)Γ(a)j\n\Γ(n + j + a + l)Γ(n + 2j + 2/3)

Observe that βs is positive if α < β. This result also holds for a > β
but then the coefficients are no longer positive and changes must be
made for a = β + 1, β + 2, •••, since the right hand side is then a
finite sum. A simple computation shows that

(10) as ~(n- 2j

and

(11) βj ~ (n + 2j)2-2βn2a-ψ-a-1(n + j)^-1 ~ (n + j)i~β-°n*«-ijβ-*-* f

for a < β. For a > β and a Φ β + 1, β + 2, , we have

\βj\~ (n + jy-β-«n*«-ψ-«-i β

By dj ~ bj we mean 0 < c ^ α̂  /δy ^ C < oo β

If in (9) we let n — 0 and use (1) we have

(12) I Γ (sin 0)2*P£(cos θ)dθ - O(j2β-2a~2) .

Next we need something to take the place of cos x cos y =
[cos (x + y) + cos (x — y)]/2 and sin xcosy = [sin (a? + y) + sin (a? — y)]/2.
For the first we use a formula of Dougall which is given in [9] and
reduces to it for λ —> 0. If λ > 0 then

PΪW P^) ψ c(k m n) P^x)

Pi® PUD

where cλ(fc, m, n) ^ 0 and 2 ^ £\(&, w, tι) = 1. We define cλ(k, m, n) — 0
if & < I n — m I or k > n + m and then we may sum on all non-
negative k. The numbers cλ are known [9], but we shall not need
them in our argument.

For the second formula above we use the following substitute
which again reduces to it for λ —• 0. If λ > 0 then

Pϊ+1(x) PX*) - ψ d ( k m n)

where dλ ^ 0 if n i> m — 1. This is found in [1]. From (14) it follows
that ΣΓ=o dλ(k, m, n) — 1 where dκ(k, m, n) = 0 if & < | n — m I — 2 or
k > n + m. Finally recall that

(15) Pϊ(l) ~ ^ 2 λ " 1 .
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These results are sufficient to allow us to estimate I φn(θ)φl(θ)dθ for
Jo

μ < λ < μ + 1 and k ^ n/2 or n ^ k/2. To estimate this integral
for k/2 < n < 2k we use the following asymptotic formulas due to
Szego.

LEMMA 2. Let μ > 0, μ not an integer. Then

x

π r Γ(μ)

- (m + μ)—
2 J

=o Γ(n + m + μ + ϊ)ml (2 sin θ)m+lλ

where

j J.\rp j v / | ^ D l l l \Jj IV J

and the 0 holds uniformly for 0 < θ < π.
For μ = 1, 2, 3, we have

LEMMA 3.

m + μ — l\/w- + 2// — 1

m /\/i — m + 1

cos (w + m + μ)θ — (m + //)-^
X

[(2sin#)(ra + μ)]

The same estimates hold for an error term in Lemma 3 as in
Lemma 2 if one stops before m = μ — 1. These two lemmas are in
[14, p. 49 and p. 59]. In fact we do not need the full force of either
of these Lemmas but they are relatively inaccessible and not as well
known as they should be.

Now to complete the proof of Theorem 1. Let μ < λ < μ + 1
and fr(θ) = Σ Γ = o < ^ W ) . Then by dominated convergence and the
boundedness of the Abel means of an ultraspherical expansion we
have

α£ = lim ^ frφ)φXΘ)dθ = lim Σ α£rfc (* φΐ(θ)φϊ(θ)dθ .
r~*l~~ Jo r-*l~ lc=0 Jo

As above we need to estimate I φ\(θ)φiφ)dθ = G(k, n) for three cases,
Jo

k 5g n/2, n/2 < k < 2n, and 2n ^ k. Consider the third case first.
Using (8) and (13) we have
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G(k, n) = ίiίg Γ P£(cos θ)P£(cos 0)(sin
J

= Σ

2 . y ί l ) Σ eμ(l, k, n -

Γ Pz

μ(cos 0)(sin
Jo

Then using (10), (12), (15), and recalling that cμ(l, k, n - 2j) == 0
unless k — n + 2j ^ I ^ k + n — 2j and so Z ~ k.

For simplification of printing we use n,k,j in the following argu-
ments instead of n + 1, k + 1, j + 1, etc. This leads to some infinite
terms which clearly aren't infinite and they are to be interpreted in
the obvious way.

[n/2]

I G(k, n)\£Σ* (ny-k(ky-»(n - 2j + μ){j)λ-*-ι{n)κ-»-\n - 2j)2^1(ky-χ-2

i=o

^ A(n/k)κ(k)-1 ^ A{k)-X .

Next we consider G(k, n) for A; g tι/2. Using (9) and (14) we have

G{k, n) = Σ <i<*iδi Γ -Pί (cos θ)P:+2)(cos ff)(sin θ)3fί~λ+2dθ
i=o Jo

Pμ + 1(cos (9)(sin <9)μ-λ(si

This time dλ(lf kyn + 2j) = 0 unless n/2 + j ^ Z ̂  2n + ±j (actually
it is zero for many values in this range also but that doesn't matter)
and so I ^ n + 2j and thus using (11), (12), and (15) we obtain

I G(k, n) I g Σ M1-W"'Wμ~1/2 i Γ P£fi(cos ί)(s
.7=0 Jo

^ Σ
j=o

Σ
.7=0

For the terms with k/2 ^ n ^ 2k we use Lemmas 2 and 3. As
in the case μ — 0, 0 < λ < l we first reduce the integral to

P φλ

n(0)φΐ(θ)dθ + Oin-1)
l/n
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and then terms of the same type as previously appear. The proof is
then finished by the same appeal to Hardy's inequality, M. Riesz's
inequality, and Lemma 1.

Theorem 1 then follows by a repeated application of the inequalities
just proven.

2* A lemma* We now give a proof of Lemma 1. Recall that

n *-[«/a] I n + X + 1 — k \

We define Ak = Σί-i /*] α ; T h e n

= - Σ
n fcL/2

n , 1 1 Λ Λ , n

— ?
n

n

+ λ + 1 —• k\
— log- W

71 + λ —

_ _ _ I

n

n + λ —

λ + 1 —

where Rn is a bounded sequence in lp>" if {αj G lp*°. But

log
λ — k

n+X+l —
= -log 1 +

k — n —
+ 0

So we have

1 2n
£_ v̂ »
^ fc«[«/2 + λ

I 2w

—τ + - Σ

(k — w — λ) 3

Ak

•m (k — n —

The second term is a bounded sequence in lp>° by [6, p. 198, #274].
We write the first term as

1 2Λ /I 2w

^ fc = [n/2] ft, + λ — k fc = l>/2 λ —

Ak

7l(& — λ)

But A4/(fc — λ) is in lp>a and so we have that {bn} is an lPt" sequence
by Hardy's inequality and M. Riesz's inequality for the discrete Hubert
transform.

A similar proof also shows that
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e . =
k \n'—k

is a bounded operator for a not an integer. If a is an integer the
transformations are bounded if the term when the logarithm is un-
defined is dropped.

A similar theorem is also true in the continuous case where an
integration by parts takes the place of our summation by parts.

3. Applications. Our first application is an analogue of a theorem
of Hardy and Littlewood concerning the Fourier coefficients of even
functions, monotonically decreasing in (0, π), [16, p. 130], Their
theorem is

THEOREM A. ' If f(θ) is a decreasing integrable function on (0, π)

and if an are the Fourier cosine coefficients of /, then

Σ I « . Γ(» + D β

is finite if and only if

O
iz "11/P

Q\f(0)\p0p-2+adθj

is finite, 1 < p < °o, —I < a < p — 1.

From this and Theorem 1 we obtain

THEOREM 2. Let f(θ) be decreasing and integrable on (0, π) and

f(θ)P£(cos 0)(sin θ)xdθ, 0 < λ. Then I Σ I α» \p(n + l)αJ is

^ n i ί β if and only if \[* \f(θ)\pθp-2-°dθΎP is'finite, l<p<c*>,

- 1 < α: < p - 1.
Another application is the analogue of the Marcinkiewicz Multiplier

theorem. In the case of Fourier coefficients it is due to Sunouchi [13]
for {an}eΓ and to Igari [10] for {αn}eϊp α.

THEOREM B. Let f(θ) e L\0, TΓ), an = \* f(θ) cos nθdθ, \ t(θ) \ ̂  C,
Jo

Γ Λ I dί(ί) I ̂  C , w = 0,1, .
Jjr2-»-l

Thenifbn=[πt(θ)f(θ) cos nθdθ and {an}elp>a, l<p<co, -l<a<p-l,
Jo

ft { 6 } Ϊ p d | | 6 | | A | | !!

From this we get a form of the Marcinkiewicz theorem for ultra-



404 RICHARD ASKEY AND STEPHEN WAINGER

spherical coefficients.

THEOREM 3. Let f{θ) e Lι(0, π), an = ti [ f(θ)P£(cos 0)(sin θ)κdθ,

λ > 0, I t(θ) \gC,

Γ " \dt(θ)\g.C, » = 0,l, . . . .

Then if bn = «i Γt(θ)f(θ)P£(cos0)(sinθ)κdθ and if {an}e V>«, l < p < co,

-l<a<p-l "then {δj € lp>a and \\ bn \\p,a S A \\ an \\Pta.

For p = 2 Hirschman has already obtained a form of the
Marcinkiewicz theorem. If we let

then we get the projection theorem of Hirschman [8] but only for
ultraspherical coefficients. Hirschman proves his result for Jacobi
coefficients and presumably Theorem 1 is also true for Jacobi poly-
nomials. However this is still open.
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TWO NOTES ON REGRESSIVE ISOLS

JOSEPH BARBACK

This paper deals with regressive functions and regressive
isols. It was proven by J. C. E. Dekker in [2] that the collection
AR of all regressive isolβ is not closed under addition. In the
first note of this paper we shall given another proof of this
fact by considering a new relation, denoted by >*,, between
infinite regressive isols. Let A and B denote infinite regressive
isols. The main results established in the first note are:
(1) A ^ * B — » A >•, B, yet not conversely.
(2) A + BeAB ==> A <J, B, yet not conversely.
(3) There exist infinite regressive isols which are not >*, related.
(4) AR is not closed under addition.
In addition, the following result is stated.
(5 ) A + BeAB = * min(A,B) ^ A + B, yet not conversely.

In the second note we consider the έ * relation between
regressive isols. A natural question concerning this relation
is whether A ^ * 5 , where A and B are regressive isols, is a
necessary or a sufficient condition for the sum A -f- B to be
regressive. In the second note we show that this condition is
neither necessary nor sufficient.

We shall assume that the reader is familiar with the
notations, terminology and main results of [1] and [2].

Preliminaries* Let s = {0, 1, 2, 3, •} be the set of nonnegative
integers (numbers). A one-to-one function tn from ε into ε is regressive
if there is a partial recursive function p(x) such that pt £ δp and
p(tQ) = ί0, (Vn)[p(tn+1) = tn]. The function p is a regressing function
of tn if p has the following additional properties: pp £ δp and
(Vx)[xeδp —* (37&)[p +ι(a?) = 2>w0»)]]. It is known (cf. [1]) that every
regressive function has a regressing function. A set is regressive if
it is finite or the range of a regressive function. A set is retraceable
if it is finite or the range of a strictly increasing regressive function.
Let p be a regressing function of tn, then the function p* is defined
by: δp* = dp and p*(x) = (μn)[pn+1(x) = pn(x)]. It follows that p* is
a partial recursive function and (vri)[p*(tn) = ri\.

Let sn and t% be two one-to-one functions from ε into ε. Then
sn ^ * tnf if there is a partial recursive function / such that

(1) psQδf and (Vn)[f(sn) = tn] .

Also, sn and ίπ are said to be recursively equivalent (denoted sn ~ tn)

Received October 5, 1964. Most of the results contained in this paper were ob-
tained while the author was a student of Professor J. C. E. Dekker at Rutgers
University. Research on this paper was supported under NSF Grant GP-266.

407



408 JOSEPH BARBACK

if there is a one-to-one partial recursive function / such that (1) holds.
Let σ and τ be two sets. Then σ ^ * r, if either σ is finite and card.
σ fg card, r, or σ is infinite and there is a partial recursive function
/ such that σ gΞ δf, f is one-to-one on σ and f(σ) = τ. Let S and T
be two isols. Then S ^ * T, if there are sets σeS and τe T such that
σ S * T. The following propositions will be useful:

( a ) Retraceable sets are either recursive or immune.
(b) Every function recursively equivalent to a regressive function

is regressive.
(c) Every set recursively equivalent to a regressive set is re-

gressive.
(d) Let σ = psn and τ = ptn where sn and tn are one-to-one re-

gressive functions. Then σ S * τ if and only if sn ^ * tny and σ a τ if
and only if sn ~ tn.

(e) Let sn and tn be one-to-one functions from ε into e. Then
sn CΞ tn if and only if sn ^ * ίΛ and £n ^ * sΛ.

Proposition (a) is proven in [3]. Propositions (b) and (c), and the
second part of (d) are proven [1]. Both (e) and the first part of (d)
are given in [2].

Two sets a and β are said to be separated (denoted a \ β) if there
are disjoint r.e. sets α* and β* such that a £ α* and β <Ξ β*. Two
functions an and bn are said to be separated (denoted an \ bn) if their
ranges are separated sets. We will use the familiar primitive recursive
functions j , k and I defined by

j(x, y) = x + (x + y)(x + y+

j(k(n)y l(n)) = n .

The function j maps ε2 one-to-one onto ε.

Note 1. The O relation.

DEFINITION 1. Let an and bn be any two one-to-one functions from
ε into ε. Then an^/bn if there is a partial recursive function p(x)
such that

(Vn)[an e δp and p(an) = 6J V (&Λ € δp and p(6Λ) = an)] .

The following proposition can be readily proven using the definitions
of the concepts involved. Its proof will be omitted.

PROPOSITION 1.1. Let an and bn be any two one-to-one functions
from ε into ε. Then

( a ) α,O6 w —>6»<>α. ,
(b) an g * 6 Λ = > α n v ^ f e n ,
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(c) α n ~ < , δ n ^ δ ; , |
an I bni a'n\b'n,

DEFINITION 2. Let A and B be any two infinite regressive isols.
Then A^/B if there are regressive functions an and bn such that

pan e A, pbn e /3, αn ( δw and an^/bn .

RERARK. In view of Proposition (d) and part (c) of Proposition
1.1, we see that if A and B are infinite regressive isols, then A^B
means that an <^, bn for every pair an and bn of separated, regressive
functions ranging over sets in A and B respectively.

THEOREM 1.1. Let A and B be infinite regressive isols. Then

Proof. Let an and bn be any two (one-to-one) regressive functions
ranging over sets in A and B respectively and such that au ^ * bn. Set
< = 2an and b'n = 2bn + 1. Then an ~ a'n, bn ~ b'n and < | b'n. Taking
into account Propositions (b), (c) and (d) it follows that o!n and b' are
separated, regressive functions which range over sets in A and B re-
spectively. In addition, an ^ * bn implies a'n ̂ * 6̂ . By Proposition 1.1
(b) this means a'n^b'ny and therefore A^B.

THEOREM 1.2. For all infinite regressive isols A and B,

Proof. Let A and 5 denote two infinite regressive isols whose
sum is also regressive. Let an and bn be regressive functions with
a = ρaneA, β = pbneB and a \ β. Then a + βeA + B and α + β
is a regressive set. Let cn be a regressive function ranging over the
set oc + β and let p(x) be a regressing function of cn. Set

δ = {x I (a? - an and p*(δn) < p*(αn)) V (x = bn and p*(αn) < p*(δn))} .

We note that δ g α: + β and that for each number n, exactly one of
the numbers an and bn belongs to δ. Let the function / with domain
δ be defined by

(αw, if x = δn .

It is easily seen that if / has a partial recursive extension then an ̂  bn.
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Since an and bn are separated functions this fact would also imply that
A <*, JB. Hence to complete the proof it suffices to show that / has a
partial recursive extension. For this purpose, assume that x e δ. Since
a and β are separated sets we can determine whether xea or xeβ.
First suppose that xea. Taking into account that an and cn are re-
gressive functions, we can find the numbers u and v such that x =
au = cv. The number au belongs to δ and therefore

K e (Co, Ci, , <vJ = {pr(α) 11 ^ r ^ v} .

The members of the set on the right side can be effectively obtained
from x9 since p is a partial recursive function. In addition, using once
again the separability of the sets a and β, and the regressiveness of
the function £>n, it follows that we can find the number bu. This gives
the value of f(x). In a similar fashion one can determine the value of
f(x) in the event xeβ. From these remarks we can conclude that /
will have a partial recursive extension. This completes the proof.

REMARK. We shall state without proof, two additional facts
which can be established in the proof of Theorem 1.2. These are

(a) δ e min (A, B) ,

(b) s\(a+β)-δ.

Since a + β e A + B, these facts imply that

( * ) min (A, B) ^ A + B .

In the proof of Theorem 1.2, A and B were assumed to be infinite re-
gressive isols. However, it is easily seen that the relation denoted by
(*) is also true in the event either A or B is finite, for in this case
min (A, B) assumes one of the values (A, B). From these remarks one
has the following

THEOREM. For all regressive isols A and B,

A+BeJB = > min (A, B) ^ A + B .

The statement obtained by reversing the implication in the above
theorem is false, for in the second note it is shown that there are
two infinite regressive isols which are comparable relative to the ^ *
relation, hence their minimum assumes one of these two values, and
yet whose sum is not regressive. According to Theorem 1.1, this also
means that reversing the implication in Theorem 1.2 yields a false
statement as well.

THEOREM 1.3. There exist infinite regressive isols A and B which
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are not \y related.

Proof. Let {pj be an enumeration of partial recursive functions
of one variable such that:

( a ) every partial recursive function of one variable occurs at
least once in {pj,

(b) j>o(l) =£ 3 and po(3) Φ 1 .
We shall define two functions an and bn such that the recursive
equivalence types, A = Req pan and B — Req pbn satisfy the conditions
of the Theorem.

Put aQ = 1 and &0 = 3. We note that (b) implies

(1) Po(θo) =£ h and po(bo) Φ a0.

Let t ^ 1 and suppose that α0, , α ί - x and 60, , 6 ί β l have already
been defined. We define at and bt by setting

where the numbers ut and vt will be defined in such a manner that

(2) pt(at) Φ bt and ptφt) Φ at .

The definition of ut and vt. Set

V =

We consider three cases:

Case I. rf Φ φ. Let u be the smallest number belonging to rf\
Then ptj(at^u u) is undefined.

Subcase I .I . There exists a number i; such that

PtάΦt-u v) Φ j(at_u u) .

Set

% = {μv)[ptjφt-u v) Φ j(at_u u)] .

Subcase 1.2. For all numbers v,

Consider the number j(at_ly u + 1). Since j maps ε2 one-to-one onto ε,
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it follows that j(at_u u + 1) Φ j(at_ly u). Hence for all numbers v,

pJΦt-» v) Φ j(at_u u + 1) .

Clearly there exist numbers v' such that j(bt_L, v') Φ pt(at_u u + 1).

Set

ut = u + 1 ,

% = (μv')[JΦt-u V) Φ Ptj(at_u u + 1)] .

Case II. ζ' Φ φ. Here we proceed in a fashion similar to Case I.
The details are omitted.

Case III. rf = ζ' = φ, i.e., η = ζ = ε, i.e.,

(V^fΛα^, M) G δ] and (w)[j(bt_u v) e δ] ,

where δ = δp t. The numbers in the following four lists:

LI. ί(α,_i,O), i (α^ l f 1), •••

L2. pJΦt-» 0), fti(6*-i, 1), •

L3. i(6,-i,0), i ( δ ^ , l ) , •••

L4. PtJ(a>t-i, 0), pJ(a>t-ι, 1),

are therefore all defined. Since the function jf(#, #) is one-to-one, all
numbers in LI are distinct and all numbers in L3 are distinct.

Subcase III.l. LI contains a number which does not occur in L2.
Set

Since all of the numbers in L3 are distinct, it follows that

(3v)[jφt-lf v) Φ ptj(at_l9 ut)] .

Set

^ = (μv)[jφt_lf v) Φ ptj(aM, ut)\ .

Subcase III.2. Every number of LI occurs at least once in L2.
Since LI contains infinitely many numbers this implies that L2 contains
infinitely many numbers. Hence, not only

(Vu)(3v)[j(at_lf u) Φ ptύΦt-» v)] ,

but also

(V^)(3 infinitely many v)[j(at^u u) Φ PtΰΦt-u v)]

This must be true in particular for u = 0. Thus there exists an infinite
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sequence vQ, vu v2, of distinct numbers such that

(Vn)[j(at_lf 0) Φ ptj(bt_u vn)] .

Let

n* = (μn)[j(bt_ly vn) Φ ptj{at_u 0)] .

Define

413

vt =

This completes the definition of the numbers ut and vt, and hence also
of the functions an and bn. It is readily verified that the numbers at

and bt have been so defined as to satisfy (2), that is

h and pt(bt) Φ at .

Combining this fact with (1) gives

( 3) (Vn)[pn(an) Φ bn and pn(bn) Φ αΛ] .

Let

a = pan and β = ρbn β

We claim:
( a ) an and δΛ are strictly increasing regressive functions and a

and β are retraceable sets,

(b) a\β,
( c ) αΛ and bn are not s^ related,
(d) a and £ are immune sets.

Re (a): It follows from the definition of the function j(x, y) that

% < J(x> v) f° r x > 0 Moreover, we have

α0 > 0 and (Vra)(3tt)[αΛ+1 = i ( ^ , ^)] ,

δ0 > 0 and (vn)(3v)[6n+1 = i(6., v)] .

Hence

α0 < αx < α2 < and bQ<bt<b2< ,

and therefore an and δπ are strictly increasing functions. Set

ία0, if x = α0 ,

if a?

Clearly #(#) is a recursive function and it can be readily shown that
q(x) is a regressing function of an. By replacing α0 by b0 in the de-
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finition of q(x) yields a regressing function of bn. Hence, an and bn

are each strictly increasing regressive functions and therefore a and β
are retraceable sets.

Re (b): As a consequence of the definition of the functions an and
bn, we have

z) = 1]} ,

z) = 3]}.

The sets appearing on the right sides are clearly r.e. Also, since
fc(3) = 0, fc(l) = 0 and fc(0) = 0, they are disjoint. Hence a \ β.

Re (c): Suppose that statement (c) were false; this would then
mean an <^ bn. Hence there would be a partial recursive function p(x)
such that

(4) (Vn)[p(an) = 6J V (pφj = αj] •

Assume that the index of p in our enumeration is i, i.e., p(a?) = Pi(x).
In view of (4), we would have

Pi(a>i) = bi* o r Pi(b%) = α < .

However, according to (3) this statement must be false. This con-
tradiction establishes the desired conclusion that an and bn are not ^
related.

Re (d): By part (a), each of the sets a and β is retraceable and
hence is either recursive or immune. If one of these sets is recursive
then the strictly increasing function ranging over the set would be a
recursive function. Thus, if a were a recursive set then an would be
a recursive function. In this event, we would have that

bn £** n, since bn is a regressive function,

n ^ * α Λ , since an is a regressive function,

and, by the transitivity of the ^ * relation, also that bn ^ * α w . By
Proposition 1.1 (b), this means that an^bn1 which is not possible
according to part (c). Therefore a must be an immune set. In a similar
way it can be shown that β is also an immune set. This verifies (d).

To complete the proof, let

A = Req a and B = Req β .

By statements (a) and (d) it follows that A and B are infinite regressive
isols. In addition, combining statements (a) and (c) with the Remark
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following Definition 2 implies that A and B are not ̂  related. Hence
A and B satisfy the requirements of the Theorem.

REMARK A. In [2, Theorem T2] it is shown that both the collection
ΛR of all regressive isols and the collection A0R of all cosimple regres-
sive isols are not closed under addition. We note that the first of
these results can be obtained by combining Theorems 1.2 and 1.3.

REMARK B. It is readily seen from Definitions 1 and 2, that the
\z relation for infinite regressive isols is both reflexive and symmetric.
The following Corollary to Theorem 1.3 shows that <J/ is a not a transi-
tive relation.

COROLLARY. There exist infinite regressive isols A, B and W
with Asy W, B >*, W, while A and B are not \JJ> related.

Proof. Let A and B be any two infinite regressive isols which
are not <Ĵ  related. Set W — min (A, B). Then TFis an infinite regressive
isol with

W^*A and W^*B.

Hence, by Theorem 1.1

W^A and W^B.

According to our choice of A and J5, the proof is complete.

Note 2. The main results of this note will establish the fact that
A ίg* B (where A, Be AR) represents neither a necessary condition nor
a sufficient condition for the sum A + B to belong to AR. In the
following discussion we will use the notion of the degree of unsolvability
of a regressive isol. This concept is studied in [2], If A is a regres-
sive isol, then AA will denote its degree of unsolvability.

THEOREM 2.1. There exist regressive isols A and B with A ^ * Bf

yet whose sum A + B is not regressive.

Proof. Let P and Q denote two (infinite) regressive isols with
different degrees of unsolvability, i.e., AP Φ JQ. Set

A = min (P, Q) .

Then A is an infinite regressive isol such that

A^*P and A ^* Q .

To complete the proof we need only show that at least one of the two
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isols A + P and A + Q is not regressive. To prove this fact, let us
suppose otherwise, namely that both A + P and A + Q are regressive
isols. Then according to [2, Proposition 17(d)], it follows that

ΔA = ΔP and ΔΛ = ΔQ ,

and therefore ΔP — ΔQ. This last equality contradicts our choice of P
and Q. Hence, either A + P or A + Q is not regressive. If we define
B to be P if A + Pζ ΛR and to be Q otherwise, then A and B will
satisfy the requirements of the Theorem.

REMARK. It is proven in [2] that there are cosimple regressive
isols with different degrees of unsolvability. Moreover, the minimum
of two cosimple regressive isols is again a cosimple regressive isol.
Thus, as a consequence of the previous proof, we see that the following
result is also true.

THEOREM. There exist cosimple regressive isols A and B with
A ^ * B yet whose sum A + B is not regressive.

THEOREM 2.2. There exist regressive isols S and T which are
incomparable relative to the ^ * relation and whose sum is regressive.

Proof. This shall be a constructive type of proof and we shall
use a technique introduced in the proof of [4, Theorem 95], The proof
will progress in four steps.

Step I. In this step we shall define a particular function an from
ε into ε, and show that it is strictly increasing and regressive.

Let Pi(x) denote a function of the two variables ί and x such that
every one-to-one partial recursive function and no other function appears
in the sequence {pj. For any numbers tQ, , tm, i; max* {Pi(t0), ,
Pi(tm)} is defined to be 0 if none of the m + 1 numbers Pi(tQ), , p<(ίm)
is defined; and is defined to be the maximum of those numbers
PiiQi * >?>i(O which are defined; if at least one of them is defined.

The function an is defined by,

αΛ+1 = i(α*, uk+d , where

uk+ί = 0, if either k = An + 1 or k = in + 3 ,

M*+i= (μy)[j(ak,y)>m2ix* {pn(a0), ,p»(αm)}], if either k=Anoτ k=An+2.

It is readily seen that an is an everywhere defined function from ε into
ε. Moreover, just as the function an in the proof of Theorem 1.3 was
shown to be strictly increasing and regressive, it can be shown that
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an is also strictly increasing and regressive.

Step II. Let the four sets 50, δL, δ2 and o3 denote the ranges of
the functions α4w, α4 n + 1, ain+2 and α 4 n f 3 respectively. Since each of the
functions 4?ι, in + 1, 4w + 2 and 4n + 3 is strictly increasing and
recursive, it follows that each of the functions α4n, α4 n + 1, <zn+2 and ain+z

is regressive. Hence the four sets <50, δt, δ2 and <53 are each regressive.
We shall now prove:

( a ) not [So ~ SJ,
( b ) not [δ2 ~ <53],
( c ) αn ranges over an immune set.

Re (a): To prove statement (a), let us suppose that it is false.
Then, by the enumeration in Step I, there would be a number i such
that

δQ c δpi and Pi(δ0) — δx .

One consequence of this fact is

By the definition of the function ani it follows that α 4 ί + 1 would exceed
each of the numbers Pi(a0), Pi(a4), •• ,p i (α 4 ί ). Since an is strictly in-
creasing, the same would be true for α 4 i + 1 with 'j ^ 1. Hence from
(1) we can conclude that

However, the set on the left side has exactly i + 1 members while the
set on the right side has only i members. This contradicts the fact
that Pi is a one-to-one function. This means that statement (a) must
be true.

Re (6): We can prove statement (b) in a way similar to the one
used to prove (a). Assuming that statement (b) is false implies that
there is a number i such that

δ2<zδpi9 and ^(δ2) = δ3 ,

and

The definition of the function an implies that au+3 will exceed each of
the numbers Pi(α2), P;(α6), , ̂ (α 4 ί + 2 ) , and since an is strictly increasing,
the same will be true for α4 i :.3 with j ^ i. Hence from (2) we can
conclude that
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Yet the set on the left side has exactly i + 1 members while the set
on the right side has exactly i members. This contradicts the fact that
Pi is a one-to-one function. Therefore (b) must be a true statement.

Re (c): Since an is a strictly increasing regressive function it
ranges over an infinite retraceable set. We know that this set will
be either recursive or immune. But it is easily seen that if an ranges
over an infinite recursive set then each of the sets δQ and δι will also
be infinite and recursive. According to statement (a), this is not
possible. Hence an ranges over an immune set. This verifies (c) and
also completes Step II.

Step III. Let

o = δ0 + σ3 and z = δλ + δ2 .

We

For

shall
( d )
( e )

( f )
(g)
this

now prove:
σ and
σ\τ,
not [σ
not [τ

purpose

τ are

ΞS*r],
£*σ].
, let

g(χ)--

h(x) --

infinite

_ ί 4 % >
(4w +

(An +

~ \4n +

regressive sets,

3 ,

1 ,

2 .

if

if

if

if

x — 2n

x = 2n

x = 2n

x — 2n

f

+

+

1 ,

1 .

Then

( 3 ) ρag{n) = σ and pahin) = τ .

We also note that the functions g and h are each recursive and strictly
increasing. In addition, their ranges are disjoint and the union of their
ranges is ε.

Re (d): Since both g and h are strictly increasing, recursive
functions and an is a regressive function it readily follows that both
ag{n) and ah{n) are regressive function. By (3), this means that σ and
τ are infinite regressive sets.

Re (e): From the two facts, an is a regressive function, and the
ranges of the recursive functions g and h are disjoint, one can easily
show that the two functions agίn) and αΛ(w) are separated. This means



TWO NOTES ON REGRESSIVE ISOLS 419

that σ and τ are separated sets.

Re (/): Suppose that statement (f) were false, namely assume
that σ :g* 7. According to Proposition (d), this implies that ag{nλ ίg* ah{n).
Comparing the definitions of g(x) and h(x), we can conclude from this
fact that

Clearly,

and hence by Proposition (e),

According to Proposition (d), this implies that Jo ~ dt which is not
possible in view of part (a). Therefore statement (f) is true.

Re (g): To verify (g) we can proceed as in the previous case.
Suppose that statement (g) is false. This will imply that αA(w) g* ag(n),
and this fact gives

Clearly,

and hence

^4w-r2 — tt4«-ί-3

This means that o2 2̂  <53 which is not possible in view of part (b). This
contradiction establishes (g) and also completes Step III.

Step IV. Let

S = Req σ and T = Req τ .

Both σ and τ are infinite subsets of the immune set pan, and therefore
are themselves immune sets. Also, by part (d), σ and r are regressive.
Hence

( i) S and T are infinite regressive isols.

Combining [2, Proposition P 10] and statement (f) and (g), implies
that

(ii) *S and T are incomparable relative to the ίg* relation.

In view of (i) and (ii), in order to complete the proof it remains
only to show that
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(iii) S + Tesl&.

Since σ and τ are separated sets, it follows that σ + τeS + 7\

Moreover, σ + τ is a regressive set since σ + τ = pan. Hence S + T

is a regressive isol. This verifies (iii) and completes the proof.
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SOLUTION OF AN INVARIANT SUBSPACE PROBLEM
OF K. T. SMITH AND P. R. HALMOS

ALLEN R. BERNSTEIN AND ABRAHAM ROBINSON

The following theorem is proved.
Let T be a bounded linear operator on an infinite-dimen-

sional Hubert space H over the complex numbers and let
p(z) Ψ 0 be a polynomial with complex coefficients such that
p(T) is completely continuous (compact). Then T leaves
invariant at least one closed linear subspace of H other than
H or {0}.

For p(z) = z2 this settles a problem raised by P. R. Halmos
and K. T. Smith.

The proof is within the framework of Nonstandard Analysis.
That is to say, we associate with the Hubert space H (which,
ruling out trivial cases, may be supposed separable) a larger
space, *H, which has the same formal properties within a
language L. L is a higher order language but *H still exists
if we interpret the sentences of L in the sense of Henkin.
The system of natural numbers which is associated with *H
is a nonstandard model of arithmetic, i.e., it contains elements
other than the standard natural numbers. The problem is
solved by reducing it to the consideration of invariant sub-
spaces in a subspace of *H the number of'whose dimensions
is a nonstandard positive integer.

l Introduction* We shall prove:

MAIN THEOREM 1.1. Let T be a bounded linear operator on an
infinite-dimensional Hilbert space H over the complex numbers and
let p(z) Φ 0 be a polynomial with complex coefficients such that p(T)
is completely continuous (compact). Then T leaves invariant at least
one closed subspace of H other than H or {0}.

For p(z) — z~ this settles Problem No. 9 raised by Halmos in [2]
and there credited to K. T. Smith. For this case, a first proof was
given by one of us (A.R.) while the other (A.R.B.) provided an alter-
native proof which extends to the case considered in 1.1. The argument
given below combines the two proofs, both of which are based on
Nonstandard Analysis. The Nonstandard Analysis of Hilbert space
was developed previously by A.R. as far as the spectral analysis of
completely continuous self-adjoint operators (compare [7]) while A.R.B.
has disposed of the spectral theorem for bounded self-adjoint operators
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by the same method. The general theory will be sketched here only
as far as it is required for the proof of our main theorem.

Some of our arguments are adapted from the proofs of the theorem
for p(z) = z, i.e., when T is itself completely continuous, which are
due to von Neumann and Aronszajn for Hubert space, as above, and
to Aronszajn and K. T. Smith for general Banach spaces [1],

The particular version of Nonstandard Analysis which is convenient
here relies on a higher order predicate language, L, which includes
symbols for all complex numbers, all sets and relations of such numbers,
all sets of such sets and relations, all relations of relations, etc.
Quantification with respect to variables of all these types is permitted.
Within this framework, a sequence of complex numbers, y — sn, n —
1, 2, 3, , is given by a many-one relation S(n, y) when n varies over
the set of positive integers, P. The separable Hubert space, H, may
then be represented as a set of such sequences (i.e., as l2) while a
particular operator on H is identified with a relation of relations.

Let K be the set of sentences formulated in L which hold in the
field of complex numbers, C. if includes sentences about, or involving,
the sets of real numbers and of natural numbers, since these may be
regarded as subsets of the complex numbers which are named in L.
It also includes sentences about Hubert space as represented above.

Nonstandard Analysis is based on the fact that, in addition to C,
K possesses other models, which are proper extensions of C. We single
out any one of them, *C, calling it the nonstandard model, as opposed
to the standard model, C. However, *C is a model of K only if the
notions of set, relations, etc. are interpreted in *C in the sense of the
higher order model theory of Henkin [3]. That is to say, the sets of
sets, relations, etc., which are taken into account in the interpretation
of a sentence in *C may (and will) be proper subsets of the corresponding
sets over *C in the .absolute sense. The sets, relations, etc. which are
taken into account in the interpretation in *C will be called admissible.

The basic properties and notions of Nonstandard Analysis which
are expounded in [4] and [5] are applicable here. Thus, an individual
of *C (which will still be called a complex number) may or may not
be an element of C, i.e., a complex number in the ordinary sense or
standard number, briefly an S-number. Every finite complex number
a is infinitely close to a unique standard complex number, °α. That is
to say, if \a\ is smaller than some real S-number, then there exists
a complex S-number, °α, the standard part of α, such that \a — °a\
is smaller than all positive S-numbers. A number which is infinitely
close to 0 is infinitely small or infinitesimal. In particular, 0 is the
only S-number which is infinitesimal. A complex number a which is
not finite, i.e., which is such that \a\ is greater than any S-number,
is infinite. There exist elements of *C which are infinite.
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Every set, relation, etc. in C possesses a natural extension to *C.
This is simply the set, relation, •••, in *C which is denoted by the
same symbol in L. At our convenience, we may, or may not, denote
it by the same symbol also in our notation (which is not necessarily
part of L). Thus, we shall denote the extension of the set of positive
integers, P, to *C by *P but if σ = {an} is a sequence of complex
numbers in C then we shall denote its extension to *C still by σ = {an}.
According to the definition of an infinite number which was given
above, the infinite positive integers in *C are just the elements of
*P- P.

The following results are basic (for the proofs see [5] and [6]).

THEOREM 1.2. The sequence {an} in C converges to a limit a
(a an S-number) if and only if the extension of {an} in *C satisfies
the condition that \ a — an j is infinitesimal for all infinite n.

THEOREM 1.3. Let {an} be an admissible sequence in *C such
that an is infinitesimal for all finite n. Then there exists an infinite
positive integer ω (i.e., ωe*P — P) such that an is infinitesimal for
all n smaller than ω.

{an} is called admissible in *C if the relation representing {an}
belongs to the set of relations which are admissible in the sense ex-
plained above. Admissible operators, etc., are defined in a similar way.
1,3, shows that the sequence {an} which is defined by an = 0 for finite
n and by an — 1 for infinite n is not admissible in *C.

2 Nonstandard Huber t space* The selected representation of
the Hubert space H consists of all sequences {sn} of complex numbers
such that | | σ | | 2 = Σ~=11 sn |2 converges. The corresponding space *H
over *C consists of all admissible sequences {sn} in *C such that
II σ II2 — Σ"=i I sn I2 converges, i.e., such that it satisfies the formal
(classical) definition of convergence in L.

Among the points of *i7 are the extensions of points of H (as
sequences). We identify the points of H with their extension in *H
and may then regard H as a subset (though not an admissible subset)
of *H.

A point σ of *H is called norm-finite if | | σ | ] is a finite real
number in the sense explained in section 1. σ is near-standard if
11 σ — σ° 11 is infinitesimal for some °σ e H. If such a °σ exists then it
is determined uniquely by σ. It is called the standard part of σ.

Applying 1.2. to the partial sums of any point σ = {sn} in H, we
obtain:
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THEOREM 2.1. For any σ = {sn} in H and any infinite positive
integer ω, the sum X»βω | sn |2 is infinitesimal.

Next, we sketch the proof of:

THEOREM 2.2. A point σ = {sn} in *H is near-standard if and
only if it is norm-finite and if at the same time Xn=ω I sn I2 is infini-
tesimal for all infinite ω.

Suppose that 11 σ — °σ \ | is infinitesimal for some °σ in H. Then
σ || = || σ - °σ + °σ || g || σ - °σ \\ + \\ °σ \\ < 1 + || °σ \\ so that σ is

norm-finite. Also, let °σ — {s'n}, then Σ«=ω | ŝ  |2 Is infinitesimal for infinite
ω, by 2.1. Also, Σ~=w I sn — s'n |

2 is infinitesimal since this sum cannot
exceed ||<7-°<7|12. But

1/2 / ex. \l/2\2

showing that the conditions of 2.2 are necessary.
Supposing that they are satisfied, || σ \\ is finite, hence \sn\ is finite

for any n and sn possesses a standard part, °sn. Consider the sequence
{°sn} in C. It can be shown that X~=1 \°sn |

2 converges in C and hence,
represents a point σr in H and *H. Thus, if σ' = {s'n} then β» = °sn

for finite n but not necessarily for infinite n. Since, for all finite fc,
Σn=i I s% — s'n |

2 = ΣίUj I sn — °sn |
2 is infinitesimal, it follows from 1.3

that Σ»=i I sn ~ s'n |
2 is still infinitesimal for some infinite k, k = ω — 1,

say. On the other hand, Σ~=ω 1 sw |2 is infinitesimal by assumption, and
is infinitesimal, by 2.1. The inequality

l/2\£

)

then shows that \\σ — σ'\\ is infinitesimal, σ is near-standard with
standard part °σ = σ\

The following theorem is proved in [7] for general topological
spaces but under somewhat different conditions.

THEOREM 2.3. Let A be a compact set of points in H. Then
all points of *A (i.e., of the set which corresponds to A in * i ϊ ) are
near-standard.

Indeed, suppose that A is compact but that σ e * A is not near-
standard. Then there exists a standard positive r such that \\σ — τ\\ > r
for all τ e H. This is trivial if σ is not norm-finite. If o is norm-
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finite, then by 2.2, there exists an infinite positive integer ω such
that Σin=ω I sn |2 > 2r2 for some standard positive number r. For any
z — {tn} in H, Σ,~=ω 1 tn |2 is infinitesimal. Hence

\σ - τ || = ( ± I sn - t

>r.

On the other hand, since A is compact it possesses an r-net, i.e.,
for some finite number of points in A,τί9 , rm, and for all ς in A,
|| ξ — τ{ || < r for some i, l^i^m. But, for the specified τu , zm9

this is a property of H which can be formulated as a sentence of K.
It follows that for all points ς of * i also ||f — r<|| < r for some
i, l^i<>m. This contradiction proves the theorem.

3* Operators in nonstandard Hubert space* An operator from
H into H may be regarded as a relation between elements of H, i.e.,
between sequences of elements of C (which are themselves relations).
The corresponding operator in *iϊ, which is denoted by the same
symbol in L, will be denoted here also by T. This cannot give rise
to any confusion. For if r = Tσ in H then τ — Tσ also in *iϊ since
z — Tσ can be expressed by a sentence of K.

In particular, let Γ be a bounded linear operator defined on all
of H. For the assumed representation of H by sequences, T has a
matrix representation, T = (ajk), j , k = 1, 2, 3, . The coefficients of
this matrix satisfy the conditions:

3.1. Σ I ajk |2 < oo j = 1, 2, 3, .
fc=l

^ j I <&ifc I < °° K = L, Δ, όt

In *iϊ these subscripts of (αifc) vary also over the infinite positive
integers. By 3.1 and 2.1., ΣΓ=ωi«yfel2 is infinitesimal for infinite ω,
provided j is finite. This is not necessarily true for infinite j as
shown by the matrix for the identity operator.

THEOREM 3.2. Let T be a completely continuous (compact)
linear operator on H. Then T maps every norm-finite point in
*H on a near-standard point.

Proof. If σ is norm-finite then 11 σ \ \ < r for some positive S-number
r. The sphere B = {ξ\ \\ξ\\ < r} is bounded in H and is mapped by T
on a set whose closure, A, is compact. If the corresponding sets in
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*H are *I? and *A respectively then *JB contains σ (since σ satisfies
the defining condition of B) and so *A contains Tσ. But *A contains
only near-standard points, by 2.3, so Tσ is near-standard, proving 3.2.

In a somewhat different setting [7] the converse of 3.2 is also true.

THEOREM 3.3. If T = (ajk) is a completely continuous linear
operator on Hy then ajk is infinitesimal for all infinite k (j finite
or infinite).

Proof. For finite j , this follows from the fact that 2^=* | aίk j
2 is

then infinitesimal. For infinite j , define σ — {sn} by sn = 0 for n Φ k
and by sk = 1. Then || σ \\ = 1, so τ = {ί, } = Tσ must be near-standard,
by 3.2, where t5 = 2~=i α i A — αi* B u t then *i — αifc must be infini-
tesimal for infinite j , by 2.2.

An operator T = (ajk) will be called almost superdiagonal if ajf: — 0
for j > k + l,fe = l,2,3, . This definition depends on the specified
basis of H.

THEOREM 3.4. Let T be a bounded linear operator on H which
is almost superdiagonal. Let

3.5. p(z) = c0 + CyZ + + cm2m, cm Φ 0, m ^ 1

be a polynomial with standard complex coefficients such that ρ(T)
is completely continuous. Then there exists an infinite positive
integer ω such that aω+Uω is infinitesimal.

Proof. Put Q = (bjk) = p(T). We show by direct computation
that, for any h ^ 1,

3.6. bh^m,h =\ CmαΛ + l,A#λ-f2,Λ-rA + 3,Λ-f2 ' # * &h + m,h + m-l

By 3.3, bh+m>h is infinitesimal for all infinite h. Since cm is not
infinitesimal, one of the remaining factors on the right hand side of
3.6 must be infinitesimal, e.g, αΛ+J + l f Λ + J , 0 ̂  j < m. Setting ω — h + j ,
we obtain the theorem.

4* Projection operators. Let E be any admissible closed linear
subspace of *H within the nonstandard model under consideration.
The corresponding projection operator, which reduces to the identity on
E, will be denoted by PE. Given E, we define a subset °E of H as
follows. For any σe H,σe°E if and only if || σ — σ' \\ is infinitesimal
for some σf e E. Since, by a familiar property of projection operators,

*;|σ - &j| ^ ||σ - PEσ\\, it follows that σe°E if and only if | |σ - PEσ{\
is infinitesimal. In that case, σ = °(PEσ). More generally, if τ is a
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near-standard element of E then °τ e °E.
The tools developed so far suffice to establish the following theorem,

4.1, as well as the subsequent theorems, 4.2 ond 4.3.

THEOREM 4.1. Given E as above, the set °E is a closed linear
subspace of H.

2Proof. Let σlf σ2 be elements of °E. There exist elements τ19 τ.

of E such t h a t \\σ1 — τi\' and | | σ 2 — r 2 | | are infinitesimal. Then

τι + r 2 belongs to E and

II to + σt) - (rx + r2) ϋ ^ || σt - τ, \\ + \\ σ2 - r21|

so that the left hand side of this inequality also is infinitesimal.
Hence, ax + σ2 belongs to °E. Again for σ e °E and λ standard
complex, there exists τeE such that \\σ — r | | is infinitesimal. Then
Xτ e E and 11 Xσ — Xτ 11 = | X | j | σ — τ \ \ is infinitesimal and so Xσ e °E.
This shows that °E is linear in the algebraic sense.

Now let σn —• σ, where the σn are defined for standard natural n
and belong to °E, and σ belongs to H. In order to prove that °E is
closed we have to show that σ belongs to °E. By assumption, the
distances \\on — PEσn\\ are infinitesimal for all neN. Hence, by
Theorem 1.3 there exists an infinite natural number ω such that
\\&n — PE0»\\ is infinitesimal for all n < ω. The sequence of points
{σn} in °E £ H extends, in *iϊ, to a sequence of points defined for
all ne *N. Moreover, by 1.2 above, the fact that σn—+σ in H implies
that || σn — σ \\ is infinitesimal for all infinite n. Hence, for all infinite
n less than α>, \\σ — P ^ j j , which does not exceed

\\σ -σn\\ + \\σn- PEσn\\ ,

also must be infinitesimal. But PEσneE and so σe°Ey as required.
This completes the proof of 4.1.

Let ω be an infinite natural number. The closed linear subspace
of *ff which consists of all points σ = {sn} such that sn = 0 for n> ω
will be denoted by f3Γω. The corresponding projection operator, which
will be denoted by P maps any σ = {sn} in * i ϊ into the point σf = {s$,
where s^ = sn for w ^ ω and s'n = 0 for n > ω. For any point σ e H,
|| σ - Pσ || = (ΣΓ=ω+i I *. I2)1/2 is infinitesimal, by 2.1.

For any bounded linear operator T on H let Γ' = P Γ P , and let
Γω be the restriction of T" to ίZ"ω. Then || Γ ' | | ^ i |P |Γ!l Γ | | ^ || Γ | |
and so | | T J | ^ | | Γ | | .

THEOREM 4.2. Let E be an admissible closed linear subspace
of Hω which is invariant for Tω, i.e., TωE £ E. Then °E is
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invariant for T,T°EZ °E.

Proof. Let σ e °E, then we have to show that Tσ e °E. By
assumption, there exists a Γ G £ such that \\σ — r | | is infinitesimal.
Then TωτeE, i.e., PTτeE. Thus, in order to show that Tσ is
infinitely close to E, we only have to establish that the quantityj
a = \\Tσ — PTT \\ is infinitesimal. Now

a = || Tσ - P7Y || = || Tσ - PΪV + PT(<7 - τ) ||

and || Γ | | is a standard real number, while | | P | | <£ 1 and \\σ — τ | | is
infinitesimal. At the same time Tσ is a point of H and so the
difference Tσ — PΓσ is infinitesimal, as shown above. It follows that
a is infinitesimal, and this is sufficient for the proof of 4.2.

The number of dimensions of Hω as defined within the language L
is ω, d(Hω) = ω. In this sense, Hω is "finite-dimensional". Similarly,
with every admissible closed linear subspace E of Hωf there is associ-
ated a natural number d(E) in *C, which may be finite or infinite,
and which has the properties of a dimension to the extent to which
these can be expressed as sentences of K.

THEOREM 4.3. Let E and Eί be two admissible closed linear
subspaces of Hω such that EQE, and d(Ex) = d(E) + 1. Then °E^
°E1 and any two points of °E1 are linearly dependent modulo °E.

Proof. Since E g Elf it is trivial that °E g °E,. Now suppose
that °£Ί contains two points σx and σ2 which are linearly independent
modulo °E. Then σ1 and σ2 are infinitely close to points τu τ2 of Eu

respectively. Since the dimension of Ex exceeds that of E only by
one, there must be a representation

4.4. τ2 = Xτ1 + T

or vice versa, where ve E and λ is an element of *C. Now if λ
were infinitesimal (including λ = 0) τ2 would be infinitely close to E,
and so σ2 would be infinitely close to E and would belong to °E. This
is contrary to the assumption that σx and σ2 are linearly independent
modulo °E. If λ were infinite, then the relation

(in which λ""1 is infinitesimal and λ'V belongs to E) would show that
σλ belongs to °E. Note that both τx and r2 are norm-finite since they
are infinitely close to the standard points σλ and σ2, respectively.

We conclude that λ possesses a standard part, °λ, and that °λ Φ 0.



SOLUTION OF AN INVARIANT SUBSPACE PROBLEM 429

Also, r = T, — \τί is infinitely close to σ — σ2 — °\σu since

j | r - < 7 | | = \\τz^\τι-(σi-°\σ1)\\

^ ί | τ 2 - σ 2 | | + \χ\\\τί-σ1\\ + | λ - ° λ | | |*ill

so that \\τ — σ\\ is infinitesimal. It follows that σ belongs to °E and
that σx and σ2 are linearly dependent modulo °E. This contradiction
proves the theorem.

5* Proof of the main theorem* We are now ready to prove
1.1. To begin with, we work in the standard model, i.e., in an
ordinary Hubert space H over the complex numbers, C. Our method,
like that of [1] is based on the fact that in a finite-dimensional
space, of dimension μ say, any linear operator possesses a chain of
invariant subspaces

5.1. EQ s Eι S E2 S
 β £ Eμ

where d{Eά) = j , 0 <* j ^ μ, so that Eo = {0}.
The proof of 1.1. is trivial [1] unless for every σ Φ 0 in H, the

set A = {σ, Tσ9 T
2σ, , Tnσ, •} is linearly independent algebraically

and generates the entire space. Assuming from now on that this is
the case, we choose σ such that | | σ | | = 1, and we replace A by an
equivalent orthonormal set B — {σ — ηl9 rj2i η3, ηn, •} by the Gram-
Schmidt method. Then {σ, Tσ, , Tn~ισ) and {ηί9 η2, ηn} are linearly
dependent upon each other. We deduce without difficulty that T is
almost superdiagonal with respect to the basis B. Representing any
τ e H by the sequence {ίΛ}, where tn — (r, ηn), we may then identify H
with the sequence space considered in the preceding sections. Thus, if
T = (aJk) in this representation, then ajk = 0 for j > k + 1, k = 1,2,3,
and, passing to *C and *H, there exists an infinite positive integer ω
such that αω+1,ω is infinitesimal, by 3.4. ω will be kept fixed from
now on, and for it we consider the space Hω and the operators P and
T = PTP introduced in Section 4 above.

Let ξ = {#;} be any norm-finite element of *i i . Consider the
difference

We obtain by direct computation that zω+ι = αω+i,ωa?ω, and 2;w — 0 for
n Φ ω + 1. Hence || ζ || ^ | αω+1,ω | || ξ ||, so that ζ is infinitesimal.
Using the equivalence relation τx ^ τ2 for points of * i ϊ such that
|| Tj — r 2 | | is infinitesimal, we have shown that TPξ ~ Γ'f, where the
points on both sides of this equivalence are norm-finite. We then
prove by induction that:
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5.2. TrPς ~ (T')rζ for norm-finite ζ, r = 1, 2, 3, .

The case r = 1 has just been disposed of. Suppose 5.2 proved for
r - 1, r ^ 2. Then

where we have made use of the first equivalence for (T")r~1f in place of
ς. Applying 5.2 to the monomials of p(T), and taking into account
that Pς ~ ξ for ξ e Hωy we obtain

5.3. p(T)ξ ~ p(T')ξ for norm-finite ξ in Hω .

Let Γω be the restriction of T' to i/ω, as in Section 4. Since Hω

is "finite" more precisely ω-dimensional in the sense of Nonstandard
Analysis, there exists a chain of subspaces as in 5.1 with μ — a), such
that TJEj £ Ej9 j = 0,1,2, , ω. The E5 are also linear subspaces of
*H. They are finite-dimensional, hence closed, in the sense of Non-
standard Analysis, i.e., they satisfy the formal condition of closedness
as expressed within the language L. Let Pj be the projection operator
from *JΪ onto Ejf j = 0,1, 2, , ω, so that Pω = P.

Suppose p(z) is given by 3.5. For any ξ Φ 0 in H, p(T)ζ must be
different from 0 otherwise ζ, Tζ, •••, Tnξ would be linearly dependent,
contrary to assumption. Choose ξ in H with || ξ \\ = 1. Since ξ ~ Pς,
p(T)ξ - p(T)Pζ, so p(T)Pζ is not infinitesimal and by 5.3, p(T)Pξ
and hence p(T')ζ is not infinitesimal. Thus, ||p(T')£ll > ^ for some
standard positive r. Consider the expressions

5.4. r, = || p(T')ζ - p(Γ')Pif II, i = 0,1, 2, . . . , ω ,

and note that rά S \\p{Tf) \\ || f - P£ \\. We have r0 = \\p(T')ξ \\ so
r0 > r. Also || ξ - Pωf || = || ξ - P i || is infinitesimal, hence rω < r/2.
It follows that there exists a smallest positive integer λ with may be
finite or infinite, such that r λ < r/2 but rλ_i ^ r/2.

With every JŜ  , we associate the closed linear subspace °Ej of H
which was defined in Section 4. Now °EK__1 cannot coincide with H,
more particularly, it cannot include ξ. For if it did, then || ξ — Pλ_if ||
would be infinitesimal, so r λ - 1, which is bounded by || p{Tf) \\ || ξ — Pλ_if ||
would be infinitesimal, contrary to the choice of λ.

On the other hand °EK cannot reduce to {0}. Consider the point
η = p(T')Pλ£. )?€£λ since PkζeEλ and i£λ is invariant under p(Tω)
and, equivalently, under ί?(Γ'). Also, since PkξeHω,

where the right-hand side is near-standard, by 3.2, since Pkξ is norm-
finite and p(T) is completely continuous. It follows that η possesses
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a standard part, °η, and that °η belongs to °Ek. Again, °η — 0 would
imply that rj is infinitesimal. Hence, by 5.4

r λ ^ | | p ( Γ ' ) £ | i - \ \ p ( T ' ) P J \ \ > r - ζ

where ζ is infinitesimal. Hence r λ > r/2, contrary to the choice of λ.
We conclude that °EK contains a point different from 0, i.e., °*η.

Both °Eλ_ι and °Eλ are invariant for T, by 4.2. If neither were
a proper invariant subspace of H for T we should have °Eλ_1 — {0},
°EK = H. But this contradicts 4.3, proving 1.1.
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INVARIANT SUBSPACES OF POLYNOMIALLY
COMPACT OPERATORS

P. R. HALMOS

This paper is a comment on the solution of an invariant
subspace problem by A. R. Bernstein and A. Robinson [2].
The theorem they prove can be stated as follows: if A is an
operator on a Hubert space H of dimension greater than 1,
and if p is a nonzero polynomial such that p(A) is compact,
then there exists a nontrivial subspace of H invariant under
A. ("Operator" means bounded linear transformation; "Hubert
space" means complete complex inner product space; "compact"
means completely continuous; "subspace" means closed linear
manifold; "nontrivial", for subspaces, means distinct from {0}
and from H.) The Bernstein-Robinson proof has two aspects:
it is an ingenious adaptation of the proof by N. Aronszajn
and K. T. Smith of the corresponding theorem for compact
operators [1], and it makes strong use of metamathematical
concepts such as nonstandard models of higher order predicate
languages. The purpose of this paper is to show that by appro-
priate small modifications the Bernstein-Robinson proof can be
converted (and shortened) into one that is expressible in the
standard framework of classical analysis.

A quick glance at the problem is sufficient to show that there is
no loss of generality in assuming the existence of a unit vector e such
that the vectors e, Ae, A2e, are linearly independent and have H
for their (closed linear) span. (This comment appears in both [1] and
[2].) The Gram-Schmidt orthogonalization process applied to the se-
quence {e, Ae, A2e, •} yields an orthonormal basis {eu e2i e3, •} with the
property that the span of {e, •••, An~ιe} is the same as the span of
{βi, * * ι en\ for each positive integer n. It follows that if amn = (Aen, em),
then amn = 0 unless m ^ n + 1; in other words, in the matrix of A
all entries more than one step below the main diagonal must vanish.
The matrix entries of the kth. power of A are given by αifi = (Aken, em).
A straightforward induction argument, based on matrix multiplication,
yields the result that αίίi = 0 unless m S n + fc, and

(k)
k

IT
— I 2

{With the usual understanding about an empty product having the value
1, the result is true for Jc — 0 also.) This result for powers has an
implication for polynomials. If the degree of p (the only polynomial
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needed) is k ( ^ 1), and if the matrix entries of p{A) are given by
α S = (p(A)en 9 em), then α ^ , n is a constant multiple (by the leading coeffi-
cient of p) of αίπίfc,*. Since || p(A)en || —> 0 as n —> co (because of the com-
pactness of p(A)), there exists an increasing sequence {k(n)} of positive
integers (in fact a sequence with no gaps of length greater than the
degree of p) such that the corresponding subdiagonal terms ak{n)+lfk{n) tend
to 0 as n tends to co. (This very useful conclusion is one of the analytic
tools used in [2], where it is described in terms of "infinite positive
integers".)

If Hn is the span of {eu •• •,«*{*)}> ^ e n {Hn} is an increasing se-
quence of finite-dimensional subspaces of H whose span is H. If Pn is the
projection with range Hnj then Pn —> 1 (the identity operator) strongly.
Since, for each n, the operator PnAPn leaves Hn invariant, it follows that,
for each n, there exists a chain of subspaces invariant under PnAPni

{0} = Hίo) c mι) c c mkM) = H% ,

with dim Hii] = i, i = 0,1, , fc(n). (The consideration of such
chains is essential in both [1] and [2].)

If {fn} and {gn} are sequences of vectors in if, it is convenient to
write fn ~ gn to mean that \\fn — gn \\ —• 0 as n—* co. Assertion: if
{/„} is a bounded sequence of vectors in H, then

( 1 ) APJn ~ PnAPnL .

(Intuitively: Hn is approximately invariant under A.) The proof is a
straightforward computation, based on the fact that Pnf = XJi** (/,
whenever feH. Since ΛP.Λ - P»APnfn = Σ * i ί (Λ, «i) ΣΓβfc( )
since the largest j here is fe(tι) and the smallest i is &(w) + 1, and
since aiS = 0 unless i ^ j + 1, it follows that || APJn - PnAPnfn \\ ^

II fn II * I Ctk(n)+l,k(n) |

The conclusion (1) can be generalized to higher exponents:

( 2 ) AkPnfn ~ (PnAPn)
kfn , fc = 1, 2, 3,

the proof is by induction on k and is omitted. For k — 0, (2) says
that \\Pnfn —/«||—>0, which is a stringent condition on the bounded
sequence {fn}; if that condition is satisfied, then (2) implies that

( 3 ) p(A)Pnfn ~ p(PnAPn)fn .

Return now to the unit vector e. Since Pne — e for each n, it
follows that p(PnAPn)e ~ p(A)e. Since p(A)e Φ 0 (because the vectors
e, Ae, A2e, are linearly independent), it follows that

ε = lim, |i p(PnAP,)e || = || p(A)e || > 0 .

Consider, for each n, the numbers
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! i p{PnAP«)e -

\\p(PnAPn)e -

•
\\p(PnAPn)e - V{PnAPn)Plk{n))e \\ ,

where P™ is the projection with range H^. Since Pi0) is the zero
projection, the first of these numbers tends to ε. Since, on the other
hand, P^{n)) = PnJ the last of these numbers is always 0. In view of
these facts it is possible to choose for each n (with possibly a finite
number of exceptions) a positive integer i(n), 1 S i(n) S k(n)y such
that

( 4 ) i j p(PnAPn)e -

and

< 5 ) i| p(PnAPn)e - p(PΛAPΛ)P«<*»e | | < -§-

the simplest way to do it is to let i(n) be the smallest positive integer
for which these inequalities are true. (The construction of this particu-
lar "infinite positive integer" i is the second major analytic insight
in [2].)

Since both {P^i{n)-l)} and {P{

n

i{n))} are bounded sequences of operators,
there exists an increasing sequence {%} of positive integers such that
both {Pί){n^""l)} and {P^V5} are weakly convergent. Write, for typo-
graphical convenience, Qj = P^V-1* and Qt — Pn

i{.ni)]. Let M~ be the
set of all those vectors f in H for which Qjf—*f (strongly), and,
similarly, let M+ be the set of those vectors / for which Q^f—^f
(strongly). The purpose of what follows is to prove that both ikf~
and M+ are subspaces of H, that both are invariant under A, and
that at least one of them is nontrivial.

Since linear combinations are continuous, it follows that M~ is a
linear manifold. To prove that M~ is closed, suppose that g is in the
closure of M~; it is to be proved that geM~, i.e., that Qjg—>g.
Given a positive number <5, find / in M~ so that | | / — g\\ < 8/3, and
then find j0 so that || Qjf - f\\ < 5/3 whenever j ^ j 0 . It follows that
if j^jo, then \\Qjg-g\\ £\\Qjg-Qjf\\ + || Q7/-/H + ll/-ffll< δ

This proves that M~~ is closed; the proof for M+ is the same.
To prove that M~ is invariant under A, suppose that / 6 ikf~, so

that Qjf—»f, and infer, first, that AQ]f-+Af, just because A is
bounded, and, second, that QjAQjf ~ QjAf, because Qj is uniformly
bounded. Then reason as follows : QjAf - QjAQjf = QjPnjAPnjQjf
{because Qj ^ Pnj) = PnjAPnjQjf (because the range of Qj is invariant
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under PnjAPnj) ~ APnjQjf (by (1)) - AQjf-+ Af. This proves that
M~ is invariant; the proof for MΛ is the same.

The next step is to prove that M~ Φ H; this is done by proving
that e does not belong to M~. For this purpose observe first that
the operators p(PnAPn) are uniformly bounded. (Observe that

\\(PuAPn)*\\£\\PuAP%\\*£\\A\\k

and use the polynomial whose coefficients are the absolute values of
the coefficients of p.) Now use (4):

•?r£\\p(PnjAPnj)\\.\\e-Qje\\ .

Since \\p(Pn APnj)\\ is bounded from above, its reciprocal is bounded
away from zero, and, consequently, \\e — Qje\\ is bounded away from
zero, which makes the convergence Q]e~+e impossible.

The corresponding step for M+ says that M+ Φ {0}; the proof is
quite different. The choice of the sequence {Uj} implies that the se-
quence {Qjβ} is weakly convergent; the compactness of p(A) implies,
therefore, that the sequence {p(A)Qje} is strongly convergent to, say,
/. The proof that follows consists of two parts:. (i) / Φ 0, (ii) fe M++
Part (i): p(A)Qje ~ p(PnjAPnj)Qle (by (3)), which is within ε/2 of
p(PnjAPnj)e (by (5)), whose norm tends to ε; it follows that || p(A)Q$e \\
cannot tend to 0, and hence that fΦO. Part (ii): Qjf ~ Qjp(A)Qje
(since Q/ is uniformly bounded) ~ Q$p(PnjAPnj)Qfe (by (3), and, again,
uniform boundedness) = p(PnjAPnj)Qje (because the range of Q$ is
invariant under p(PnjAPnj)) ~ p{A)QΛ

όe (by (3))—>/ (by definition).

If M+ Φ H, all is well; it remains to be proved that if M+ = H,
then M- Φ {0}. If M+ = if, then # ; / - > / for all /, and, a fortiori,
Qΐf-+f weakly. At the same time the sequence {Qj} is known to
be weakly convergent to, say, Q~~. The operators Qj and Q^ are
projections such that Qj g Qj and such that Qf — Qj has rank 1. It
follows that, for each j , there exists a unit vector /,- such that
(Qt ~ Qj)f — (/> fi)fi ί ° r all /• Observe now that Qje cannot tend
weakly to e, for, if it did, then it would tend strongly to e (an
elementary property of projections), and that was proved to be not so.
This implies that Q~e Φ e, or, equivalently, that (1 — Q~)e Φ 0. Can
the numbers |(e,/y)| be arbitrarily small? Since | ((Q/ — Qj)e, g) \ ^
I (β,/y) I I Iff II for all g, an affirmative answer would imply that
((1 -Q~)e, g) = 0 for all ff, so that (1 - Q~)e = 0—a contradiction. The
fact so obtained (that the numbers | (e, fj) \ are bounded away from
zero) makes it possible to prove that M~ Φ {0}; it turns out that if
ff ± (1 - Q~)e, then g e M~. Indeed, since (e, /,-)(/,-, ff) -> ((1 - Q~)e, g) =
0, it follows that {fh g) -> 0, and hence that (/, /,)(/,, g) -+ 0 for all
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/. This implies that ((1 — Q~)f, g) = 0 for all /, and hence that
(1 — Q~)g = 0. In other words, Qjg—>g weakly, and therefore strongly
(the same property of projections that was alluded to above); from
this it follows, finally, that g e M~.

I am grateful to Professor Robinson for a prepublication copy of
[2] and for a kind letter helping me over some metamathematical
difficulties.
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NEW INFINITE CLASSES OF PERIODIC
JACOBI-PERRON ALGORITHMS

LEON BERNSTEIN

The question whether a system of n — 1 real algebraic
numbers (n = 2, 3, •) chosen from an algebraic field of degree
not higher than n9 yields periodicity by Jacobi's Algorithm is
still as open and challenging as hundred years ago. The
present paper gives an affirmative answer to this problem in
the following case: let K(w) be an algebraic number field
generated by w = (Dn — d: m)ί/n, where m, n, d, D are natural
numbers satisfying the conditions m ^ 1, n έ 3, d | D, 1 ^ d ^
D/2(n — 1). Then n — 1 numbers can be chosen from K(w),
so that their Jacobi Algorithm becomes purely periodic. The
length of the period equals n2 (or n, if d = m = 1). This is
the longest period of a periodic Jacobi Algorithm ever known.
In three corollaries the following special cases are investigated

w = (Dn— dψn , (r = 0,1, , n)

w = (Dn- drD)Vn , (r = 0,1, , n - 2)

w = (Dn — pd/m)1/71 . (n = pu, p a prime,
u = 1, 2, , m as before)

In all these three cases the Algorithm of Jacobi remains purely
periodic with length equal to n2.

The main tools in proving these results are the poly-
nomials

f.(w, D-Ϊ) = ±(n~s~1 + ty-KD - 1)* ,

F.(w, D) = ±(^n~S':1 + ly^D S (s = 1, , n - 1)

of which each is an inverse function of the other.

This paper reveals new infinite classes of Periodic Jacobi Algorithms,
adding more and wider specific cases to already existing results explored
by the author in his previous works. For any given real number α(0)

Euclid's Algorithm, namely

J ^ , (v = 0,1, - •)a & + , , α δ + ^ ,

where 6{0) = [a(v)] is the greatest integer not exceeding aiv\ leads up
to Ordinary Continued Fractions. This Algorithm was generalized by
Jacobi [l], and its theory masterfully developed by Perron [2] for any

Received June 18, 1964. This paper was supported by the Lord Sieff Foundation.
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number of n — 1 real numbers (n ̂  3) in the following way.
Let ak

0) (k = 1, 2, , n — 1) be any set of n — 1 real numbers;
from this set (infinitely many) new sets ak

v) (v — 0,1, ) of n — 1
real numbers each are being formed by the recursion formula

n{v+l) _ I . Π<v+1) _ (n(v) __ h{vΛπ{v+1)

a l Γ- Γ — » & l — \ak Ok ) ( l ι

where again bk

v) = [αĵ ] is the greatest integer not exceeding a{

k

v). For
n = 2 Jacobi-Perron's Algorithm (henceforth denoted by JAPAL) is
Euclid's Algorithm, namely αίβ+1> = 1: (a{υ) - b[v)). The JAPAL is called
periodic, if there exist two nonnegative integers t, m such that

(2 ) α r w ) = ajf> , (fc = 1, 2, . ., n - 1; v = ί, t + 1, )

whereby the t lines

αί ^αί *, •• ,<2 1 (v = 0,l, . . . , ί - l )

are called the preperiod of the JAPAL, t its length, and the m lines

αί >, α^}, ••-,<!!, (v = ί, t + 1, , m + t - 1)

are called the period of the JAPAL, m its length; the sum m + t
is called the length of the JAPAL. For t = 0 the JAPAL is called
purely periodic. Whether or not there exist, for any n > 2, remarkable
classes of sets of n — 1 real numbers whose JAPAL becomes periodic,
could not be decided by Perron.

In eight previous papers [3] I succeeded to prove that the JAPAL
becomes periodic for certain sets of n — 1 Algebraic Irrationals of
degree n. Some specific results announced in my papers are the
following:

Let D, d, m, n be natural numbers such that

w ^ 3 ; m ^ l ; d\D D Ξ> dC (Ca positive constant)

and let w denote one of the following irrationals —

w = (Dn + d)Vn (Dn + d: m)1 : w (Dn + dkD)ln (Dn - d)ί:n ,

then the JAPAL of the n — 1 numbers

Wy W2, * « «, Wn~1

becomes periodic with the lengths 2n — 1; 2n — 1; 2?ι — 1; n~ + {n — I)2

respectively. Trying to enlarge the family of infinite algebraic fields
K(w) containing sets of n — 1 numbers whose JAPAL becomes periodic,
I naturally asked for the periodicity of (Dn - d: m)1:w, (Dn - dk)1:n
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(k = 0,1, , ri), (Dn - dkD)1:n (A; = 0,1, , n - 2) and succeeded to
establish it. The results are announced in this paper. My previous
results thus become a special case of (Dn — d: m)1:w (m = 1); but here
I use much more refined methods to prove periodicity.

Π Statement of the main theorem* In order to state the
main result of this paper it is advisable to introduce the following
new notations:

DEFINITION 1. A matrix of n rows and n — 1 columns of the form

( 3 )

A A ... A A

o, o, ..., o, l
o, o, ..., o, l

o, o, ...., o, l

will be called a fugue. The first row of the fugue will be called its
accumulator, and the numbers

the first, second, •••, n — 1st element of the fugue's accumulator.

DEFINITION 2. The meaning of a combined sigma-sign is given by
the formula

(4) Σ

We are now able to state

ί - l

ι = 0 Σ
i=t

THE MAIN THEOREM. Let m, n, d, D be natural numbers satisfy-
ing the following conditions

m ^ l ; n^3; d\D 1 ^ d ^ D :2(n - 1) .

Let us further denote

( 5 )

w = (Dn - d: m)ι' n ,

• In — 1 — s + i

i=0 \ i
f,(w, D-ϊ) =

then the JAPAL of the n — 1 numbers

ϊ>

1 For n — 2 we get Euclid's Algorithm leading up to the periodic Continued
fractions of a quadratic irrational. We shall demonstrate the validity of the Main
Theorem in this case, too.
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f^W, D - 1), f2(w, D - 1), , fn_λ{w, D - 1)

is purely periodic and its primitive length is n2. The period consists
of n fugues. The n — 1 elements of the accumulator of the first
fugue have the form

in — 1 — k + i
( 6 ) A 1 + Σ [

The accumulator of the sth fugue (s = 2, , n — 1) has the form:
the first n — s elements have the form

* in — 1 — k + i\
(6b) A* = - l + Σ . D'-' φ - 1)* (fc = l, . . . , w - β )

-o \ t /

the following s — 1 elements have the form

Λ_.+t=-i+ Σ (-i

The n — 1 elements of the accumulator of the nth fugue have the
form

_ (n-1
(6d) Λ

In the case of m = d = 1 the primitive length of the period is %.
The period consists here of one fugue, and the elements of its ac-
cumulator have the form (6).

In the quadratic case (n — 2) we have, according to the Main
Theorem, as can be easily calculated by the reader,

w = (D2 - d: m) 1 : 2 2d ^ D d \ D ,

the accumulator of the first fugue has the form

A - 2(Z> - 1)

the accumulator of the second fugue has the form

A1 = 2(mD : d - l ) ;

therefore we have the development in a periodic continued fraction:

(6e) (D'- - (d : m))1Λ + D - 1 = [2(D - 1), 1, 2(mZ>: d - 1), 1] .
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Illustration for (6e): D = 12; d = 3; m = 10,

1/143,7 + 11 = [22, 1, 78, 1] .

Two conclusions which follow directly from the Main Theorem are
the following corollaries:

COROLLARY 1. Let n, d, D be natural numbers satisfying the
following conditions:

n ^ 3 d \ D 1 ^ d ^ D : 2(n - 1) ,

and let denote

w = (Dn - dr)v'n , (r = 0, 1, , n)

s in — 1 — s + i\
(5a) f.(w, D-d) = d-sΣ[ . hi - ' φ - d)*

(8 = 1, . . . , ™ - l )

o/ ί/ie w — 1 numbers

A(w, D-d), f2(w, D - d), , Λ.Λw, D-d)

is purely periodic and its primitive length is n2. (the case d = 1 is
excluded). The period consists of n fugues. The n — 1 elements of
the accumulator of the first fugue have the form:

ίn—l — k+i
( 7 ) A l + d k Σ [

elements of the accumulator of the sth fugue (s — 2, 3, , n — 1)
λβ form: the first n — s elements have the form—

k in — 1 — k + i\
(7a) Ak=-l + d-kΣ>[ . b ' - ' φ - d ) ' ; (fc = 1, , n - β)

following s — 1 elements have the form:

t-un-s+t ^./s — 1 — ί + i\
i4w . .+ t=-l+ Σ (-l)M .

(7b) i=o/d»-r \ ^ /

(ί = 1,2, . . . , 8 - 1 )

t/ιe n — 1 elements of the accumulator of the nth fugue haveΓΛhe
form:

/w — 1 — ί + i\
(7c) +d-rΣ(-iη L

(ί = 1,2, • • . , > -
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COROLLARY 2. Let n, d, D be natural numbers satisfying the
following conditions:

n ^ 3 d \ D 2d(n - 1) ^ D g dn~r , (r = 0, . , n - 2)

and £e£ denote

w = (Dn - drD)1:n , (r = 0,1, , n - 2)

(5b) In — 1 — s + A

the JAPAL of the n — 1 numbers

Uw, D - d)f /f(w, D - d), , f^(wt D - 1)

is purely periodic and its primitive length is rι\ The period consists
of n fugues. The n — 1 elements of the accumulator of the first
fugue have the form:

fc in -— 1 — k+ i\

i \ t /

The n — 1 elements of the accumulator of the sth fugue have the
form: (s — 2, 3, , n — 1) ίfte ./ϊrs£ n — s elements have the form—

k in — 1 — k + i\
(8a) Ak= - l + d-*Σ ΰ w Φ - ^ , (fc=1,2,...,»-s).

«« \ * /
following s — 1 elements have the form

- t - l + ί\f n

( ί = l , 2 , • • - , « - 1 )

n — 1 elements of the accumulator of the nth fugue have the
form:

• = o / d : D \ ^ )\s — t + ιj\ d

I - 1

It is obvious that all the elements of the accumulators (6) to (8a)
are integers. We shall prove that the elements of the accumulators
(8b), (8c) are integers, too. To this end we have to prove that

n-r: D)(D : d)n-s-t-ί
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are integers. Denoting n — s + t — i — u, we have 1 ^ u ^ n — 1;
further

Since d | D, we have to prove u — n+r^u — 1. But

u — n + r ^ u — n + n — 2 ~ u — 2 .

Ill* Auxiliary functions-notations and identities* The es-
sential tools used here to prove the Main Theorem and its Corollaries
are the following functions:

s In -— s — 1 + i\
f (w. D — 1) = Σ ]w8~τ(D — 1)*

( 9 ) «\ i )

(s = 1, , n - 1), /oO, J9 - 1) = 1 .

, In _ i _ s +
F.(w,D) = Σ*[

(10) t=o \ %
( β = l , . - , n - l ) , i?7

0(w)D) = l .

t-iin-8+t Is — t — 1 + i\
9ns t(WrD) — Σ ( — 1 ) Ί i^-β+ί-iί'w;, D)

(11) ' ί=0/m:d \ % )
/Q 9 Q •.. ΎI * f 1 9 ••• <? 1 ^
yo £i) Oy y 'v t v -*•> ^*> j o JLJ

For any polynomial P,(w, D) in w, Z) with integers c< as coefficients,
namely

(12) P,{w, D) = g cw-'D* (β = 1, , n - 1), P,(w, Z>) = 1

the following abbreviations will be used

(12a) P,(w,D) = Ps; (β = 1, • . - , » - 1 ; P , = 1) .

(12b) P,(D,D) = Pi; (β = lf . . , » - ! ; P; = l ) .

(β = l , . . . , n - l ; ( 1 'P 0 = 0 ) .

The following identities are essential for the proof of the Main Theorem
and its corollaries:

(13) f t ( , )

Proof of (13). We have from (9):
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fn — 1 — s + i\
) ~ υ-'Φ - 1)'

(13a) Fs=\^ \D'; (« = 0,1, •••, n - 1)

Proof of (13a). This is completely analogous to proof of (13).

(14) WFS = F._χ ( β = l , 2 , . - . , n - l ) .

Proof of (14). We have from (10)—

Fi = t i \ ~ 2 . + Λw'-'D* = tv + (n- 1)D

F,- Fι = w - D .

We thus have to prove

F8 - F8 = (w - D)F8_1 .

We have

s-i In — s + i\
(w - D)F8_1 = (w - 2>) Σ . \ws-1-iDi

Σ f n " s +

« in — 1 — s + A
(15) /. = Σ (-1)1 . )F.-i : (« = 0,1, , w - 1)
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Proof of (15). If we arrange the expression on the right hand of
the equation

-*

Σ (-i)f " * " s + %\ Σ (n ~ X ' S

»=o \ i I i- \ 3

in descending powers of w, we get

Now the identity holds:

n - s - 1 + j\ίn - s - 1

— 1 + ^)! = (^ — s — 1 + i)\i\
!(w - β - 1)!(< - j)\ il(n - s - 1)!j!(i -

n — s — 1 + A/ΐ^

In view of this identity we get

•-1 /% — 1 — s + i\
(16) (1)/8 = Σ ( - l ) Ί . IPUw (β = 1, 2f f Λ - 1)

ίo \ % I

Proof of (16). We have from (15):

— 1 — 8 + i\ In — 1

k + ί i r

In view of these two formulas and according to (14), we"get

(1)/. = 4 ^ ^ = Σ (-DΊ . )(F^{ - F._4):(Z> - w)
D — w <=o \ t /
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(17) (1)/8 -
 (1)/8-i = Λ - χ . (s = 1, 2,

Proo/ of (17). We have, on the basis of (16)

(18)

— 1 — s + i
F.-,-,

Σ
ί-i

• - 2

-Σ(-i)1
— s +• - 2

Σ ( )
«-* in — s + i
Σ ( i ) '

— s +

^ +
n — s + i

β-1

=0

71 — S + i

i

Proof of (18). This follows directly from (16), if we interprete
(1)0n-8,t as (gn-.8ft — 9n-u8) - (D — w). (It will be shown later that this
interpretation is in accordance with the general notation of a)P8.

(19) W9n-8,i - (1)Λ-8 = Λ-e+iM (β = 1, 2, , n - 1) .

Proof of (19). We have from (16), (18):

(D
yn-8,1
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(8 - 1 + ϊ\n-s-l

- Σ <-iW

(20)

^ + 1

o/«-β is — 1 + i\ „

= Σ (-l)Ί . Wn-s-i = flr-(.+l),l .
t=0/m:i \ ^ /

( 1 ) ^ - 8 , t + l — a)Qn-s,t = ff»-(»+l),*+l

(β = 2, , n - l ; t = 1,

Proof o/ (20). We have from (18):

- 1)

ί

=

 ύ / ^ + ί / ^ D * ' 8 - * - 2 + ΐ

- Σ_ (-i)r " , ' ' Ί*V*-κ—

/s - t - 2 + i

n-a+t (S — £ — 2 + i\

+ Σ (-D* . pτ»-.+ί_ί

— t — 1 + i

s — t — 2 + i
ί
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S - t - 2 + i\

n~'+t

n-β+ί (S — t — 1 +

+ Σ (-1)'

(20a) Σ fl'n-l.+D.t-ί

Proo/ o/ (20a). We have from (20)

(D
9n-8,t 9n~a,q — Zi V υnsΛ-i f/Λ-βιί-t-1/

i=0
t-l-g

(20b) (1) —— -F

a
= l,2 f . . f n - l )

Proo/ o/ (20b). From (18) we derive:

a <=o

(Dyy
yo,t-i

m

— t + i

i

t-ι in — t — 1+ i

i

- i - 1 + ΐ

ΐ - 1

*-! 7^ — t + i

Γ ί-l-i — —ΓVt-1

α
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— y»-(ί+D,ί vS — Δ , o, , n — i ; .
D — w

Proof of (2Cte). We have from (18) and the definition of w

D — w D — w

Dn - (Dn - d: m)
yn-8f8-ι

3-2/71-2

«_1- Σ ( -
i 0 l d

— _Σi (."" l)*-ίn-l-< — 9n-(3+l),8

<20d) X'ΓdXD-t)1 =f-'-
Proof of (20d). We have from previous proofs and formulas

1 9 — 9 {1)Q

(m : d)(D — w) u~1 ' (m: d)(D — w) m; d

therefore

= — Σ (-1)^-^ = Σ (-
W i=0/m:i ι=0

(17a) ( 1 )/ s -
 (1>/g = Σ Λ-i-*. (1 ̂  g ^ * - 1)

Proof of (17a). We have from (17)

8—q—l 8—q—l

J a Jq = = Σ ' /«—• Jβ—i—l) == Σ Js—l-i

i=0 i=0

ί-1 Λ—s—g-1

(20e) α)gn-8,t ~ (1)Λ = ^- Λ -*- V.Σ ) Σ
i=0 t=0

Proo/ 0/ (20e). This follows immediately combining (17a), (19), (20a).
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IV. Inequalities. In this chapter we shall establish magnitude
relations between the auxiliary functions /„ F., gn^,,t. We first note
that

(21) D-l<w<D; (D - l)k < wk < D" . (k = 1, 2, •-, n - 1)

(21) follows directly from the definition of w. From (21) and the
definition of /, and F, follows further

2)

(8 = 1,2, . . . , Λ - 1 )

(23) ( l + — i - — ) " " 2 < 1,65 for 2(n - 1) ̂  D .

Proof of (23). Since D ̂  2d(n - 1), d ̂  1, we have D ̂  2(n - 1),
I> - 1 ̂  2(w - 1) - 1 > 2(« - 2). Therefore

n-2 / / I \2(n-2)\l:2

( ( 1 b ) )
< β l ! l = 1,64872-•• < 1,65.

(24) Λ ^ F4+1(JD - 1, P - 1) . ( i = 0 , 1 , • - . , * - 2 ) .

Proof of (24). We have to prove, following (13a):

fl + —3L.Y < JLzlφ -1),
V D-l/ ~ <+ 1

jD-lfci±4/l+ 1 Y.
9t — i \ D -~U

We prove α fortiori, since (i + 1): (n — i) is an increasing function,

but
n ~ 1

Z) - 1 ̂  2d(w - 1) - 1 ̂  2(» - 1) - 1 > 1,65
2

(24a) F t < F'+t

(s 0

Proo/ of (24a). It follows from (22), (24)

F,<F,< F,+1(D - 1, D - 1)
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so that

F, < Fa+1 < F,s2 < < Fe+t .

(24b) f' < f'+t '
(s = 0, " , n - 2; ί = 1, -•-,%- I; I ^ s + t ^ n - I) .

Proo/ of (24b). It follows from (22), (24)

f,<f,<F,< Fa+ι(D - 1, D - 1) = / i + 1(D - 1, Z» - 1)< / i + 1 .

(25) 2FM_2 < -±-FB_x .
a

Proof of (25). We have to prove
n-2 1 n-1

2 Σ ( i + l)wn-2^Dι < — 2vr-^D*
i=Q cί i=0

and prove α fortiori

n— 2 ^ 2ft! 3Λ Λ~1

i=0 j_) ί=0

1 ^JZ,1

We thus have to prove

TO—2 (Ύ) —— 1 Jvi/i Ti—1 n—2

w h i c h i s a l w a y s t r u e , s i n c e i + 1 ̂  n — 1, 0 < ( w — l ) ^ ; 7

V^bj / β ^ r 8_i . (s = l, Δ,

Proof of (26). We have from (15)

wf — F ,
J 8 •*• β—1

(.-D/2 / / n — s + 2i — 2\ /w — s + 2i — 1

- δ ( ( «_i Γ-«-( 2 i
/ Λ - 2\

— e\ I , (e = 0, when s is odd, = 1 otherwise)
\s - 1/

so that (1)/β ^ ί7,-!, if we can prove that the expression under the
sigma sign is not negative. We shall therefore prove

or
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and prove a fortiori

s - 2i)y 2* \s - 2* -
— s + 2 i — I n

We thus have to prove

V-2*
~ 2ΐ

or

_ 1 y-2i ^ (n - g + 2i - l)(s - Σi)^.,^,!
; ~ 2i(n - β + 2* + 1)

or

But from D ^ 2d(w — 1) we have

D 1 > J L z i L i 65 > w - g + 2i - 1 . s - 2t

(27) (1)gM_,(t < (m : d)i? f_+ l_1. (β = 2, 3, , n; ί = 1, 2, , β - 1)

Proof of (27). We have from (18) for t = 2r + 1

Fn-.+t-n ~
I

- t + 2i - 2>

We shall now prove that the expressions under both the sigma signs
are nonnegative, so that {1)gn-8,t < (m: (Z)27T

n_t+ί_1. We have to prove

or

2^
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We shall prove a fortiori

— t + 2^/

( n

2i \8 - t + 2i
s - t + 2i - 1

We have to prove

8 - t + 2i) 2i \s - t + 2i •

or

s — t + 2i — 1 n — s + t — 2i
I J ~ J L - s - t + 2i + l 2ί

which follows immediately from 2(n — 1) — l ^ D — 1 and the upper
and lower bounds of s, t, as at the end of the previous proof.

For t = 2r + 2 we have

.-r~
« - 2\ _ Is - ί + 2* - 1

+
i=2r+3

so that in order to prove (27) in this case of t = 2r + 2 we have only
to add the proof of

Since m ^ 1, we prove α fortiori

or
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We prove a fortiori

t \8

or

τ\ i ^ s ~ l n — s

"8 + 1 t

which follows immediately from D — 1 ̂  2d(n — 1) — 1 > d(n — 2) 1,65.

(28) g%_.,t < (m : d)Fn^t . (s = 2, 3, . ., n; t = 1, 2, . , s - 1) .

Proof of (28). This is completely analogous to proof of (27).

(29) [/.]= - 1 + / . . (β = l ,2 , . . . ,Λ- l ) .

Proof of (29). We have to prove

(A) - 1 + / . < / . ; (B) / . < / . .

To prove (A) we have to show that

/ , - / . < ! , or, dividing by D - w > 0 ,

<«/. < ( m :

From (25), (26) we have

(1)/8 ^ F.-χ ^ *V-2 < ( m :

(B) follows from (22). Thus (29) is proved.

(30) \gn_.,t] = - 1 + £._.,« . (β = 2, . . , n; t = 1, ...., s - 1)

Proof of (30). We have to prove

(A) - 1 + gn_Λ9t < gn_8,t (B) gn_99t < g^9t .

To prove (A) we have to show

ff—,« - ff—.,* < 1 , or, dividing by D - w ,

But from (27) we have

(1)ff-.., < (w : ^ 2 ^ . + . - ! ^ (m : d)Fn_2 < (m :

To prove (B) we have to show, after dividing by D — w

(1)flr_..t > 0 .
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But for s < n

(l)π > d)π {l)n n \ Λ .

\JnsΛ == yn—s,t ί/w—s,ί—1 — Un—(s + l),t <^ υ i

and for s = n

{1)go,t ^ {1)9o,t - {1)9o,t-i - ( m : d)ft_t > 0 ,

(that the expressions gn-8,t are positive entities will become clear^later,
while carrying out the JAPAL for the f{).

Proof of (31). It was shown that the denominator is positive.
We therefore have, to prove, after dividing by D — w

{l)fi - (1)/i > 0 ,

which follows directly from (17a).

(32) fS^Λ < λ " U = 0> 1? '''' S "" 2 ; S = 2' 3) '" •' n " 1}

Proo/ o/ (32). We have to show

(D — w)fj < f8 — /8 + 1 , or, dividing by D - w ,

But

Λ + {1)fa < /.-, + i^-i < ̂ .-3 + ^.- . < 2Fn_2 < (m :

(33) 1 < fi-J ~ § ~* + X < 2 . (i = 1, , * - 1) .
7i — /i + 1

Proof of (33). We have to prove, since the left hand inequality
was proved in (31)

Λ-x - Λ-x + 1 < 2(/, - /,) + 2 ,

or carrying over and dividing m by Z) — w

But

£* * J i J i—1 = ^ * J i = £*•*• n—2 " ^ -. •* n—Ί

ΰn-st Qn-sΛ ~^ 1, ^ 1

(34) Λ-/. + 1

(8 = 2, 3, . . . , n ; t = 1, 2, •••, β - 1; 9 = 1, 2, ••., n - s)
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Proof of (34). We have to prove

0-..« - ff-..* + K Λ - Λ + 1 ,

or, dividing by D — w>

yn-8>t Jq s> v ,

which follows directly from (20e).

(35) <
ffn- .i — 9ns,j + 1

Proof of (35). We have to prove

or, after carrying over and dividing by D — w

which follows directly from (20a).

(36) 1 < fn~* ~ [»-' + 1 ^ < 2 . (s = 2, 3, . . , n) .
9n-s,l - 9n-s,l + 1

Proof of (36). We have to prove

(A) ffM.1-&M.i + l < / - . - / - . + l,

(B) Λ_, - Λ-. + K 2(^_8)1 - £Λ_β,α) + 2 .

To prove (A) we have to show, after carrying over and dividing by
D - w

Un—β,l Jn~8 ^ υ 9

But from (19) we have

(1)0-..i - ( 1 ) / - . = g-(.+i).i , for s < n .

For 71 = s we have
( 1 W ~ (1)0o,o = (m : d)/0 > 1 .

To prove (B) we have to show, after carrying over and dividing
by D — w

But

2 (1>ftl-.,1 -
 (1)Λ-β ^ 2.(1>flrMil < 2F._. ̂  2 F . . t < (m : dJF, . , .

φ - w)fr^ ^ Ί

( 3 7 ) 0 Λ _ 8 , t - ^_ 8 , f + 1

( r = l , 2 , . . . , n - β ; β = 2 f 3 , . . . , n - l ; ί = l , 2 f . . . , 8 - 1 ) .

2 While carrying out the JAPAL in the following chapter, it will become clear
that the numerator and denominator are positive entities.
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Proof of (37). We have to prove

(D - w)fr_, < gn_8,t - gn_8tt + 1 ,

or, after carrying over and dividing by D — w

{ί)9n-s,t + fr-i < (m : d)Fn_x ,

or a fortiori

wgn-8ft + / U < ^_ 8 + ί _ 1 + Fr_x < 2Fn_2 < (m :

1 < 9n—8*t 9ns,t

(38) flrw_ffί+1 - gn-.tt

Proof of (38). We have to prove

(A) gn_.,t - gn_3Λ + 1 > flrn-.,t+i ~ 0»-.,t+i + 1 ,

(B) gn-s,t ~ Su—t + K 2(flfn.β>ί+1 ~ ^ _ 5 > ί + D + 2 .

To prove (A) we have to show, after carrying over and dividing
by D — w

which follows from

{1)Qn-s,t + l - {1)9n-S,t = 9n-(s + l),t + l > 0

for s ^ n — 1. For s = ̂  the proof is exactly as before.
To prove (B) 'we have to show, after carrying over and dividing

by D — w

2 ( 1 )^_ s, ί + 1 -
 wgn-s,t < (m:

which follows from

< 2 F M + ί ^ 2Fn_2 ̂  (m :

V. The JAPAL of the f19 /2, , fn_^ We shall now carry out
the JAPAL of the numbers fly /2, , fn_x and thus complete the proof
of the Main Theorem. To this end I shall introduce still a few more
new conceptions.

DEFINITION 4. The set of n — 1 numbers af] (i = 1, , n — 1;
v = 0, 1, •••) shall be called the vth generator of the JAPAL, the
number a^ its ith element; the set of n — 1 numbers
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(i, v as before) shall be called the i th genus of the JAPAL, blv) its
ith element. The key to the final proof of the Main Theorem now
rests with the

LEMMA. Let the n — 1 elements of the vth generator fulfill the
following conditions:

(A) αl*> = P t (w, D) Px(w, D) = w + cJD P0(w, D) = P0(w, D) = 1

(B) [αί >]= - 1 + ί M f l ) .
(i = 1, 2, , n — 1; Cj α nonnegative integer)

(C) 0 < P P + *ff < 1
(ί = 1, , n - 2; A? = 1, , rc - 2; ί + k ^ n - 1)

(39) 0 < & - »>((1>P1-* - ( 1 ) P - > < 1
-Pi —- P t + 1

,«; t = 2,3,

(ί = l, .1 < f <2.
-t ( — ft + 1

ί/ie ^ genera

bίΌ+k\ b{

2

υ+k\ , 6i!i*> (fc = 0,1, , n - 1)

form a fugue, and the elements of the v + nth generator, namely
the a[υ+n) (i = 1, 2, , n — 1) have the form

α (* + Λ ) = u ) P . + i _ d ) P i . (i = 1, . . . , n - 2)

(40) ^ ( v + n ) _ P , , 1 - P , , , + 1
α 1 ~

Proof of the lemma. In view of (39) (A), (B) and following
formula (1) the elements of the v + 1st generator have the form

(40a)

— , [i - l, , n
l

. - Pi +

Since the elements of the v + 1st generator fulfill the conditions (39)
(C), the elements of the v 4- 1st genus have the form

(40b) b{r1} = 0 • (i = 1, 2, , n - 2) δίίS1' = 1 .

On the basis of (40a), (40b) and reminding from (39) that Pί- P1 =

(D - w) - (D - w){wP1 - U)P0) we obtain, following (1), for the n - 1
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elements of the v + 2nd generator

α ( * l 2 . . . n - 3 )

(40c)

P 2 -P 2 + 1 '

D ~ W)( P\ ~~ *

*(»+2) * 1 -fj

" " p 2 - p 2

Now the elements α^+2) (i = 1, 2, , n — 1) again satisfy conditions
(39) (C), and therefore the elements of the v + 2nd genus have the
form

(40d) bϊΌ+2) = 0 (i = 1, . . . , n - 2) 6ivΛ2) = 1 .

In view of (40c), (40d) and (1) the elements of the v + 3rd generator
have the form

p | + X (< = 1, 2, . . . , n - 4)
Γ3 — JΓ3 + 1

(0+3) _ ( D

P3 - P3 + 1

α< ?> = fi ~ P» + 1 .

Continuing these considerations one arrives quite easily and by induc-
tion at the conclusion that the v + ίth generator takes the form

(v+t)
a t p _^ p + 1 '

(4M) aί,,U_l=φ'-f"'Pj-γ,-i , tf = ! . • • • . « - I )
+ 1

and that the n — 1 elements of the v + ίth genus have the form

(40g) b^ = 0 (i = l , . . . , n - 2 ) 6£U« = 1 .

Following the formulas (40f), (40g) and (1) we obtain that the n — 1
elements of the v + n — 1st generator have the form

„,,+-, = α > - . x φ . - " ' f , - ) , ( i = 1 , . . . , « _ 2 ,
(40h) ^-.. .-i ' .-.+ l

α"-1 ~ -p—ZΓβ—ZT '
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and that, on ground of (39) (C) the elements of the v 4- n — 1st
genus have the form

(40i) Vr*-l) = 0 (t = 1, 2, , n - 2) b*8-» = 1 .

Thus the n genera

6ί +ί>, &<•+'>, , δί#> , (j = 0,1, , n - 1)

indeed form a fugue as was stated in the lemma. Now we have from
(40h)

( 4 0 j ) a ^ - , = (D - n»(»>P, - <»Po) = ^ j v

so that on the basis of (40h), (40i), (40j) we receive for the n — 1
elements of the v + nth generator

α(«+n) = (l)p<+i __ (l)p. ^ (ΐ = 1, 2, , Λ - 2)

(40k) aiv+n) = P ^ + J U + 1
n ' D — w

By this the lemma is completely proved.

We are now able to prove the main Theorem quite easily in the
following steps:
(1) Let be

(41) P«(if>, D) = Λ(t0, D) = αί0^ . (< = 1, 2, . . . , n - 1) .

Following (29), (31), (32), (33) the functions fζ (ί = 1, , n — 1) indeed
fulfill the conditions (39) (A), (B), (C). Therefore, following the lemma,
we get for the n + 1st generator, which is the first generator of the
second fugue of the JAPAL

αiΛ) = (1)/ i+1 - (1)/i , (i = 1, 2, , n - 2)

D — w

so that on the ground of

D — w D — w
Λ-2

= (m : J ^ Σ
i=0

0/%-l
»=0/m:d

and on the basis of (17) we have for the n — 1 elements of the first
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generator of the second fugue of the JAPAL

(41a) αί"> = fti (i = 1, 2, • - •, n - 2) <"Λ = gn_2<ι .

(2) Let

(41b) P^w, D) = ft; (i = 1, 2, , n - 2) Pn_{w, D) = gn_ΐΛ .

Following the formulas (29) to (37) the functions of (41b) fulfill the

conditions (39), and therefore the elements of the first generator of

the third fugue have the form

α<2»> = <»/<+1 - 'V, (i = 1, 2, . , w - 3)
(42)

(2n) (l)
i r 2 —

.(2Λ) 9n-2>l 9w-2,1 " t " •*•

^^D — w

Following the formulas (17), (19), (20c) we get for the functions (42)

(42a) \\~~ ' „, ( i - ,2, . . . , Λ - )

In the same way we get from (42a) that the n — 1 elements of the

first generator of the fourth fugue have the form

aΐn) =A; (i = 1, 2, , n - 4) αi3^ = gn^Λ

Continuing this process of the JAPAL we get from (43) that the

elements of the first generator of the sth fugue have the form (s =

2 , 3 , . . ,n)

(44) ί(.-i, , _ _ _ ij

From (44) we finally deduce, for w = s, that the elements of the first

generator of the wth fugue have the form

(45) aϊ«~™ = gQ,t . (ί = 1, 2, , n - 1) .

But we have from (11)

o/i in — 2 + i\
0-..i = ft.i = Σ (-l)Ί . )F1_i

i=0lm:d \ % I

= (m: d)Fx - (n - 1)FO = (m :

so that

ffo,i - ffo i = (m: d)(Fx - ί7,) = (m : d ) φ ~ w) .

With this and on the basis of the lemma, we get from (45) that the
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elements of the first generator of t h e n + 1st fugue have t h e form

aϊn2) = ((1)<7o,ί+i - ( 1 W)(™ id); (i = 1, . . . , n - 2)

(46) α ( w 2 ) __ ffp^-x -- <}θ,n-i + 1

*~1 (m : d)(D. - w) '

Now according to (20b), (20d) we have

(46a) af> = /, (i = 1, 2, . ., n - 2) α£ίϊ = / _ , .

From (41) and (46a) we have

(47) a^ = aΐ» , (< = 1, 2, . . , n - 1)

so that the n — 1 elements of the first generator of the first fugue
are identical with the n — 1 elements of the first generator of the
n + 1st fugue. Thus (47) shows that the JAPAL of the /< (i=
1, 2, •••, w — 1) is purely periodic with the length w2 (w fugues), as
stated by the Main Theorem.

Now since

(48) A = ± IU ~ X T S + *W-*φ - l)ί . 0 = 1, , n - 1)
; o V i /

t-l/n-8 + t (S — ί + %\ -

.̂-..«= Σ (-l)Ί p
i=0/m:d

ί-i/n-β+ί Is — t -\- i\l n

(48a) = Σ (-DM . _
i=0/m:d \ t y\s — ί + ^

(8 = 2 , 3 , . . . , ?ι ί = 1 , 2 , . . . , 8 - 1 ) ,

and since we have for the elements of the various genera of the JAPAL
either

- 1 + fi or - 1 + gn_gtt

the pattern of the accumulators of the n fugues of the JAPAL as
indicated in the formulas (6) to (6d) becomes immediately obvious. If
m — d = 1 we have

We therefore get from (41a) that in this case the elements of the
first generator of the second fugue have the form

so that here
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(48b) αΓ} = <" , (i = 1, 2, •. •, n - 1)

as stated in the Main Theorem, which, through this final remark, is
completely proved.

Proof of Corollary 1. We make the following substitutions in

w — φn __ & . my .n . Let T, t be natural numbers such that t \ T,
t ^ 1, let denote

(49) D=T:t; tf = 1 m = tn~k . (k = 0,1, , n) .

Following the conditions of the Main Theorem, we have here

l g t ^ Γ : 2 ( n - l ) .

Further iv takes the form

(49a) w^W:t W= (T* - tk)Un .

The functions /3, F3, gn_s,t take the form

/. = ί-Σ . }W-*(T - ί)' (« = 1, . . . , n - 1)
i=o \ ^ /

(49b) Fs = ί~3 Σ Γ ~ 7 δ ^) PΓ -'T* (s = 1, , n - 1)

(s = 2, 3, , n u = 1, 2, , s — 1) .

If we substitute again in (49a), (49b)

(49c) D for T d for t; w for W,

we get from the Main Theorem, that the JAPAL of the n — 1 numbers

(n-l-s + ϊ\ . . _ _ __,
— or)1-1*

takes the form as indicated in Corollary 1.

Proof of Corollary 2. Here we make the following substitutions
in w. Let T, t be natural numbers, ί | Γ; let

(50) £ > = T : ί ; d = l ; m = t*~r: T . (r = 0, 1, •-, w - 2) .

The reader should note that the condition that m is a natural
number is necessary only for the purpose that the elements of the
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accumulators in (6c), (6d) be integers. For the proof of the Main
Theorem we made use only of the fact that m ^ 1. The elements of
the accumulators in (6c), (6d) may be integers even if m is not an
integer, as was proved at the end of Chapter II. From 1 ^ m = tn~r: Γ,
we derive

(50a) T ^ tn~r ,

and from 1 g D : 2d(n - 1) and (50a)

(50b) 2t(n - 1) S T ^ tn~r t ^ (2(n - l))*< -*-i> .

From t I T and (50a) we derive the condition of (50), namely r =
0,1, , n — 2. For r = n — 2 we have Γ = ί2. w takes the form

(50c) w = TF: t W= (Tn - fΓ) 1 : . (r = 0, , n - 2) .

If we again substitute

(50d) D for T d for t w for TF

and follow the proof of Corollary 1, the proof of Corollary 2 will be
completed.

COROLLARY 3. Let d, D, u, m be natural numbers and p a prime
number such that

(51) d\D u,m^l; dp ^ D : 2(pu - 1) ,

and let denote

(52)

* -pd:m)p~

n — 1 — s + i

JAPAL of the n — 1 numbers

Uw, D - 1), / 2 (^, D - 1), . , /;,._„ (u;f D - 1)

is purely periodic and its primitive length is p2u. The period
consists of pu fugues, each fugue being a matrix of pu rows and
pu — 1 columns. The accumulators of the fugues have the form as
those in the Main Theorem, namely (6) to (6d), where d is sub-
stituted by pd and n by pu.

Proof of Corollary 3. All we have to prove is to show that all
those integers which appear in the accumulators and are multiples of
d are also multiples of p. This concerns all the numbers
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(52a) ( 1)%[ i / V β - ί
(i = O,i, . . . , t - l ; ί = l , 2 , . . . , 8 - 1 ; β = 2 , 3 , . . . , p )

where the decisive point is the relation

(KOVΛ 1 < o _ / 4 _ / / < / n M — 1

But since, as is well known,

(52c) p\(ζ\ for tt=l,2,.. k = 1, 2, . . . , p - 1

it follows from (52c) in view of (52b) that the numbers in (52a) are
all multiples of p.

We leave it to the reader to prove the interesting fact, that each
element of all the accumulators (6) to (6d) appearing in the Main
Theorem are multiples of p, if n = pu (p prime, u = 1, 2, •)

VI* Illustrations* (1) To illustrate the Main Theorem let us
take n = 5. Then the Main Theorem would sound:

Let d, D, m be natural numbers such that

Let

w = φ δ - d : m)1:δ ,

/. = Σ ί 4 - 8 + V-(D-l) . (a=l,2,3,4).

Then the JAPAL of the 4 numbers

w + 4 φ - 1) w2 + Sw(D - 1) + β φ - I)2

w3 + 2w\D - 1) + 3w(Z) - I)2 + A(D - I)3

w4 + w\D - 1) + ^ 2 φ - I)2 + w(D - I)3 + (D - I)4

is purely periodic and its primitive length is 25. The period consists
of five fugues, and the accumulators of these fugues have the form:

First fugue

5(D - 1) 5(D - 1)(2D - 1) 5(Z> - 1)(2£>2 - 2D + 1)

5D(D - 1)(Z>2 - 2? + 1)

Second fugue
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5(D - 1) 5(D - 1)(2D - 1) 5(D - 1)(2Z>2 - 2D + 1)

d

Third fugue

5(D - 1) 5(D - 1)(2D - 1) SOI2m^ - 4Z)2 + ZD - ί)
V d /

5Dίm^_φ _ 2) + 2D - ί)

Fourth fugue

- ZD + l ) δ( 2 m I Γ " (£> - 2)) + 15D - 5 ,

2) - Is)

i/itft. fugue

(2Z)--3) + l ) 5 ^ ( ( 2 £ 2 - 4D + 3) - l )

5mD φ 3 _ 2D2 + 2Z) ~ 1) .
d

In the case of n = 5, m = d = l, the JAPAL of the 4 numbers

/. = Σ ί 4 " S + %)w -*{D - 1){ (β = 1, 2, 3, 4) w = φ 5 - 1)*

is purely periodic and its primitive length is 5. It consists of one
fugue, the accumulator of which has the form

5(D - 1) 5(D - 1)(2D - 1) 5(D ~ 1)(2D2 - 2D + 1)

To illustrate Corollary 3 we shall take p = 2; u = 2. Then Corol-
lary 3 would sound:

Let d, i? be natural numbers such that d\D, d ̂  D: 12 and let
w = (D4 — 2d); then the JAPAL of the three numbers

w + 3(D - 1) w2 + 2w(2? - 1) + 3(D - I)2

wz + w\D - 1) + w(Z> - I)2 + (D- I)3

is purely periodic and its primitive length is 16. The period consists
of four fugues, the accumulators of which have the form
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First fugue

4(2? - 1) 2(2) - 1)(32? - 1) 2(2) - 1)(22?2 - 2? + 1)

Second fugue

4(2) - 1) 2(2? - 1)(32) - 1) ii^L _ 32)2 + 22) - l)

Third fugue

4 φ - l) ; j*22©L - 82) + 2 ^L{2D - 3) + 2(22? - 1)
α d

Fourth fugue

JmD_ _ 2 \ 22£(3Z> _ 4) + 2 ™£-(22?2 - 32? + 2) - 2 .
V d / d d
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PERMANENT OF THE DIRECT PRODUCT
OF MATRICES

RICHARD A. BRUALDI

Let A and B be nonnegative matrices of orders m and n
respectively. In this paper we derive some properties of the
permanent of the direct product A x B of A with B. Specifi-
cally we prove that

per (A x B) ̂  (per (^))π(per (B))m

with equality if and only if A or B has at most one nonzero
term in its permanent expansion. We also show that every
term in the permanent expansion of Ax B is expressible as
the product of n terms in the permanent expansion of A and
m terms in the permanent expansion of B, and conversely.
This implies that a minimal positive number Km,n exists such
that

per (A x B) ̂  JΓ«,»(per (A))*(per (£))•

for all nonnegative matrices A and B of orders m and n res-
pectively. A conjecture is given for the value of Km,n.

Definitions* Let A = [aiS] be a matrix of order m with entries
from a field F. The permanent of A is defined by

per (A) = Σalha2h amim ,

where the summation extends over all permutations (iu i2i , im) of
the integers 1,2, « , m . The set of elements

where (iu i2, , ίm) is a permutation of 1, 2, , m is called a per-
mutation array of 4, while their product

is a permutation product of A. The permanent of 4̂. is then the
sum of all the permutation products of A. The term rank p(A)
of the matrix A is defined to be the maximal order of a minor of A
with a nonzero term in its determinant expansion. By a theorem of
Kδnig [3] it is also equal to the minimal number of lines (rows and
columns) which collectively contain all the nonzero entries of A. Ob-
viously p(A) = m if and only if A has a nonzero permutation product.
A good discussion of these concepts is given by H.J. Ryser in [3].

If B is another matrix of order n with entries from the field F,
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then the direct product (or Kronecker product) of A with B is defined
by

anB aι2B almB

a22B a2mB
AxB =

amlB am2B ••• α m m £

It is a matrix of order mn. The submatrix of A x B given by

is called the (i, j)-block of A x J3 or sometimes simply a δZocfc of A x J5.
Direct products are discussed by C.C. MacDuffee in [2], We mention
those properties which will be of use to us. First it is readily verified
that an associative law is satisfied, so that Ax x A2 x x Ak can be
defined unambiguously. If C and D are matrices of orders m and n
respectively, then

(1.1) (A x B)(C x D) = AC x BD .

Thus if PAP1 = A2 where P and Px are permutation matrices of order
m and if QBQλ = JBX where Q and Qi are permutation matrices of order
n, then

(1.2) (P x Q)(Λ x B){P, x QO = Λ2 x Bx.

This says that permutations of the rows and columns of A and B
induce permutations of the rows and columns of A x B.

It follows by inspection that a permutation matrix P of order mn
exists such

(1.3) PT(A x B)P = B x A ,

where P Γ denotes the transpose of P. That is, the rows and columns
of A x B can be simultaneously permuted to give B x A. From this
we immediately obtain

(1.4) per (A x B) = per (B x A) .

A formula for the determinant of A x B is given by

(1.5) det (AxB) = (det (A))*(det (B))m .

The definition of the determinant is very similar to that of the perma-
nent, the only difference being that in the determinant we assign a
certain sign to the permutation products. It is therefore natural to
ask whether (1.5) has a counterpart for the permanent. It is this
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question that we consider for nonnegative matrices A and B. A non-
negative matrix is one whose entries are nonnegative real numbers.
Such matrices are discussed by Gantmacher in [1],

This paper is taken from a portion of the author's doctoral dis-
sertation submitted to Syracuse University in June, 1964 and written
under the supervision of Professor H.J. Ryser. The author wishes to
take this opportunity to express his sincere appreciation to Professor
Ryser for his excellent guidance. The dissertation was written during
a period in which the author held a summer fellowship of the National
Science Foundation and a fellowship of the National Aeronautics and
Space Administration.

2* Preliminary theorems* A well-known theorem due to Fro-
benius and Konig asserts (in our terminology) that all permutation
products of A are zero if and only if A contains an s by t submatrix
of O's with 8 + t = m + 1, m being the order of A. We divide the
opposite situation where A has at least one nonzero permutation pro-
duct into two cases.

THEOREM 2.1. Let A be a matrix of order m with entries from
a field F. Then A has precisely one nonzero permutation product
if and only if by permutations of its rows and columns it may be
brought to the triangular form:

(2.1)

an

a22 0

where anaί2 amm Φ 0. In (2.1.), 0 denotes all zeros while * denotes
arbitrary elements.

Proof. We need only prove the necessity. Thus suppose A has
precisely one nonzero permutation product. If m = 2, the result is
readily verified. We may regard A as the incidence matrix of a collec-
tion of subsets Slt S2, , Sm of the elements xu x2, , xm. Here xs

is a member of S{ if and only if a{j Φ 0. The fact that A has pre-
cisely one nonzero permutation product means the subsets Sl9 S2, , Sm

have exactly one system of distinct representatives. If all of the
subsets Su S2, * ,iSm contained two or more elements, then by [3,
Thm. 1.2, p. 48] there would be at least two systems of distinct
representatives. Hence one of the subsets Slf S2, , Sm must contain
only one element. Therefore by permuting the rows and columns of
A we may assume A has the form
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~ α n | 0 O O'

where αn Φ 0 and * denotes arbitrary elements. Now A1 can have only
one nonzero permutation product otherwise A would have more than
one. Applying induction to A1, we obtain desired result.

COROLLARY 2.2. Let A be a (0, ϊ)-matrix of order m. Then
per (A) = 1 if and only if the row and columns of A can be permuted
to yield a triangular matrix with Γs on the main diagonal and 0's
above the main diagonal.

THEOREM 2.3. Let A be a matrix of order m with entries from
an arbitrary field F. Then A has more than one nonzero permuta-
tion product if and only if the rows and columns of A can be
permuted to give a configuration of the form:

(2.2)

<*>r-Ur

aτ

where 2 S r ^ m and each ai5 designated above is not zero. All
entries not designated are arbitrary.

Proof.1 Suppose A has more than one nonzero permutation pro-
duct. By permuting rows and columns we may assume to begin with
that the elements on the main diagonal of A are nonzero. The con-
clusion now follows by using the well-known fact that if Q is a permutation
matrix then there exists another permutation matrix P such that PTQP
is the direct sum of full cycle permutation matrices.

THEOREM 2.4. Let A and B be nonnegative matrices of order n.
Then

(2.3) per (AB) ^ per (A) per (B) .

1 The author is indebted to the referee for improving the exposition here.
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Strict inequality occurs in (2.3) if and only if there exists an integer
i with 1 ̂  i S n having the property that if At denotes the matrix
A with column i deleted and B{ denotes the matrix B with row i
deleted, then

(2.4) per (AA ) > 0 .

Proof. Every permutation product of AB is the sum of nn terms,
each of which consists of the product of n elements of A and n elements
of B. Consider a term

of per (A) per (B). Here (iu , in) and (j\, , jn) are permutations
of the integers 1, « ,n . The expression (2.5) is a term in the per-
mutation product of AB arising from the elements of AB in positions
(l>ii)> •••» (l>iw) From this and the fact that A and Bare nonnega-
tive matrices, (2.3) follows.

Strict inequality occurs in (2.3) if and only if some permutation
product of AB contains a nonzero term of the form

(2.6) α.Ai . ' β w Λ Λ

where (j l f

 # ,j«) is a permutation of the integers 1, , n and where
1 ^ is ^ n for s = 1, , n, but (iu , i%) is not a permutation of
of 1, •••,%. Thus there exists at least one integer k between 1 and
n such that i5 is different from k for j = 1, , n. Let Ak be the matrix
obtained by crossing out column k of A and Bk the matrix obtained
by crossing out row k of B. Then a nonzero term of the form (2.6)
occurs if and only if per (AkBk) > 0. This establishes the theorem.

3* Main theorems* We now prove the main result of this
paper.

THEOREM 3.1. Let A and B be nonnegative matrices of orders
m and n respectively. Then

(3.1) per (A x B) ̂  (per (A)) (per (J3))m .

Equality occurs in (3.1) if and only if A or B has at most one non-
zero permutation product.

Proof. We have

Ax B=(Ax In)(Im x B) ,
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where Im and In are identity matrices of orders m and n respectively.
Hence by Theorem 2.4,

(3.2) per (A x B) ^ per (A x In) per (Jm x B) .

But

per ( / w xB) = (per (£))-,

since Im x B is the direct sum of B taken m times. Also

per (A x In) = per (JΛ x A) = (per (A))Λ

by (1.4). This establishes (3.1).
We now investigate the circumstance of equality in (3.1). We

remark that equality occurs in (3.1) is and only if equality occurs in
(3.2). Necessary and sufficient conditions that equality occur in (3.2)
are given in Theorem 2.4. In proving that equality occurs under the
conditions stated in the theorem we may assume by (1.4) that A has
at most one nonzero permutation product. If all permutation products
of A are zero, then per (A) = 0 and the term rank p(A) of A satisfies
p(A) < m. It then follows by an easy application of Konig's Theorem
that

p(A x B) S p{A)n < mn .

Therefore per (A x B) = 0, and equality occurs in (3.1). It A has
precisely one nonzero permutation product, then according to Theorem
2.1 the rows and columns of A can be permuted to give the triangular
matrix

(3.3)

where per (.A) = αu αmm Φ 0. Since permutations of the rows and
columns of A induce in a natural way permutations of the rows and
columns of A x B, we may assume A has the form (3.3). From this
it follows equality occurs in (3.1).

Conversely, suppose both A and B have at least two nonzero
permutations products. Since permutations of the rows and columns
of A and B give rise to permutations of the rows and columns of
A x B, we may assume by Theorem 2.3 that
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(3.4) A =

α1

α r l ar

0>τ+l,r4

and

(3.5) B =
.-

bss

Here 2 ^ r ^ m and 2 ^ s S n. Each α o and bkι designated is not
zero while all other entries not designated are arbitrary. Consider the
matrices A x In and Im x B. Cross out column one of A x In to
obtain the matrix (̂ 4 x /„),. and cross out row one of Im x B to obtain
the matrix (Im x JB)lβ The matrix (A x /n)i(/m x B)1 is of order mn
and we consider it to be partitioned into m2 blocks (submatrices) of
size n by n in the natural way. Just as in the direct product we
shall speak of the (i, i)-block of (A x JJ^I™ x B)u 1 ^ i, j ^ m. In
each of the (k, &)-blocks, k = 1, , r — 1 select the last n — 1 main
diagonal elements; in the (r, r)-block select the elements in positions
(1, 2), , (s - 1, s), (s + 1, s + 1), , (n, n); in each of the (i, j + 1)-
blocks, j = 1, •••, r — 1 select the first main diagonal element; in the
(r, l)-block select the element in position (s, 1); and finally in each the
(ί, ί)-blocks, i = r + 1, , n select all of the main diagonal elements.
It can be verified that each of the elements selected is different from
zero and that the collection form a permutation array of (A x In)ι(In x B)^
Hence their product is a nonzero permutation product of (̂ 4 x J»)i(Im x B)1

and

p e r ( ( ^ x 5 ) 1 ) > 0 .

By Theorem 2.4 strict inequality occurs in (3.2) and thus in (3.1).
concludes the proof of the theorem.

This

COROLLARY 3.2. Suppose both A and B have nonzero permanents.
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Then equality occurs in (3.1) if and only if by permuting rows and
columns A or B can be brought to triangular form with nonzero
elements on the main diagonal and zeros above the main diagonal.

Proof. This is a direct consequence of Theorems 2.1 and 3.1.

COROLLARY 3.3. If A and B are matrices of O's and Γs, then
equality occurs in (3.1) if and only if per (A) = 0 or 1 or per (B) =
0 or 1.

Theorem 3.1 may be generalized to include the direct product of
any finite number matrices in the following way.

THEOREM 3.4. Let Alf A2, , An be nonnegative matrices of orders

m l f m2, , mn respectively, and let

ei = fimά (i= 1 ,2 , • • • , * ) .

Then

(3.6) per ( ^ x 4 2 x x i w ) έ (per (AJ^per (A2))e* (per (An)Yn .

Equality occurs in (3.6) if and only if per (Ai) = 0 /or some i =

1,2, •••,% or (w — 1) o/ ίfce matrices AuAi9 fAn have exactly

one nonzero permutation product.

Proof. Inequality (3.6) follows from Theorem 3.1 and an obvious
induction on n. Suppose per (AJ — 0 for some i = 1, 2, , n. Using
the fact that the direct product operation is associative and (1.4.), we
may assume that per (An) = 0. Then by Theorem 3.1 we obtain
per (A1 x A2 x An) = 0 and equality occurs in (3.6)! Suppose n — 1
of the matrices Aly A2, , An have precisely one nonzero permutation
product. By associativity and (1.4) we may assume Au A2, , An^ do.
Then At x A2 x x i4n - 1 also has exactly one nonzero permutation
product. Applying Theorem 3.1 we obtain equality in (3.6).

Conversely suppose A19 A2, , An all have nonzero permanents and
at least two have more than one nonzero permutation product. By
associativity, (1.3), and (1.4) we may assume Ax and A2 do. Then^by
theorem 3.1 we have

per {Ax x A2 x x An)

^ (per (Aλ x A))m3" m»(per (A8 x x An))m™

> (per (Λ))ei per (A2y> (per (A, x x Anψ^

^ (per (Λ))ei (per (A2)y> (per (An)Y» .
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This establishes the theorem.
Inequality (3.1) and the more general (3.6) containing many in-

equalities obtained by specializing the matrices concerned. For instance
if in (3.1) we let A = Jmf the matrix of Γs of order m, and B — Jny

the matrix of Γs of order n, we obtain

(3.7) (mn)l ^ (m!) (n!) .

Equality occurs in (3.7) if and only if m = 1 or n = 1.
The following theorem is basic.

THEOREM 3.5. Let A and B be matrices of orders m and n
respectively with entries from a field F. Then every permutation
product of A x B is expressible (in general, not uniquely) as the
product of n permutation products of A and m permutation pro-
ducts of B. Conversely, the product of n permutation products
of A and m permutation products of B is a permutation product of
Ax B.

Proof. Consider an arbitrary permutation product of A x B and
a permutation array which gives rise to this product. Suppose this
permutation array contains ciά entries from the (i, j)-block of A x B,
l g i j ' ^ m . Form the matrix

C = [eu] ( i , i = l,2, . . ,m) .

C is a matrix of order m whose entries are nonnegative integers.
Since A and B are square matrices, we have

ΣiCU = n ( i = l , 2 , , m ) ,

and

Then by [3, Th. 5.2, p. 56] we have

C = cxPx + c2P2 + + ctPt

where cu c2, , <?e are positive integers with cx + c2 + ct = n and
where Pu P2, , Pt are distinct permutation matrices of order m. Each
permutation matrix Pk corresponds in a natural way to a permutation
array of A. Let this array be denoted by

where σk(l),σk(2), •• ,σJfc(m) is a permutation of 1, 2, * , m . Then
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the mn α's that appear in the given permutation product of A x B
can be arranged as:

Since there exists a permutation matrix P such that PΓ(A x B)P =
B x Ay it follows that the specified permutation array of A x B is
also a permutation array of B x A. Therefore in a similar manner
the δ's in the given permutation product of A x B can be expressed
as the product of m permutation products of B.

Conversely, it is easy to verify that the product of n permutation
products of A is a permutation product of A x In and the product of
m permutation products of B is a permutation product of Im x B.
The matrix product

(A x I n ) ( I m x B) = A x B

yields the desired permutation product of A x B.

COROLLARY 3.6. There exists a minimal positive real number
Km,n> depending only on m and ny such that

per (AxB)^ Km,n (per (A)Y (per (Bψ

for any two nonnegatίve matrices A and B of orders m and n res-
pectively.

Proof. By the theorem all of the distinct terms in per (A x B)
appear at least once in the product (per (A))n (per (B))m. Since there are
in total (mn)! terms in per (A x B), we have

per (Ax B) ^ (mn)! (per (A))n (per (B))m

for all nonnegative matrices A and B of orders m and n respectively.
This shows the existence of the constant Km,n.

The constant Km>n is given by the equation

/o ox κ _ i n h per (A x B)
(3.8) ^ - U - b

where the least upper bound is taken over all nonnegative matrices
A and B of orders m and n respectively with nonzero permanents.
The ratio

per (A x B)

(per (A)Y (per(JB))
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is homogeneous in the sense that if a row or column of A or B is
multiplied by a positive real number then the ratio is unchanged. This
allows one to assume A and B are row stochastic (the sum of the
elements of each row is one) in determining Kmtn. Also by continuity
considerations only positive matrices A and B need be considered.
Hence we may replace the l.u.b. in (3.8) by the l.u.b. over all posi-
tive row stochastic matrices A and B of orders m and n respectively.
If in (3.8) we let A = Jm1 the matrix of Γs of order m, and B = Jny

the matrix of l 's or order n, we obtain

(3.9) KMZ ( m n ) l

~ (ml)n(nl)m

We conjecture here that (3.9) is actually an equality and therefore
that

per (Ax B)^ ( m ^ ) ! (per (.4))- (per ( £ ) ) -
(m\)n(n\)m

for all nonnegative matrices A and B of orders m and n respectively.
There is limited evidence to suggest that this is true. For instance
it can be verified for m — n — 2, i.e. K2)2 = 3/2.

To conclude this section we give the following interpretation of
Theorem 3.5. Let S19 S2, , Sm be m subsets of the elements al9 a2, , am

and T19 T2, •••, Tn be n subsets of the elements bl9b., •••,&«. Form
the incidence matrices A = [a:j\ and B ~ [bkι] of orders m and n res-
pectively. Here aiά — 1 if ai is a member of Si and 0 otherwise.
Similarly for B. For i = 1, 2, , m and j = 1, 2, , n define S< x T3

to be a subset of all the ordered pairs

(«r, bs) (r = 1, 2, , m; s = 1, 2, , 7i).

We have (αr, δβ) is a member of Si x Γy if and only if ar is a member
of S>< and bs is a member of T3 . The incidence matrix of this collec-
tion of subsets is A x B. Theorem 3.5 applied to this situation says
that if we have a system of distinct representatives (SDR) of the
collection of subsets

(3.10) Stx T3 (i = l , 2 , . . . , m ; j = l , 2 , n),

then the first components of the members of this SDR can be arranged
into n SDR's of the collection Su S2, , Sm and the second components
can be arranged into m SDR's of the collection Tu T2, •••, Tn. Con-
versely, n SDR's of Slf So, , Sm and m SDR's of Tu T2, , Tn can
be paired up in at least one way to form an SDR of the collection of
subsets in (3.10).
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PSEUDOCOMPACTNESS AND UNIFORM CONTINUITY
IN TOPOLOGICAL GROUPS

W. W. COMFORT AND KENNETH A. Ross

This work contains a number of theorems about pseudo-
compact groups. Our first and most useful theorem allows us
to decide whether or not a given (totally bounded) group is
pseudocompact on the basis of how the group sits in its Weil
completion. A corollary, which permits us to answer a question
posed by Irving Glicksberg (Trans. Amer. Math. Soc. 90 (1959),
369-382) is: The product of any set of pseudocompact groups
is pseudocompact. Following James Kister (Proc. Amer. Math.
Soc. 13 (1962), 37-40) we say that a topological group G has
property U provided that each continuous function mapping
G into the real line is uniformly continuous. We prove that
each pseudocompact group has property U.

Sections 2 and 3 are devoted to solving the following
two problems: (a) In order that a group have property U, is
it sufficient that each bounded continuous real-valued function
on it be uniformly continuous? (b) Must a nondiscrete group
with property U be pseudocompact? Theorem 2.8 answers (a)
affirmatively. Question (b), the genesis of this paper, was posed
by Kister (loc. cit.). For a large class of groups the question
has an affirmative answer (see 3.1); but in 3.2 we offer an
example (a Lindelδf space) showing that in general the answer
is negative.

Much of the content of this paper is summarized by
Theorem 4.1, in which we list a number of properties equivalent
to pseudocompactness for topological groups. We conclude
with an example of a metrizable, non totally bounded Abelian
group on which each uniformly continuous real-valued function
is bounded.

Conventions and definitions. All topological groups considered
here are assumed to be Hausdorff. The algebraic structure of the
groups we consider is virtually immaterial; in particular, our groups
are permitted to be non-Abelian.

A topological group G is said to be totally bounded if, for each
neighborhood U of the identity, a finite number of translates of U
covers G. It has been shown in [10] by Weil that each totally bounded
group is a dense topological subgroup of a compact group and that this
compactification is unique to within a topological isomorphism leaving
G fixed pointwise. We refer to this compactification of G as the Weil

Received July 12, 1964. The authors were supported in part by the National
Science Foundation, under contract NSF-GP 2200.
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completion of G, and we reserve the symbol G to denote it.
Kister's property U was defined in the summary above. In the

same vein, we say that a topological group has property BU if each
bounded continuous real-valued function on G is uniformly continuous.
The uniform structure on G referred to implicitly in the definitions of
properties U and BU should be taken to be either the left uniform
structure, defined as in 4.11 of [7], or the right uniform structure.
It often happens that these structures do not coincide, and in this case
there is a left uniformly continuous real-valued function on G which
is not right uniformly continuous. Nevertheless it is easy to see that
every [bounded] continuous real-valued function on G is left uniformly
continuous if and only if every [bounded] continuous real-valued function
on G is right uniformly continuous. Hence the definitions of properties
U and BU are unambiguous.

Our topological vocabulary is that of the Gillman-Jerison text [5].
The following definition, which is useful in § 2, is in consonance with
4J of [5]: A topological space is a P-space provided that each of its
Gδ subsets is open.

1* Pseudocompact groups* The Weil completion of a topological
group plays a fundamental role in many of the arguments which follow.
Our first result shows that each pseudocompact group admits such a
completion.

THEOREM 1.1. Each pseudocompact group is totally bounded.

Proof. If the topological group G is not totally bounded, then
there is a neighborhood U of the identity e in G and a sequence {xk}
of points in G for which

n<k

for all k. We choose a symmetric neighborhood V of e for which
F 4 c U, and we select for each positive integer k a nonnegative
continuous function fk on G such that

fk(xk) = k and fk = 0 off xkV.

Using the local finiteness of the sequence {xkV}, it is easy to check
that the real-valued function / defined on G by the relation

is continuous. Since / is unbounded, the group G is not pseudocompact.
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Discussion. Although pseudocompact groups have not (so far as
we can determine) been in their own right an object of detailed study,
various authors have considered an example in one connection or another.
If {Xa}aeΛ is a set of separable metric spaces — which we here take
to be topological groups — then the set

7 = { x 6 ΠXa : xa is the identity in Xa for all

but countably many a in A}

is an example of what Cor son in [3] calls a I'-space. Cor son shows
in his Theorem 2 that each continuous real-valued function on Y admits
a continuous extension to ΠXa. It follows that if each Xa is compact,
then Y is pseudocompact and ΠXa is the Stone-Cech compactification
of Y. This and other interesting results were obtained (also in the
product-space context) by Glicksberg in [6]. Kister examined in [8]
the case in which each Xa is a compact topological group.

Like every pseudocompact space, the I'-space Y defined above meets
each nonempty Gδ subset of its Stone-Cech compactification. The
appropriate group-theoretic analogue of this topological characterization
of pseudocompactness is given in the following theorem. The reader
will notice instantly that this theorem yields information about the
Stone-Cech compactification of a pseudocompact group; we shall incorpo-
rate this observation into Theorem 4.1.

The Baire sets in a topological space X are those subsets of X
belonging to the smallest σ-algebra containing all zero-sets in X.

THEOREM 1.2. Let G be a totally bounded group and let

^yV" = {N: N is a closed, normal subgroup of G and

N is a Gs set in G} .

Then the following assertions are equivalent:
(a) G is pseudocompact;
(b) each translate of each element of Λ" meets G;
(c) each nonempty Baire subset of G meets G;
(d) each nonempty G$ subset of G meets G;
(e) each continuous real-valued function on G admits a continuous

extension to G.

Proof, (a) => (b). If (b) fails, then x0Nf] G — 0 for some x0 in
G and some N in <yK Since N is clearly not open, the quotient group
G/N is infinite. Like any compact, first countable group, G/N is
metrizable. Choosing an unbounded real-valued continuous function /
on G/N\{x0N} and defining g on G\xQN by the relation

g(x)=f(xN)f
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we see that g is unbounded and continuous. The restriction of g to
G is unbounded, and hence (a) fails.

(b) ==> (c). This implication follows trivially from the following fact,
a special case of Lemma 2.4 of [9]: If E is a Baire subset of G, then
E = EN for some N in ^

(c) ==> (d). Since G is completely regular, each nonempty Gδ subset
of G contains a nonempty zero-set of G.

(d) ==> (b). This is clear.
(b) => (e). Let / be a real-valued continuous function on G, and

let & be a countable base for the topology on the line. For each B
in & there is clearly an open subset UB of G for which

f-\B) =UBΠG.

By 1.6 and 2.4 of [9], there is an element NB of ^ for which

Setting JV= Γtae^ A^, we clearly have Ne^K and cϊgϊ7Λ = N*clάUB

for each I? in &.
We next prove:
(*) If xxeG,x2e G, and xr%e iV, then /(xj = f(x2).
If (*) fails, we can find neighborhoods ^ and Bz of /(^i) and f(x2)

respectively such that J5X e &, B2e &, and ciA Π clB2 = 0 . Since / is
continuous on G, we have

chf-^BJ Π clΘf-\Bt) = 0 ,

i.e.,

c ^ t / ^ n G) n cίc([^ n G) = 0 .

Now ^G N-clG(UBl Π G); hence

x2eN-clG(UBi n G) c N clc(UBl) = c ί s ί ^ ) ,

so that αj2ecZc( 17^(1 G). Of course α;2€ ciβ(Z7Λa Π G), and this contra-
diction completes the proof of (*).

With (*) and hypothesis (b) at our disposal, it is easy to define an
extension /of /: given x0 in G, we choose any x in x0NΓ) G and set

7(*o) = /(»)•
To check the continuity of / at an arbitrary point x0 in G, we

choose ε > 0. We will produce a neighborhood U of the identity in
G with the property that \f(x0) — f(y0) I < e whenever yQ e xQU. Indeed_,
choose x e #oiV Π G and let F be a neighborhood of the identity in G
such that

I f(x) — f(y) I < ε whenever y e x V Π G .
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Now let U be any neighborhood of the identity in G for which U2 c V.
It is easy to see (directly, or by 8.7 of [7]) that there is an M in ^ιr
such that Ma Uf] N. Now for any point yQ in xQU there is (again by
hypothesis (b)) a point z in (xx^ιy0M) Π G. Since z e xx^ιyQN(Z NyQN =
yQN, we have f(yQ) = f(z). And since z e xx^yjdc: x UMd xU2ax V,
it follows that | f(x0) - f(y0) I = ! f(x) - f(z) \ < e. Hence U is as
desired and / is continuous at xQ.

(e) => (a). Since every continuous real-valued function with domain
G is bounded, this implication is obvious.

o

1.3. Discussion. If (Go, S~) is a compact group and Λ" denotes
the family of subgroups of Go defined as in the hypothesis of Theorem
1.2, then the collection of translates of elements of ^//" clearly consti-
tutes a base for a P-space topology & on Go. Since any Gδ set in G
that contains the identity must contain a member of w/f7 & is the
smallest P-space topology containing J/~. In fact,

& = {U: U is a countable intersection of J^-open subsets of (30} .

Using these observations and 1.2, we have the following fact: A (dense)
subgroup G of Go is pseudocompact if and only if G is & -dense in Go.

Gillman and Jerison present in 9.15 of [5] an example (due to
Novak-Terasaka) of a pseudocompact space X for which X x X is not
pseudocompact. In the positive direction, a number of authors (see
especially [6] and [4]) have given various conditions on a family of
pseudocompact spaces sufficient to ensure that the product be pseudo-
compact.

THEOREM 1.4. The product of any set of pseudocompact groups
is pseudocompact.

Proof. Let the set A index the family {Ga}aeΛ of pseudocompact
groups, and let

G = Π Ga .

The uniqueness aspect of WeiPs theorem assures us that the compact
group UaeiGTa is (homeomorphic with) G. According toj^.2, then, we
need only show that each nonempty Gδ subset of Π«ei G« hits G.

Let U be such a set, say U = Πn=i Un where each Un is a basic
set of the form

tf. = π uM
ωβΛ

here each Un,a is open in G ,̂ and for each n we have Un,a = Ĝ  for
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all but finitely many a in A. Let

va = ή un,a.
n=l

Then Va is a nonempty Gθ set in G ,̂ and thus by 1.2 there is a point
#α in Va f] Ga. Evidently the point of G whose a coordinate is xa

lies in U Π G.
In what follows we will consider at length Kister's question "Must

a nondiscrete group with property U be pseudocompact?" We now
quickly handle the converse question.

THEOREM 1.5. Every pseudocompact group has property U.

Proof. If / is a continuous real-valued function on the pseudo-
compact group G, then by 1.1 and (a) => (e) of 1.2, /admits a continuous
extension / o n G, Since / is uniformly continuous on G, it follows
that / is uniformly continuous on G.

2* Property BU implies property U. This theorem is proved
in 2.8. Our key lemma is 2.2.

LEMMA 2.1. // the topologίcal group G is not a P-space, then
some nonempty Gδ subset H of G has no interior. The set H may
be chosen to be a closed subgroup.

Proof. There is a sequence {Vk} of neighborhoods of e for which
e£intn?=i Vk. Selecting a sequence {Uk} of symmetric neighborhoods
of e such that Uk\λ aUkΓ) Vk and defining H = Π£U Uk, we see
(directly, or from 5.6 of [7]) that the Gδ set H is a closed subgroup
of G. Being a subgroup that is not open, H has no interior.

THEOREM 2.2. // the topological group G has property BU,
then G is totally bounded or G is a P-space.

Proof. Suppose the conclusion fails. Since G is not a P-space,
there is a sequence {Uk} of neighborhoods of e for which int Π?=i Uk — ζd.
Since G is not totally bounded, there is, just as in the proof of 1.1,
a neighborhood V of e and a sequence {xk} of points in G such that
the sequence {xkV} is locally finite and pairwise disjoint.

For each integer k there is a continuous function fk on G for
which fk(xk) = l,fk = 0 off xk(Vf] Uk), and 0 ^ / ^ L The function
/ = Σ"=i fk is bounded and continuous on G, and hence is (left)
uniformly continuous. Thus there is a neighborhood W of e for which-
I f(χ) — f{v) i < 1 whenever x~ιyeW. We may take WcV. Since



UNIFORM CONTINUITY IN TOPOLOGICAL GROUPS 489

int WΦ 0 , we cannot have We ΠΓ=i Uk. Thus there is an integer
m and a point p for which pe W\Um. Now x^\xmp)e W, so that
11 ~ f(x»p) I - i/OO - /(»mP) i < 1 and we have f(xmp) Φ 0. Thus
%mΊ>€ Uk %k(V Π C/fc). Since a;m7i1 xkV = 0 whenever k Φ m, we must
have ^ G a ; m ( F ί Ί ί7m). But then pe £7m, a contradiction completing
the proof.

Our next result, used in the proof of 2.4, is given here in considerable
generality because of its application in connection with Example 3.2.

THEOREM 2.3. Let the topological group G be a P-space. Then
the following are equivalent:

(a) G has property U;
(b) G has property BU;
(c) the characteristic function of every open-and-closed subset

of G is uniformly continuous.

Proof. Only the implication (c) => (a) requires proof. Given a
continuous real-valued function / on G, we note that for each rational
pair (α, 6), with α ̂  6, the set f~~ι([a, b]) is closed; being a G5 set in
G, this set is also open. Since the characteristic function ^/-i([α &]> is
left uniformly continuous, there is a neighborhood Ua,b of e such that
χ-'ye Ua>h implies | ψf-ι{[a b]){x) - ^ / - i ( [ α w(v) I < 1- T h a t is> %~ιV £ Ua,b

implies, that x ef-'da, 6]) if and only if y Qf-ι{[ay b]). Let U =
Π {ί/α.fe: α> δ rational and α ̂  6}; then 17 is a neighborhood of β since
G is a P-space. To establish the left uniform continuity of / it will
clearly suffice to show that f(x) — f(y) whenever x~ιy e U. Suppose then
that x~ιy e U and that f(x) = p. For appropriate sequences {ak} and
{bk} of rational numbers, we have {p} — f]k [ak., bk]. Then xef~ι([ak, bk])
for all k. Since x~λye Uak,bk for all k, we have ye Π*/"" 1^^, bk]) =
f-\{p}) and f(y) = p = /(cc).

COROLLARY 2.4. // ί/ie topological group G has property BU
and is not totally bounded, then G has property U.

Proof. By Theorem 2.2, G is a P-space. The result now follows
from 2.3.

Corollary 2.4 gives an affirmative answer to problem (a) of the
introduction for groups which are not totally bounded. The trick which
handles the totally bounded situation consists, roughly speaking, in
reducing to the metrizable case (where the proof is easy).

LEMMA 2.5. // a topological group G is metrizable and has
property BU, then G is compact or discrete.
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Proof. This is immediate from Atsuji's Theorem 1 in [1], For
a direct proof (by contradiction), assume otherwise and note that by
Theorem 2.2, G must be totally bounded. Since G is not compact, G
is not complete. Hence there is a nonconvergent Cauchy sequence {xk}
in G. By Tietze's theorem the function mapping xk to (—l)k can be
extended to a real-valued continuous function bounded on G, and this
bounded function is obviously not uniformly continuous.

LEMMA 2.6. If G is a topological group with property BU, and
if H is a closed normal subgroup of G, then GjH has property BU.

Proof. Let / be a bounded continuous real-valued function on
G/H, and let ε > 0. Denoting by π the natural projection of G onto
G/H, we note that /o π is left uniformly continuous on G. Hence there
is a neighborhood V of e for which

I /o π(x) — fo π(y) | < ε whenever arty e V •

Of course π(F) is a neighborhood of i ϊ in G/H. Now suppose that
{xH)-\yH)G π(F). Then artyH = vH for some v e 7 , s o that x~ιyh =
v for some heH. Then ar^Z^e V and therefore

= \foπ(x)-foπ(yh)\ <ε.

That is, / is left uniformly continuous.

THEOREM 2.7. Let G be a totally bounded group with property
BU. Then G is pseudocompact.

Proof. If G is not pseudocompact, then according to 1.2 there
is a point p in G and a closed normal subgroup N of G such that
G n piV= 0 and G/N is metrizable. Since pJVe GN/N and GΛΓ/iV is
the continuous image of GN under the natural projection, GN/N is a
dense proper subgroup of G/N. Since a discrete subgroup of a topological
group is closed (see 5.10 of [7]), it follows that GN/N is a nondiscrete,
noncompact metrizable group.

It is clear that any group, one of whose dense subgroups has
property BU, must itself have property BU. In particular the group
GN, in which G is dense, has property BU. Hence GN/N has property
BU by 2.6, and GN/N does not have property BU by 2.5. This
contradiction completes the proof.

THEOREM 2.8. A topological group has property BU if and
only if it has property U.
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Proof. Use 2.4 and 2.7.

3. Kister's question. We first give a partial affirmative answer
to the question posed by Kister in [8].

THEOREM 3.1. If the topological group G has property BU and
is not a P-space, then G is pseudόcompact.

Proof. The group G is totally bounded by 2.2, and hence is
pseudocompact by 2.7.

EXAMPLE 3.2. We now give an example of a nondiscrete topo-
logical Abelian group that is a P-space and has property U. Such a
group is clearly not pseudocompact: every pseudocompact P-space is
finite. Hence this example shows that Kister's question mentioned in
the summary has a negative answer.

Let A be an index set of cardinality ^ and let G consist of all
elements x in ΐ[aeΛ{l, —1}« such that xa = 1 for all but finitely many
coordinates a. Let Ω be the first uncountable ordinal and well-order A
according to the order—type Ω: A = {a a < Ω). For ae A, let

Ha = {% e G : xβ = 1 for all β < a} .

We decree that the subgroups Ha and each of their translates be open
and thereby obtain a basis for a topology under which G is a topological
group. Clearly G is a P-space and G is not discrete.

We shall show that G has property 17. By Theorem 2.3 we need
show only that the characteristic function ψw of an open-and-closed
set W is uniformly continuous. For a e A, let Wa = U {xHa: xHa c W}.
Evidently {Wa}a<Ω is a nondecreasing family of open-and-closed sets,
and \JΛ<Ω Wa = W. Since ψWaύ(x) = ψwΛ(y) whenever x~ιyGHa, the
characteristic function of each Wa is uniformly continuous. Hence it
suffices to show that W' = Wa for some a.

Assume that W' Φ Wa for all α, and let

Va = U {xHa : xHa n W Φ 0 and α # α Π (G\TΓ) =* 0} .

It is easy to see that each Va is nonvoid and that Va Ό Vy whenever
a < 7 < Ω. It suffices now to prove that Γί Λ<Ω Va is nonvoid, since
any element in this intersection belongs to the closures of both W and
G\W, contrary to the supposition that W is open-and-closed.

We prove that Π a<Ω Va is nonvoid. For x in G and a in A, we define
N(x, a) to be the number of elements in the finite set {βe A: β < oc
and xβ = — 1}. For α e i , we define

wα = inf N(x, a) and Jα = {x e F α : ΛΓ(&, a) = wα} .
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Clearly 0 Φ Ja(Z Va for all a. The integer-valued transfinite sequence
{na}a<Ω is nondecreasing because for a < 7 we have

na = inf N(x, a) ̂  inf N(x, 7) ^ inf ΛΓ(α;, 7) = nΊ .
«€Fα i€7 Λ *€Fy

It follows that the sequence {na}a<Q is eventually constant. There is,
then, an integer nQ and an a0 in A for which nα = nQ whenever a ^ α0.
We next show that {Ja}a^a0 is a nonincreasing family of sets. Suppose
that a0 <* α < 7 and £ € J7. Then zeJya Vya Va. Since also

nα g N(z, a) g iSΓ(«, 7) = ny = w0 = nα ,

we see that zeJa. Now let Y consist of all elements y of G such
that 2/p = 1 for all β Ξ> α0. Then F is a countable set. Assume now
that Π*<j2 F α = 0 , so that f l ^ β / β = 0 . Then for each y in Y there
is an α y ̂  α0 such that 2/ 6 e7αy. Selecting 70 in A larger than each αry,
we find that Y (Ί J 7 o = 0 . Now choose 2 in JΎo. Then 2 also belongs
to JaQi so that N(z, 70) = iV(̂ , a0) = w0. Hence % = 1 for <x0 ̂  /3 < 70.
Define w so that ^ β = zβ for β < 70 and wp = 1 for /3 ̂  70. Clearly
w belongs to Y. Since ^ e ^ c F ^ , we have wezHyoc VjQ. Also
N(w, To) = N(z, To) = no, SO that w e Jyo. That is, ti; belongs to Y Π Jγ0,
contrary to the relation 7f l J V o = 0 . Thus n e < 0 7 a ^ 0 , and we
conclude that G has property U.

REMARK. It may be interesting to note that the group discussed
above is Lindelδf (and hence normal). To see this, assume that ^ is
a cover of G by basic open sets, and that ^ admits no countable
subcover. For a e A, let ̂  consist of all elements of ^ which are
translates of some Hβ where β ^ a. Since each ^ a is countable, no
ifra is a cover for G. Let Ua = (J ̂ « . Then {Z7α}α5<i2 is a nondecreasing
sequence of proper subsets of G, and each Ua is a union of cosets of
Ha. Let Va == G\t7*. As in Example 3.2 above, we have f]a<Ω Va Φ
0 : hence Ήf does not cover G.

One may wonder whether Example 3.2 is typical of topological
groups that are P-spaces: Do all topological groups that are P-spaces
satisfy property UΊ The next theorem and the examples following it
make Example 3.2 appear atypical.

THEOREM 3.3. Let G be a nondiscrete topological group. If G
admits a base Sίf at the identity consisting of open subgroups such
that card (G/K) ^ card £%f for some K in Sίf ̂  then G does not have
property U.

Proof. We may clearly suppose that Ha K for all H in £2f. By
the cardinality hypothesis, there exists a subset {xπ}πe& of G, indexed
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by Sίf, such that {xHK}se% is a family of distinct cosets of K. Let
W — U xHH. Clearly W is open, and W is closed because

G\W=(G\\J xEK)[j U (xBK\xsH).

Therefore ψ> is continuous; we next show that ψw is not left uniformly
continuous. Indeed, suppose that there exists an HQ e ̂ f such that
x~ιy e HQ implies x e W if and only if y e W. Since G is nondiscrete, there
exists an H in Sίf such that Ha HQ and Hφ HQ. If y is chosen so that
y e xHH\xHH, then y e xHK\xΞH(Z G\ W. Since x~£y e HC), we also have
xπeG\W. This contradicts the fact that XHGXHHCZ W.

EXAMPLES 3.4. Let μ be a cardinal number less than the first
strongly inaccessible cardinal1. Let G be the algebraic group {1, — l}μ —
HaβA {!> —l}a, where the index set A is ordered according to the least
ordinal having cardinality μ. Let the subgroups

Ha = {x e G : xβ = 1 for all β < a]

and all their translates be a basis for a topology on G.
If v denotes the smallest cardinal number which is the cardinal

number of some cofinal subset of A, then evidently v is the minimal
cardinality of a base at the identity of G. If μ is chosen so that
y > ŷ o, then the nondiscrete topology imposed upon G is clearly a
P-space topology, and under the condition y > ^ 0 we can show that
G does not have property U.

To do this, suppose first that 2K < v whenever K < v. Then (from
12.4-12.6 of [5]) there is a set {vλ}λ€1 of cardinal numbers such that
card A < v, vλ < v for each λ in A, and sup vλ — v. Since there is then
a cofinal set {aκ: λ e A} in 4̂ indexed by A, contrary to the minimality
of v, we conclude that 2K ̂  v for some tc < vm Now let έ%f be a basis
of open subgroups at the identity for which card^^7 = v, and choose
/3eAso that fjΓβ6 3ίf and card {αe ,4 : α < β) ̂  /c. Then

card (G/H) ^ 2K ̂  v ,

so that G does not have property U by 3.3.

4. Related concepts. Much of our earlier work is summarized
in the following theorem. The symbol βG denotes the Stone-Cech
compactification of the (completely regular) space G; it is, to within
a homeomorphism leaving G fixed pointwise, the only compactification

1 A cardinal number is said to be strongly inaccessible if it is an uncountable
cardinal whose set of predecessors is closed under the standard operations of cardinal
arithmetic. It is not known whether any strongly inaccessible cardinal number exists.
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of G to which each bounded continuous real-valued function on G admits
a continuous extension. The amusing suggestion that G might induce
a topological group structure on βG is not original with us: The
appearance of this phenomenon was explicitly pointed out in [6] by
Glicksberg in connection with the Corson ϋ'-space mentioned earlier.

The implication (b) => (g) of 4.1 below was given in [6], and
Glicksberg asked whether or not the implication (a) => (g) is valid. Our
proof of its validity does not depend upon the results of [6].

If the identity in a topological group G admits a neighborhood U
which is bounded (in the sense that for each nonempty open subset V
of G there is a finite set F such that Ua FV), then G is said to be
locally bounded.

We remark finally that additional conditions equivalent to those
listed below may be obtained by replacing the expression "G has property
U" when it appears by the expression "G has property BΌ."

THEOREM 4.1. For a topological group G, conditions (a) through
(g) are equivalent, and each implies (h). If in addition G is
nondiscrete, then all eight conditions are equivalent.

(a) G is pseudocompact;
(b) G x G is pseudocompact;
(c) G is pseudocompact and has property U;
(d) G is totally bounded and has property U;
(e) G is totally bounded and βG — G;
(f) βG admits a topological group structure relative to which

the inclusion mapping of G into βG is a topological isomorphism;
(g) every continuous real-valued function on G is almost periodic;.
(h) G is locally bounded and has property U.

Proof. Theorem 1.4 gives the implication (a) => (b), and the converse
follows from the fact that the continuous image of a pseudocompact
space is pseudocompact. The implications (a) => (c), (c) ==> (d), and (d) *=•
(a) are 1.5, 1.1, and 2.7 respectively, while the implication (a) ===> (e)
follows from 1.1 and the implication (a) => (e) of 1.2. That (e) => (f)
is obvious, and the implication (f) => (d) follows from 2.8.

We have shown so far that the first six conditions listed are
equivalent.

To deduce (g), suppose that (a) and (e) hold and let / be any
continuous real-valued function on G. Being bounded, / admits a
continuous real-valued extension to βG. A routine computation, based
on the fact that every continuous real-valued function on the compact
group βG is almost periodic on βG, shows that / is almost periodic
on G.

To see that (g) implies (a), let / be any continuous real-valued
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function on G and let F be a finite subset of G with the property
that for each x in G there exists y in F such that | f{xz) — f{yz) \ < 1
whenever zeG. Then for each x in G we have

|/(a?)| = |/(a?β)|<max|/(i/)| + l .
yβF

Since the implication (d) => (h) is obvious, we may complete the
proof by supposing that G is nondiscrete and deducing (d) from (h).
If (h) holds but (d) fails, then G is a P-space by 2.2. Let U be a
bounded neighborhood of e and let {xk} be an infinite set of distinct
points in U. For each pair (m, n) of distinct positive integers there
is a neighborhood Vm,n of the identity such that xm£ xnVmyn. Choosing
a symmetric neighborhood V of the identity such that

n vM9U;
(m,n)

we see easily that no set of the form x V can contain more than one of the
points xk. Thus there exists no finite subset F oί G for which Ucz FV.

In the discussion and example which follow we will say that a
uniform space on which each real-valued uniformly continuous function
is bounded has property UB. Clearly any totally bounded uniform
space has property UB, and Atsuji gives in [1] an example of a connected
metric space that is not totally bounded but which has property UB.
Further metric examples are given in exercises 15.D and 15.L of [5].
Although Atsuji in Theorem 7 of [2] characterizes uniform spaces with
property UB by means of a chainability condition, the following question
has not so far as we can determine been treated in the literature:
Must a topological group with property UB be totally bounded? We
now answer this question in the negative.

EXAMPLE 4.2. Let T denote the circle group and let G be the
algebraic group T*° = Π*U Tk. Defining

d(x, y) = s u p \xk- yk\
k

for each pair of points x,y in G, we obtain a metric topology on G
under which G is a topological group. To see that G has property
UB, let / be a uniformly continuous real-valued function on G and
find δ > 0 such that \f(x) — f(y) \ < 1 whenever d(x, y) < δ. Choose
an integer m so that, given any point t in Γ, there is a sequence 1 =
t\ t\ , tm = t in T such that | tJ+1 - tj \ < δ/2 for 0 S 3 S m - 1.
We will show that \f(x) | g \f(e) | + m for all x in G. For a fixed x
in G, select for each integer i > 0 a sequence 1 = x°kJ x\, , xΐ = xk

in T such that | xi4-1 — x{ \ < δ/2. The finite sequence £°, x\ , xm in
G has the property that
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d ( x j + 1 , x>') ^ δ / 2 < δ f o r O ^ j ^ m - I .

Hence \f(xj+1) - f(xj) | < 1 for Og j g w - 1 , so that \f(x) - f(e) | ^
m. Thus G has property ZZB.

To see that G is not totally bounded, let W be the open set
{x e G : d(#, β) < 1/2}. Regarding G as the usual compact topological
group T*° with its Haar measure, we see that the Gδ set W has Haar
measure 0. It follows that no finite number of translates of W can
cover G.
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ALGEBRAS AND FIBER BUNDLES

J. M. G. FELL

Let A be an associative algebra and Λn the family of all
equivalence classes of irreducible representations of A of
dimension exactly n. Topologizing Λn as in a paper about
to appear in the Transactions of the American Mathematical
Society, we show that for each n, A gives rise to a fiber
bundle having An as its base space and the n x n total
matrix algebra as its fiber.

Throughout this note A will be an arbitrary fixed associative
algebra over the complex field C. By a representation of A we
understand a homomorphism T of A into the algebra of all linear
endomorphisms of some complex linear space H(T), the space of T.
We write dim(T) for the dimension of H(T). Irreducibility and
equivalence of representations are understood in the purely algebraic
sense. If T is a representation, r T will be the direct sum of r
copies of T. Let A{f) the family of all equivalence classes of finite-
dimensional irreducible representations of A; and put

A{n) = {Γei ( 'Mdim(T) ^ n}f An - {Te A{f) \ dim(Γ) = n} .

We shall usually not distinguish between representations and the
equivalence classes to which they belong.

Let T be a finite-dimensional representation of A. If for each a
in A τ(a) is the matrix of Ta with respect to some fixed ordered
basis of H(T), then r : α — > τ ( a ) is a matrix representation of A

equivalent to T.

By A* we mean the space of all complex linear functionals on A,
and by Ker (φ) the kernel of φ. If TeA{f), we put

Φ(T) = {φ e A* I Ker (T) c Ker (φ)} .

An element φ of A* is associated with T if φeΦ(T). One element
of 0(T) is of course the character χτ of Γ(χΓ(α) = Trace (Γβ) for a
in A). An element T of A(/) is uniquely determined by the knowledge
of one nonzero functional in Φ(T) ([2], Proposition 2).

As in [2] we equip A(/) with the functional topology as follows:
If TeA{f) and y c i ( / ) , T belongs to the functional closure of S?
if Φ(T)d([Jse^Φ(S))~ where ~ denotes closure in the topology of
pointwise convergence on A.

Our main object in this note is to prove the following fact about

Received November 11, 1964.
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498 J. M. G. FELL

the functional topology relativized to An:

THEOREM 1. Fix a positive integer n; and let T be any element
of An. Then there exists a neighborhood U of T in Ani and a
function τ assigning to each S in U a matrix representation τs of
A equivalent to S, such that for each a in A the matrix-valued
function

S >τs(a) (Se U)

is continuous on U.

This asserts (see § 4) that, for each n, A gives rise to a fiber bundle
with base space An whose fiber is the n x n total matrix algebra.

2* Preliminary results* The following Proposition 1 coincides
with Proposition 7 of [2] (which was stated in [2] without proof).
Proposition 1 is not required for what follows it; but its proof is
related to later proofs.

PROPOSITION 1. Let n be a positive integer; and suppose that
{T{i)} is a net of elements of Ά{%y converging to each of the p inequi-
valent elements V\ , Vp of Ά{%). Then

(1)
8 = 1

Proof. Let m8 — dim ( F s ) , q = Σ * = i m * Each Φ(V8) has dimension
ml, and by the Extended Burnside Theorem ([1], Theorem 27.8) the
Φ(VS) ( β = 1, « ,p) are linearly independent subspaces of A*. Thus
there are q linearly independent functional <pu ,φq each of which is
associated with some Vs. By the definition of the functional topology
we can replace {Γ(i)} by a subnet, and choose for each r = 1, •••,#
and each i a functional φ* in Φ(T{i)), such that

( 2 ) 9 > ; ™ 9 v ( r = l f • - . , ? ) .

Since the <pu * ,<pq are independent, (2) implies that for some i the
9>ί, # ,9>ί are independent. Since dim(Φ(T{i))) g n2, it follows that
q g n2. This proves (1).

REMARK. If A is a Banach algebra we have shown elsewhere
Proposition 13) that a stronger inequality than (1) holds, namely

( 3 ) Σ d i m ( F 8 ) £n.
l
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Probably (3) holds for arbitrary A, but we have not been able to
prove it.

COROLLARY 1. An is Hausdorff for each n.

For each φ in A* let us define Sφ to be the natural representation
of A acting in A/J, where J is the left ideal of A consisting of those
a such that φ(ba) — 0 for all b in A.

LEMMA 1. Let {φ{} be a net of elements of A*, converging
pointwise to an element φ of A*; and suppose the Sφ, Sφi are all
finite-dimensional. Then

(4) dim (Sφ) ^ lim inf dim (Sφή .
i

Further, if σ is a matrix representation of A equivalent to Sφ, there
exists for each i a matrix representation σι of A equivalent to Sφi

such that

( 5 ) lim (<r(α))ilb - (σ(a))jk

for all a in A and all j, k = 1, , dim (Sφ).

Proof. Let π be the natural map of A onto A/J, where J —
{a G A I φ(ba) = 0 for all b in A}; and put m = dim (Sφ). Every
element of (A/J)* is of the form

π(a) > φ{bά) (a e A)

for some b in A. Hence there are elements a19 , am bu , bm of A
satisfying

( 6 ) φ(b3ak) = δjk(j, k = 1, , m) .

Since φ{ —+ φ, (6) implies that

(7) det {(^(δΛ)k f c=i,..,J * 0 ,

and hence dim (Sφi) ^ m, for all large i. This proves (4).
Now the ak, b3- could have been chosen to satisfy not only (6) but

also

( 8 ) (σ(x))ik = <p(b3xak)

(xeA;j,k=l, •• ,m); assume this done. By (7), for each large i
there are unique complex numbers c)k{j,k — 1, * ,m) such that the
elements b) — Σ?=i C J A satisfy
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( 9 ) <Pi(b}ak) = δjk (j, k = 1, , m) .

By (6) and (9)

(10) limcU = δjk.
i

I n v i e w of (4) a n d (9), t h e r e a r e e l e m e n t s α ί , + ι , •••, α* f , bi+u •• ,

of A ( w h e r e p { = d i m (S^*))* s u c ^ t h a t

(11) φMai) = «y*

for all large i and all j , k = 1, , p<; (here we agree that α} =
for j = 1, , m). Now, if j , fc = 1, , p< and # e A, define

From (8), (10), and (11), we verify that σi is a matrix representation
equivalent to Sφ* and that (5) holds. This completes the proof.

The following corollary was stated without proof as Proposition 8
of [2].

COROLLARY 2. For each positive integer n, the map T—>γf(TeAn)
is a homeomorphίsm of An into A* (the latter having the topology of
pointwise convergence on A).

Proof. Obviously χΓ—> Γ is continuous. To prove that Γ->χΓ is
continuous, we shall suppose that Tf {T*} are elements of An and that
φ.—Γ^χτ pointwise on A, where for each i φ{ is associated with Tι;
and we shall prove that χτι —r* Xτ pointwise on A. Clearly this is

t

sufficient.
By [2], Proposition 1, Sχ Γ ~ n-T and S^ = rrT\ where r{ ^ n.

By (4) ri = n for all large i. Hence by (5) χτ(a) = 1/n Trace (Sφ

a) =
liπii 1/n Trace (S^) = lim, χτi(a) for all a in A. So χ r ί — χΓ, and the
corollary is proved.

If M is any finite-dimensional complex linear space, the family
&~ of all linear subspaces of M of fixed dimension r (r ^ dim (M))
has a natural compact topology. Indeed, if G is the unitary group on
M (with respect to some fixed inner product), and Go is the subgroup
of G which leaves stable some fixed L in jF~, then J*"" is in one-to-
one correspondence with G/Go, and the (compact) topology of J?~ which
makes this correspondence a homeomorphism is independent of the
inner product and of L.

If p is any positive integer, Mp will be the p x p total matrix
algebra over the complexes. Fix a positive integer n; and let Jί? be
the family of all those subalgebras A of Mn« which contain 1 and are
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isomorphic with Mn. For each A in jSf let A' be the commuting
algebra of A in M%2:

A' = {a e M%2 \ab = ba for all b in A} .

It is well known that Af e j£f and that A!' = A whenever A e

LEMMA 2. Γfee map A-*A' is continuous on Sf to Sf (with
the topology discussed above).

Proof. If not, then, by the compactness of the space ^J? of all
w2-dimensional subspaces of Mn2, one can find a net {Ai} of elements
of £f such that A{ -> A, A< -* 5, where i 6 ^ , ΰ 6 ^ f , i ' ^ ΰ . Choose
an element & of 5 which is not in A', and let a be any element of
A. Then for each i we can choose an a{ in A* and bi in AJ so that
a{ —>a, bi—*b. Since α ^ = 6 ^ , passing to the limit we obtain ab = ba,
whence b e A', a contradiction.

LEMMA 3. Le£ A be in _2f, cmd let e be a minimal nonzero
idempotent in A. Then there is a neighborhood U of A in J2f, and
a continuous function w on U to Mni such that

( i ) w(A) — e, and

(ii) for each B in U w(B) is a minimal nonzero idempotent
in B.

Proof. Choose an element a of A whose spectrum in A is
{1,2, , n}, and such that the spectral idempotent (in A) corre-
sponding to the eigenvalue 1 of a is precisely e; that is,

(12) e = {{n - 1 ) ! ) " 1 ( 2 - α)(3 -a) .-(n-a).

Introducing a Hubert space inner product into Mn2 in an arbitrary
manner and projecting, we can construct a continuous function a on
£? to Mn2 such that a(A) = a and a{B) e B for each B in £f. Let
σ(B) be the spectrum of a(B) (considered as an element either of B
or of MJ). Since a is continuous, σ(B) is continuous as a function
of B. Thus there is a neighborhood U of A in .2f, and n continuous
complex functions \ u , Xn on U such that

( i ) Xr(A) = r (r = l , - , Λ ) ,
(ii) for each I? in ?7 the λ :(β), •••, λn(£) are all distinct, and
(iii) σ(B) = {X^B), •••, K(B)} for each B in £7. Now, for B in

?7, put

w(B) = Π (
i = 2

Clearly w is continuous on Ϊ7, w(B) e B for each B in Z7, and tί (A) = e.
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Since w{B) is the spectral idempotent corresponding to the eigenvalue
λi(jB) of a(B) (which has multiplicity 1), w(B) is a minimal idempotent
of B for each B in U.

LEMMA 4. If A<z£f, there is a neighborhood U of A in jSf,
and a continuous function w on U to Mn2, such that, for each B in
U, w(B) is a minimal idempotent of the commuting algebra of B.

Proof. This follows immediately from Lemmas 2 and 3.

3* Proof of Theorem l We have seen ([2], Proposition 1) that
SχT = n T. Thus, putting m = n2, we may choose elements au , αm,
δi, , bm of A as in the proof of Lemma 1 so that

Since S—+χs is continuous on An (Corollary 2), there is a neighbor-
hood U' of T in An such that det (χs(bjak))j>k Φ 0 for S in U'. Thus,
as in the proof of Lemma 1, for* each S in Ur we find unique complex
numbers cjk(S) such that the elements bj(S) = 2?=i Cjk(S)bk satisfy

(13) X*(bs(S)ak) - δjk

(j,k = l, ",m;SeU'). We how set

(σs(x))jk - r

(j,i; = l, ,m;SG U'; x e A), and verify as in the proof of Lemma 1
that, for S in U', σs is a matrix representation of A equivalent to
n S. Since S—*χs is continuous (Corollary 2), the cjk(S) are continu-
ous in S on U', and so

(14) S > <?s(x) is continuous on Ur

for each x in A.
Since σs s n S, Burnside's Theorem asserts that the range ^(^4)

of σs belongs to Jέf. Further, it follows from (14) that S —> σs(A) is
continuous on U' (in the topology of w2-dimensional subspaces discussed
in §2). Thus, by Lemma 4, there is a neighborhood U" of T contained
in Z7', and a function w on U" to Mm such that, for each S in 17", w(S)
is a minimal idempotent of the commuting algebra of os(A).

We now consider Mm is acting on Cm (the space of complex m-
tuples). Let ^ , , vm be a basis of Cm such that vu ,vΛ is a basis
of range (w(T)). By the continuity of w there will be a neighborhood
U oί T contained in Z7" such that

(15) w ( S ) t f i , , w ( S ) v n , v n + 1 , - - - , v m
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is a basis of Cm for each S in U (the first n vectors of (15) being, of
course, a basis of range (w(S))). Now for each S in U and x in A
let ps(x) be the matrix of σs(x) with respect to the ordered basis
(15), and let τs(x) be the n x n matrix consisting of the first n rows
and columns of ps(x) Since w(S) is a minimal idempotent of the
commuting algebra of σs(A), σs restricted to range (w(S)) is an irre-
ducible subrepresentation of σs and so is equivalent to S. Thus, for
each S in U, τs is a matrix representation of A equivalent to S.
Further, since S —» w(S) is continuous on U, the basis (15) varies
continuously with S on U; and therefore by (14) we conclude that
S—+τs(x) is continuous on 17 for each x in A. This completes the proof
of Theorem 1.

4* Fiber bundles associated with A* Fix a positive integer n,
and let Gn be the group of all algebraic automorphisms of the total
matrix algebra Mn. We are going to describe to within equivalence
a fiber bundle Bn with base space An, fiber Mn, and group Gn. To do
so, it is sufficient to specify an open covering of An, and to define on
the overlap of any two sets in the covering the GTO-valued "coordinate
transformation functions" ([3], §§2, 3). As our open covering we take
the set of all the U=UT (TeAJ of Theorem 1. If Γ, T'eAn, the
coordinate transformation function Γτ%τ. on Uτ ΓΊ Uτ> will assign to
each S in Uτ Π Uτ the following automorphism of Mn:

ΓTtT,(S): τp(a) > τs

T'\a) (aeA) .

(Here τ(T) is the r of Theorem 1). The property ΓT,T" = Γτ,τ"°Γτ,τ,
(on !7Γ Π J7Γ' Π UT") obviously holds; and the continuity of the maps
S—*τ{P(a) and S—*TsT>)(a) assures us that ΓTtτ* is continuous. Thus
we have defined a fiber bundle of the required kind; its equivalence
class clearly depends only on A.

Thus, if the algebra A has a large supply of finite-dimensional
irreducible representations, the structure of the fiber bundles Bn(n =
1,2, •••) constitutes a significant feature of the structure of A. We
hope in a later paper to discuss the structure of these bundles for
certain special kinds of algebras associated with locally compact groups
having "large" compact subgroups.
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A THEOREM OF LITTLEWOOD AND LACUNARY SERIES
FOR COMPACT GROUPS
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Let G be a compact group and feL2(G). We prove that
given p < co there exists a unitary transformation U of L\G)
into L\G), which commutes with left translations and such
that UfeLp. The proof is based on techniques developed by
S. Helgason for a similar question. The result stated above,
which is an extension of a theorem of Littlewood for the unit
circle is then applied to the study of lacunary Fourier series.

The following two results concerning Fourier series of functions
defined on the unit circle were proved by Littlewood [5]:

I. Suppose that for any choice of complex numbers ocn, with
I ocn I = 1, 2, anane

inz is the Fourier series of an integrable function
(or a Fourier-Stieltjes series) then 2 I an Γ" < °°.

II. Let Σι\an\2 < c o Then given p < ©o there exist complex
members an9 with \cxn\ = 1, such that 2 anane

inz is the Fourier series
of a function in ZΛ

Helgason [3] has generalized I to Fourier series on compact groups.
Let G be a compact group with normalized Haar measure dx0 If
feLι(G) then / is uniquely represented by a Fourier series

f(x)~ΣdyTr(AyDy(x))
γer

where Tr denotes the usual trace, Γ is the set of equivalence classes
of irreducible unitary representations of G, Dy is a representative of
the class T, dy is the degree of 7, and Ay is the linear transformation
given by

Ay = ί f(x)Dy(x~1)dx .

Helgason has proved

Γ. Suppose that, for any choice of unitary transformations Uy

on the Hilbert space of dimension dy, ΣΎ€ΓdyTr(UyAyDy(x)) is the
Fourier series of an integrable function (or a Fourier-Stieltjes series)
then

Received April 1, 1965. This research was supported in part by Air Force Office
of Scientific Research Grant A-AFOSR 335-63.
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yer

In view of the Schur-Peter-Weyl formula

yer

Helgason's result is an extension of I.
In this paper, using Helgason's techniques, we propose to extend

II to compact groups in the same sense. That is we prove

IΓ. Let ΣdyTr(AyAy) < oo. Given p < co there exist unitary
transformations Uy such that ^ dyTr(UyAyDy(x)) is the Fourier series
of a function in ZΛ

This is accomplished as in [3] by proving and exploiting the
4' lacunarity" of a certain subset of the space of irreducible unitary
representations of the product group ILes U(d^ where U(d^ is the
group of unitary transformations of the Hubert space of dimension di
and S is an arbitrary index set. In the last section we discuss in general
lacunary properties of subsets of the space of irreducible representations
of a compact group.

2 The main result* For a positive integer n let U(n) be the
group of unitary transformations of the Hubert space of dimension n.
The normalized Haar measure on U(n) will be denote by dV.

LEMMA 1. Let A be an n x n matrix. Then for s = 1, 2, 3,

(1) \ I Tr(AV) \2sdV S %& [Tr(AA*)]°
J u(n) ns

where B(s) is a constant depending only on s.

Proof. Since d V is left and right invariant it is sufficient to prove
the lemma when A is diagonal. Letting ex, e2y , en be a basis for
the Hubert space on which A and V act and a{ = ζAeiy ei), v{ = ζVeiy e;>
we have

( 2 ) ( I Tr(AV) I W = Σ *&&&< *<„_#„
J ί/(ίl)

where the sum extends over all iu i2, , i2s such that 1 g i, g n.
Each integral in the sum is of the form
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( 3 ) \ v{^
J Uin)

Now each such integral is zero unless j \ = klf - *-,jn = kn. For let W
be a diagonal unitary matrix with elements a{ of modulus one on the
main diagonal. Then by the invariance of dV, (3) becomes

U(n) i=l

= ( Π < WVeit e<yKet, WVety*d V

= Π at*-* \ Π < Veit ety«fiu Ve<y*d V .

Thus if the integral is not zero, Π?=i #<*"** = 1, for all choices of the
aim Clearly this is possible only if j \ = ku , j n = &Λ. Thus the sum
(2) is equal to

( 4 ) Σ I ah |2 o<21
2 . I ais | ! j ^ | vh |2 | vu \*dV .

We shall see that for each integer s

where B(s) depends only on s. It then follows from Holder's inequality
that the integrals in (4) are bounded by B(s)/n* so that (4) is majorized
by

ψ- Σ I ah I* I ais I2 = ϋ i 2 ! [Tr(AA*)]° ,
TV 71

and the lemma will be proved.
It is sufficient to calculate (5) for i = 1. Let Uι(n — 1) be the

subgroup {Te U(n): Tex = e j . The space ϋ{n)/Uι(n — 1) of left cosets
{ F = Fί/Ί(^ — 1): Ve U(n)} can be identified with the unit sphere Σn

in a complex w-dimensional Hubert space. Since vx is constant on these
cosets

vι\
udV=\ \(Veueιy\**dV =

where d F is the unique normalized measure on Σn invariant with
respect to U(n) and

Vβί = w ^ + + wnen .

If we identify Σn with the real (2n — 1) dimensional sphere S271"1

in real 2^-dimensional space and dV with dw, the normalized invariant



508 ALESSANDRO FIGA-TALAMANCA AND DANIEL RIDER

measure on S2"-1, then

( 6 ) \ \Vί\
28dV=[, m (xl + xiydw.

JU(n) JxJ+ + *2Λ

a=l

By Minkowski's inequality and the invariance of dw (6) is bounded by

28

where Ω(Sm) = is the Euclidean surface area of the real

Γ(m + 1\
I\~2~)

m-dimensional unit sphere. Thus the integral in (6) is bounded by

B(s)

which proves (5).

COROLLARY 2. Let J be the canonical representation U~*U of
U(n) and J8 t be the tensor product of J, s times and J, the conjugate
representation, t times. J8 t decomposes into at most B(s + t) irre-
ducible components. IfsΦt then none of the components is the
identity representation.

Proof. If χτ is the character of the representation T, then
XJSft(V) = (XAV)y(xAV)y = (Tr(V)y(Tr(V)y. Thus by the lemma

\χs

which proves the first statement.
The number of times the identity representation occurs in J8tt is

(Tr{ V)Y(Tτ(V)Yd V = 0
)

if s Φ t by the statement following (3).

LEMMA 3. Let G = ΐlies U(di) be a product of unitary groups
U(di). Let F(V) be a function on G of the form

ies

where A{ is a d{ x d{ matrix and 1^ is the projection of V on U(di).
Then
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j β I F{V) f'dV ^ 5(β)(j I F(V) fdv)'

where dV is the normalized Haar measure on G.

Proof. It suffices to prove the lemma when

Then

(7) ( \F(V)f°dV
JG

where the sum extends over all iu , i2a such that 1 ^ iά? ί* N. By
the corollary the only terms in the sum which do not vanish are those
of the form

(8) ( d*h\ Tr(Ah Vh) I2 d|s I Tr(Au Vh) |2d V.

By Holder's inequality (8) is majorized by

which by Lemma 1 is majorized by

^At) . . . Tr(AisAΌ

Hence the left side of (7) is bounded by

where the equality follows from the Peter-Weyl formula.
Now let G be an arbitrary compact group and Γ be the set of

equivalence classes of irreducible representations of (?• Let dy be the
degree of the class 7. Then G — Iϊγer U(dy) is a compact group which
can be thought of as the group of unitary transformations of L2(G) into
U(G) which commute with left translations. That is, if V is such a
transformation then V corresponds to the element {Vy}eG such that

Vf(x) ~ Zdy
Y6/1

whenever f(x) ~ ^asr Tr(AyDy(x)) e L\G).
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THEOREM 4. Let feU(G) and p< oo, then for almost every
VeG, VfeLp(G).

Proof. Let Vf(x) = / !(V» = Σ dyTr(VyAyDy(x)). Then f(V, x)
can be considered as a function on G x G. For fixed # € G we have
by Lemma 2 that

, x) f'dV ^ B(s) [\G\f(V, x) \!dV J = 5(s)[Σ dΎTr(AΎA*) | '

so that

= ί ( \f(V,x)\»dVdx

Therefore if fe L2(G), then for almost every VeG, [ \ Vf(x) \28dx <

Letting s > p/2 we obtain the theorem.
We remark for later use that for some V

Indeed the set of V for which

\udx :

cannot be of measure one.
We will also use the following

REMARK 5. Let fe C(G) be a continuous function such that for
all self adjoint VeG, VfeC(G)9 then f(x) - ΣdyTr(AyDy(x)) with
*ΣidyTr(\Ay\) < co (I Ay I is the absolute value of the matrix Ay). In-
deed letting f(x) = /(F 1 ) we can write / = (/ + /)/2 + i (/ - /)/2ί =
Λ + i/2. H / 4 ( α ; ) - Σ ^ ^ ( A y , A ( » ) ) (i = 1, 2) then A7*fί = AΎ><.
Therefore there exists a self adjoint V — {Vy} e G such that Ay> {Vy =
Ayfi|. Thus ΣidyTr(\Ay,i\DΎ(x)) is continuous so that applying a

method of summation as in [4, 8.3] we obtain that the partial sums of
Σ dyΓr(| Ay, < I) = Σ dyTr(\ Ay, t \ Dy(e)) are bounded. Thus Σ dyTr(\ Ay \) ^
ΣdyTr(\Ayfl\) + Σ>d,Tr{\Ay>2\) < oo.

We shall call a series Σ ώγΓr(AyZ)γ(α;)) satisfying Σ dyTr(\ Ay \) < oo
an absolutely convergent series. The space of such functions will be
denoted by A(G). It is easy to see that A(G) consists of functions of
the type f*g with f9ge L\G). The space A(G) = U(G)*U{G) has been
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studied in [1],

3* Lacunary Fourier series* Given a compact group G we shall
say that a subset Eg=Γ of the set of irreducible unitary representation
of G is a Sidon set if it satisfies the following property:

A. ΣdyTr(\ Ay I) < co whenever J^yec dyTr(AyDy(x)) is the Fourier
series of a continuous function (cf. [6, 5.7]).

A set EaΓ will be called a set of type A(p) (or EeA(p)) for
p > 1 if it satisfies

B. If ΣyβE dyTr{AyDy(x)) is the Fourier series of an integrable
function then it is the Fourier series of a function in Lp (cf, [8]).

If B is a space of functions on G and E £ Γ we will denote by
BE those functions in B with a series of the form Σy€E dyTr(AyDy(x)).
It is seen as in [8, 1.4] that EeA(p) if, for some r < p, Lr

E — L\.
Clearly A(pλ) £ A(p2) if Pι ^ p..

If G — Hies U(di) then S can be thought of as the set of irreducible
representations of G consisting of the projections of G onto the Uidi).
Lemma 2 shows that S e A(p) for every p < co. It is a simple matter
to prove that S is also a Sidon set. Indeed, if f(V) = Y, ^ T V ^ F J

tes
is a continuous function belonging to CS(G) and if U ~ {Ui} e G then

Uf(V) = ΣdiTriAiUtVi) = left translation of / by U,
ies

is also continuous. It suffices to pick the U{ so that A{ Ut — | A{ |
to obtain that ΣnesdiTr(\Ai\) < co.

We shall now establish a characterization of sets of type A(p) which
will imply that every Sidon set is a A(p) set for every p < co. For a
group G denote by &v— &P(G) the algebra of operators on LP(G)
generated in the weak operator topology by the operators {Ry: y e G}
where Ryf(x) = f(xy). We shall use the fact [2, Th. 6] that &p is
(isometric and isomorphic to) the dual space of a Banach space Ap of
continuous functions on G. A2 — A(G) the space of functions with ab-
solutely convergent Fourier series [1].

The isomorphism between £?p and the dual space of Ap is given
by T—+φτ where φτ{f) — Tf(e). This correspondence is well defined
because every T e &p maps each element of Ap into a continuous
function, indeed an element of Ap. We also have that &p consists
exactly of those bounded operators on Lp which commute with left
translations.

Now if Γ e ^ p , p > 2, then T e ^ 2 a n d || T\\&9 ^ ikf || T\\.? where
P

M is a constant depending only on p. For if feLr then by Theorem
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3 there exists a unitary transformation U commuting with right trans-
lations (and therefore with elements of &p) such that UfeLp. We
can also choose U such that \\Uf\\p^2B(s)\\f\\2 where B(s) is the
constant appearing in Lemma 1 and s > p/2 (cf. the remarks following
the proof of Theorem 4).

We then have that TUfe V and U*TUf = TU* Uf = Tfe L\ Also
|| Tf\\2 = II CT Γl7/|| t S II Γff/||f £ || ΓCT/||, ^ || T\\Λψ \\ Uf\\, rg \\ T\\*p

M\\f\\2 where M = 2B(s). Therefore \\T\\M.2S M\\T\\&p. This im-

plies that A2 S Ap and || \\AP g Λf || | | 4 2. It is now a simple matter to
prove:

THEOREM 6. Let E £ Γ be a set of irreducible unitary represen-
tations of G and p > 2. The following are equivalent:
( a) E is a set of type A(p).
(b) If T € j$H ίftere e mte S e ^ such that Tf = S/ /or αM / e L£.
( c) If fe Al then fe A2 = A(G).
(d) Every closed subspace of UE which is invariant under left

translations is the range of a projection P belonging to &p which
is self-adjoint in the sense that Py = P* for each 7 e Γ.

Proof. Let EeA(p). Then LP

E = L% so that by the open
mapping theorem there exists B such that | | / | | p ^ B | | / | | 2 for feLE.
As L | is invariant under right and left translations there exists a
projection PE of U onto LE which commutes with right and left
translations/ If Γ G ^ 2 let S = TPE, then \\Sf\\P ^ || T\\ \\PEf\\P S
| | Γ | | J 5 | | P Λ / | | 2 ^ - B | | Γ | | | | / | | p . Thus Se^p and (a) implies (b).

Now assume (b) holds. If feLE then by Theorem 3 there exists
Ue^2 such that UfeLp; clearly UfeLp

E. Let Seέ?p be such that
Sg = C7*0 for all £ e LE; then SUf=U*Uf = fe L\ Hence 14 - ϋ
so that (b) implies (a).

We now show that (a) and (b) imply (d). Indeed if (a) holds the
projection PE of U onto LE is bounded in U. Suppose the Y £ LE is
invariant under left translations, let Pγ be the projection (belonging
to ^2) of U onto the left invariant subspace of L2 generated by Y.
By (b) there exists Se£Pp with S = Pγ on Lj. Then P £S = P F so
that Pγ e &p.

Suppose (d) holds and let U be a unitary self adjoint element of
^?2. Then Z72 = I so that P = (17 + J)/2 is a projection which commutes
with left translations. Let Y be the subspace of LE generated by
PL% Π 14. Then Y is invariant under left translations so that by (d)
there is a self-adjoint projection of U onto Y commuting with left
translations. Clearly this projection is PPE so that PPE e &p. Hence
UPE = (2P - I)PE e &P. Therefore UPEf is continuous for every fe A\
In particular if f(x) ~ ΣyeEdyTr(AyDΎ(x))e AE then UPEf = Uf is
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continuous. Therefore by Remark 4, AP

E <5 A(G).
Finally since A g Ap with \\f\\ΛPSM\\f\\Λ, (c) implies that AE = Av

Ey

so that, by the closed graph theorem, \\f\\Λ ^ B \\f\\AP for each/€ Ap

β.
Each Γ e ^ 2 defines therefore a continuous linear functional on AE by
Tf(e). The Hahn-Banach extension of this functional determines, in
view of the duality between Ap and ^ , an element S e ^ , such that
Sf(x) = (SLJ")(e) - (TLJ)(e) = Γ/(z) for / e 4£; therefore S - Γ on
LJ. Thus (c) implies (b) and the theorem is proved.

REMARK 7. It suffices for condition (d) to be true that every
closed left invariant subspace of LE is the range of a projection. In-
deed the argument used in [7, Th. 1] will show that such a projection
can be chosen to be left invariant (and therefore belonging to

THEOREM 8. E S Γ is a Sidon set if and only if for each
there exists a finite measure μ on G such that Tf = f*μ for each
feLE.

Proof. One applies the same duality argument used in the proof
of Theorem 6 (cf. also [6, 5.7.3]. Assume first that E is a Sidon set.
Then given Te&2, define a linear functional F on CE by F(f) —
Tf(e). Then F is well defined, since fe CE=>fe A; by the closed graph
theorem F is continuous and has a Hahn-Banach extension to all of,
C(G). That is, by the Riesz representation theorem there exists a bounded
measure μ satisfying

F(f) = ( f{x~ι)dμ(x) for all feCE.
JO

Since T commutes with left translations Tf=f*μ for all feCE.
Conversely let E satisfy the hypothesis of the theorem, to prove that
E is a Sidon set, let fe CE and let T be an unitary element of ^ 2 .
By hypothesis there exists a measure μ such that Tf — /* μ. Hence
Tf 6 C(G) and by Remark 5, fe A.

COROLLARY 9. Every Sidon set is a A(p) set for every p.

Proof. If μ is a bounded measure and ϋJμ/ = f*μ, then i 2 μ € ^ p

for every p. Therefore, by Theorem 8 if E is a Sidon set condition
(b) of Theorem 6 holds.

REMARK 10. In [4, 9.2] a sufficient condition for a set E S Γ to
be a Sidon set is given. This condition includes the requirements that
the degrees of the representations of E be bounded. The fact that for
Hies Uidi), S is a Sidon set shows that this requirement is not necessary.
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TWO INEQUALITIES IN NONNEGATIVE
SYMMETRIC MATRICES

DAVID LONDON

Marcus and Newman have made the following conjecture:
Let A = (αt y) be a n X n nonnegative symmetric matrix. Then

S(A) S(A2) ^ n S(A3) ,

where

S(A) = Σ an .

After reducing the conjecture to a standard maximum problem
of linear programming we prove that it holds for n £ 3. A
counter example shows that for n ^ 4 the conjecture is wrong.

We also consider the following conjecture: Let A = (αtJ ) be
a n x n nonnegative symmetric matrix. Then

~ 2-1 S{ f Ύϊt — 1, Δ,

where

The validity of this conjecture is established in two cases:
(1) m up to 5 and any n, (2) n up to 3 and any m. The
general case remains open. We conclude this paper with two
generalizations of the second theorem.

NOTATION. Let A = (ai3) be a n x w real matrix. A is called
nonnegative if a t i ^ 0, ΐ, j = 1, , n. The quadratic form corre-
sponding to a symmetric A is denoted by A(x, x), that is

A(x, x) = (-Aa;, a?) = Σ a^x^i .

Here (A#, a?) denotes, as usually, the scalar product of the real vectors
x and Ax. Denote e = (1, , 1) and Ae = (s:, , sn) = s = s(A).
Si = Si(A) is thus the sum of the elements of the ith row of A.
s = s(A) is ί/ie row sums vector of A. 4̂ is generalized stochastic if
A is nonnegative and if s(A) = cβ, where c is a scalar. Further

Received October 8, 1964. This paper represents part of a thesis submitted to
the Senate of the Technion-Israel Institute of Technology in partial fulfillment of
the requirements for the degree of Doctor of Science.
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notations are:

S(A) =

S(x) =

Am =

si*1' =

n

n

S α

(air

h,

DAVID

A(e, β) ,

/y ίrjβ

«A') =

LONDON

V^ /y(m) m = 1, 2,

1* The conjecture of Marcus and Newman,

l l The conjecture and its connection with linear program-
ming* In [4, p. 634] the following conjecture is introduced: Let
A = (a{j) be a n x n nonnegative symmetric matrix. Then

(1.1) S(A) S(A2) ^ nS(Az) .

Using the notation introduced before, we have

(1.2) S(A*) = X sf» - A2(e, β) = (Ae, Ae) = X βj ,
1 l

= Σ β{8) = A3(e, β) = (ilβ, A'e) = Σ MΓ' .
i=l i=l

Hence, (1.1) can be written in the form

(1.3)
ΐ = l

If the sets s = (s19 , sn) and s(2) = (s[2), , s^) are similarly ordered,
that is if (s; — s^s^ — ŝ 2)) ^ 0 for every 1 ^ i, j g n, then according
to an inequality of Tchebychef [2, p. 43] the inequality (1.3) holds.
However, the following example shows that for nonnegative symmetric
matrices A, s(A) and s{2)(A) need not be similarly ordered. Let

'6

2

0

2

1

0

0'
0

4

Then s(A) = (8, 3, 4) and S(2)(^L) = (54,19, 16). s(A) and
therefore not similarly ordered.

Denote

are

X'
l
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We have

(1.4) au = s* - Σ ' α^ , i = It , n ,
j = l

(1.5) β?> = Σ o l i β i , i = l,'",n.
j = l

From (1.2), (1.4) and (1.5) follows

nS(A3) - S(A) S(A*) = n±spSi- Σ s, Σβ?'
<=1 i = l t = l

= n ± st\±' aijSj + βΛ - ±' ai3)] - ± s{ ± s?
ΐ=l L i = l V 3=1 /J i=l i=l

= n±sl- Σ«,Σ«J ~ n Σ β«(βi - sί)2

i=l i=l i = i l^i<i

= Σ (β« - β*)(βί - «J) - » Σ
l^i<i

Hence,

nS(A*) - S(A) S(Aι)

Σ
£ϊ<

(1.6)

Using (1.6) we obtain, a representation of the conjecture (1.1) by
concepts of linear programming (see e.g. Gale [1]). Consider the
following maximum problem: Let slf , sn be nonnegative numbers.
Find numbers αt y = aHi i Φ j;i,j = 1, , w, which satisfy the set of
linear inequalities

aid = aH ^ 0, ί Φ j i, j = 1, , n ,

(1.7) \f!a <s i = l

and which maximize the linear function

(1.8)

The problem (1.7), (1.8) is a maximum standard problem of linear
programming. A set of numbers ai5 which satisfies the inequalities
(1.7) is a feasible solution of the problem. A feasible solution which
maximizes (1.8) is an optimal solution. The dual of the problem (1.7),
(1.8) is the following minimum standard problem: Find numbers
Vu , Vn which satisfy the set of inequalities

[yi > 0, i = 1, , n,
(1.7') / x . - • • 1
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and which minimize the function

(1.80 ±BiVi.

It is obvious that the problem (1.7), (1.8) and its dual have optimal
solutions.

From (1.6) it follows that the conjecture (1.1) can be represented
in the following equivalent form: Let aij9 i Φ j ; i, j = 1, , n, be an
optimal solution of the maximum standard problem (1.7), (1.8). Then

(1.9) Σ aW*< ~ s;)2 ̂  — Σ

1*2 Proof for n ^ 3. In this section we establish the validity
of the conjecture for n ^ 3.

THEOREM 1. Let A be a n x n nonnegative symmetric matrix.
Then for n ^ 3 the inequality (1.1) holds. The equality sign holds
in (1.1) if and only if A or A2 is a generalized stochastic matrix.

Proof. For n = 1 the inequality (1.1) holds trivially. For n =
2, 3 we use the representation of (1.1) by (1.9).

For n = 2 it is sufficient to prove that if

(1.10) 0 ^ α12 ^ min (su s2) ,

then

(1.10) implies

(1.12) α1

and from (1.12) follows (1.11). Equality holds in (1.1) if and only if
it holds in (1.11), and there it holds if and only if sx = s2, that is if
A is a generalized stochastic matrix. As by (1.3) we clearly have
equality in (1.1) if A2 is generalized stochastic, it follows that there
are not nonnegative symmetric 2 x 2 matrices such that A2 but not
A is generalized stochastic. We remark that it is easily seen that for
n = 2, s and s{2) are similarly ordered sets. (1.1) thus follows also
from the inequality of Tchebychef.1

1 As the referee suggests, the proof for n = 2 can be done directly by the methods
in [4], Using the notations in [4], we have

2S(Aη - S(A)S(A*) = wiwzlλi - /2)
2Ui + λz) and λι + λ2 = tr(A) ^ 0 .

The author wishes to thank the referee for this remark.
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We prove now the theorem for n = 3. Without loss of generality

we may assume that

(1.13) 0 < 8, g So ̂  s3 .

The assumption 0 < sx does not restrict the generality. If s1 = 0 then

A is of the form

A =

Hence, using the validity of (1.1) for n = 2, we obtain

•o

0

_0

0

B

0"

At first we treat the case

(1.14) 0 < a, < *• < s3 .

Denote

α23 = α32 = x1 , α13 = α31 = x2 , α12 = α21 = a?8.

The corresponding maximum problem is: Maximize

(1.15) Af (a?lf xt, Xz) = «i(«2 - s3)
2 + ^ ( S i - S3)2 + α?β(β! - s2)2 ,

where ^ ^ 0 , ^ = 1 , 2 , 3 , satisfy the system of inequalities

(1.16) -(2) ^ + ^ ^ 5 ,

,() x, + x2 ^ s3.

The dual of the problem (1.15), (1.16) is the following problem: Minimize

(1.15') i/A + 1/2*2 + 2/3S3 ,

where ^ ^ 0, i = 1, 2, 3, satisfy the system of inequalities

(2/2 + 1/3 ̂  (*2 - 5 3 ) 2

(1.16') ji/! + y» ^ (*! - S3)2

Let ZIf x2f %3 be an optimal solution of (1.15), (1.16) and yu y2i y$

an optimal solution of the dual problem. Let (1.16), (1.16') denote

respectively the inequalities (1.16), (1.16') after substituting xlyx2fxz

and yu y2i yz respectively.
According to our assumption (1.14) we have
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(β« - j; ί, j = 1, 2, 3,

and it follows therefore from (1.16') that at most one of the numbers

Vu $2, Vz is equal to zero. From the equilibrium theorem [1, p. 19]

follows that in (1.16) equality holds at least in two of the inequalities.

In (1.160 at least one strict inequality holds. For if three equalities

hold then by solving the system of equations we get y2 < 0, and so

the solution is not feasible. Using again the equilibrium theorem we

obtain that at least one of the numbers is equal to zero. As (1.14)

holds, it follows that precisely one of those numbers is equal to zero.

Summing up: In (1.16) the sign of equality holds at least twice and
precisely one of the numbers xu X21 xz vanishes.

We now consider all the sets xl9 x2y xz for which the just obtained
conditions hold. For every such set we decide whether it is a feasible
solution (f.s) or whether it is not a feasible solution (n.f.s). For this
decision we have to distinguish between the two following cases

(1.17) s1 + s2 ^ sz ,

(1.18) s, + s2 ^ sz .

The result is given in the following table.

equality in (1.16)
in the equations

(1), (2)

(1), (2)

(1), (2)

(1), (3)

(1), (3)

(1), (3)

(2), (3)

(2), (3)

(2), (3)

Xi

0

Sz — Si

sz

0

S3

S3 — Si

0

S3

S2

Xz

Si ~ Sz

0

Si

S3

0

Si

S3

0

S3 — Sz

Xz

sz

Si

0

Si - S3

si

0

sz

Sz - S3

0

case
(1.17)

n.f.s

f.s

f.s

n.f.s

n.f.s

n.f.s

n.f.s

n.f.s

n.f.s

case
(1.18)

n.f.s

f.s

n.f.s

n.f.s

n.f.s

f.s

n.f.s

n.f.s

f.s

For any row of this table containing a f.s, the limit case sx + s2 = s3

is to be associated with this f.s.

When (1.17) holds, the optimal solution is one of the following

feasible solutions

(x19 x2, x3) = (s2 - slf 0, s,) ,

(xl9 x2, x3) = (s 2, 8lf 0) .
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As

M(s2 - 8l9 0, Sx) = (S« - 80(8* - S3)
2 + Si(Si - S2)

2

< S2(S2 - S3)2 + 8,(8, - S3)2 = M ( s 2 , 8,9 0) ,

it follows that

(1.19) (S,9 xi9 x3) = (s 2, 8l9 0) .

This optimal solution is unique.
When (1.18) holds, the optimal solution is one of the following

feasible solutions

(x,9 x2y xz) = (s 2 - slf 0, sx) ,

(Xl9 X2, X3) — (S 3 8l9 Sly 0 ) ,

(Xu X*, Xs) = (s2, s 3 - s2, 0) .

As

(1.20)
 M

(
S z
 ~~

 Sl
>

 8l
> °̂  ~

 M
^
 Sz
 ~~

 S2> 0) =
 ^

3
 ~

 Sl
""

 Ss)(S

+ (Si + S2 - SsXβi — S3)2 ^ 0

and

M(S3 - Su 819 0) = (S3 - S ^ - S3)2 + S^S, - S3)2

> («2 - *i)(*2 - 53)
2 + S^S, - Sx)

2 = M ( S 2 - Sί9 0,

it follows that

(1.21) (xl9 x29 x,) = (s3 - 8lf s,, 0) .

As equality in (1.20) holds only if sλ + s2 = s3, it follows that the
optimal solution (1.21) is unique. We remark that the optimal solution
can also be determined by the simplex method [1, ch. 4].

According to (1.9), (1.19) and (1.21) we have to prove that

(1.22) M(s2, sl9 0) = s2(s2 - szγ + 8,(8, - s3)
2 < i - Σ (*< + βi)(β* - s, )2

when (1.17) holds, and that

M(s3 - sx, β l f 0)

ί 1 - 2 3 ) = (S3 ^ β l)(S 8 - S3)2 + 8,(8, - S3)
2 < λ Σ (S, + βyXβ, ~ Sjf

when (1.18) holds.
Denote

(1.24) Si = a, s
2
 = a + β, s

3
 = a + β + 7 .
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The assumption (1.14) implies

(1.25) a,β,y>0.

Assuming the validity of (1.17), we prove now that (1.22) holds.
(1.17) gives

(1.26) a £ 7 .

Denote

ϋ = Σ (S; + «i)(«< - SJY - 3AΓ(82, βlf 0)

= («i - S2)
2(SX + S2) + (S2 - S3)

2(S3 - 2S2) + (S3 ~ βj^ββ ~ 28J .

By the notation of (1.24) £ takes the form

(1.27) Iλ = /32(2α + yS) + 72(7 - a - β) + (β + 7)2(/3 + 7 - a) .

From (1.25), (1.26) and (1.27) follows

yδ) + 72(27 - 2α) > 0 .

(1.22) is thus established.
Assuming the validity of (1.18), we prove that (1.23) holds. (1.18)

gives

(1.28) a ^ 7 .

Denote

Iχ = Σ (*i + s i )( s i ^ »i)2 ~ 3 Λ f (S3 - *i, Si, 0)

= («i - «*)*(*! + s2) + («t - s3)
:(3s1 + s2 - 2s3) + (βx - s3Y(s3 - 2s,) .

By the notation of (1.24) I% takes the form

(1.29) I2(a, β, 7) = β\2oc + β) + y\2a - β - 2y) + (β + yf(β + y - a) .

We distinguish between the following two cases

(1.30) β + 7 ^ a ,

(1.31) β + 7 < a .

At first assume that (1.30) holds. From (1.25), (1.28), (1.29) and (1.30)
we obtain

L ^ β°-(2a + β) + r(2a - β - 2γ) + 7*08 + 7 - α)

= /δ-(2α + /δ) + 72(α - 7) > 0 .

(1.23) is thus established when (1.30) holds. Assume now that (1.31)
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holds. Write I2(a, β, 7) in the following form

(1.32) It(a, β, 7) = a(β - ΊY + β3 + (β + 7)3 - r(/3 + 2y) .

L(a, β, 7) is linear in a. Let β, 7 be any constant positive numbers.
As

I.(a, 7, 7) = 6T3 > 0 ,

we may assume that

(1.33) (β - 7)2 > 0 .

Using the validity of (1.23) when (1.30) holds, we obtain

(1.34) L(β + 7, β, 7) > 0 .

From (1.32) and (1.33) it follows that

(1.35) lim L(a, β, 7) = + ™ .
a-*+oo

As J2(α, β, 7) is linear in a, it follows from (1.34) and (1.35) that
72(α, β, 7) > 0 when (1.31) holds. (1.23) is thus established also when
(1.31) holds.

The proof of the theorem is completed in the case when (1.14)
holds. We proved that in this case (1.1) holds strictly. From continuity
considerations it follows that the theorem without the equality statement
holds also if only (1.13) is assumed. (We have already mentioned that
(1.13) can be considered as the general case). Hence, to complete our
proof in the general case (1.13), we have to assume that (1.14) is
invalidated and to check for possible cases of equality in (1.1). If
(1.14) does not hold, there are three possibilities:

(1)

(2)

(3)

«! = S2 = S3 ,

o1 <^ 5o — 5 3 ,

If (1) holds then the sign of equality in (1.1) holds for every A.
In this case A is a generalized stochastic matrix.

In cases (2) and (3) we consider the corresponding maximum problems.
The maximum problem corresponding to (2) is: Maximize

M(xu x2, xz) = (s, - szf(x2 + a?8) ,

where xi ^ 0, i = 1, 2, 3, satisfy the three inequalities

+ #3 ^ «1
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It is obvious that every feasible solution for which x2 + #3 = sλ is an
optimal solution. So there are infinitely many optimal solutions. If
in this case the sign of equality holds in (1.1), then

o
*i(*i ~ S3)

2 = — ( « ! - S3)
2(Si + S3) ,

o

and therefore

8, = 2s3 .

As the last equality contradicts (1.13), we conclude that in the case
(2) strict inequality holds in (1.1).

The maximum problem corresponding to (3) is: Maximize

M(x,, x2, xz) = (x, + x2)(sλ - S3)2 ,

where x{ ̂  0, i = 1, 2, 3, satisfy the three inequalities

!

%2 + #3 ^ §!

«1 + #3 ^ Si

»χ + #2 ^ S3

In order to determine optimal solutions of the problem, we have
to distinguish between the following two cases

(3), 2sλ ̂  s3,

(3)/7 2 s 1 > s 3 .

If (3)z holds then the only optimal solution is

(xu x2, xz) = (su su 0) .

If (3)JJ holds then every feasible solution for which xx + x2 — s3 is an
optimal solution. In this case there are infinitely many optimal solutions.
If the sign of equality in (1.1) holds in the case (3)Γ then

28,(8, - S3)
2 = -§-(*! + 89)(8± - S3)

2 ,
ό

and therefore

(1.36) 28, = s 3 .

If the sign of equality in (1.1) holds in the case (3)7/ then

and (1.36) is obtained again. As (1.36) contradicts (3)/7, it follows
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~0

0

0

0

S i

S i

S i

0

that in this case equality in (1.1) is excluded. Hence, in case (3)
equality in (1.1) holds if and only if

*i = Sz, S* = 2SU (Xu Xo, Xz) = (Su 8lf 0) ,

that is only for the matrix

(1.37)

A2 is a generalized stochastic matrix (while A is not stochastic). It
follows from (1.3) that if A or A2 is a generalized stochastic matrix
then equality in (1.1) holds. Hence, it follows that equality in (1.1)
holds if and only if A or A2 is a generalized stochastic matrix. This
completes the proof of the theorem.

REMARK 1. The following example proves that the assumption
of symmetry in Theorem 1 is essential. Let

1 2 1"

1 1 2

0 1 1

A is a positive nonsymmetric matrix. As

S(A) = 10, S(A2) = 32, S(AZ) = 100 ,

(1.1) does not hold.
It is obvious that (1.1) does not hold in general for real symmetric

matrices with (some) negative elements. However, going over to the
absolute values and denoting | A\ — ( |α o |), one may think that for all
n x n, n ^ 3, symmetric matrices

(1.10 S(\A\)S(\A2\)^nS(\A>\)

holds. The following counter example shows that this is wrong. Let

As

(1.10

S(\A

does not

1) = 12 ,

hold.

A =

S(\

1

- 2

1

A*\)

-2

0

2

= 36

1
2

- 1
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REMARK 2. Let A be a 3 x 3 nonnegative symmetric matrix.
Let r l f r2, r3 be an orthonormal system of characteristic vectors of A
corresponding respectively to the characteristic values au a2y cc3. Let
R be the orthogonal matrix with the columns ru r2, r3. As A = RDRT,
where D is the diagonal matrix {au au as} and Rτ is the transposed
of JR, we have

3

O\Jx ) — \Jx &, &) — \LJ JΛ> tJ JX V) — J>_, iX{ \&\ι %)\
t = l

Hence, (1.1) for n — 3 is transformed to

(1.38)

(1.38) is a necessary condition for a system of 3 orthonormal vectors
*Ί» r2, β̂ a n d three real numbers al9 a*, a3 to be respectively a system
of characteristic vectors and values of a 3 x 3 nonnegative symmetric
matrix. It would be interesting to find similar necessary (or sufficient)
conditions concerning n x n nonnegative symmetric matrices.

REMARK 3. From the considerations concerning the equality sign
in the proof of Theorem 1 we conclude: Let A be a 3 x 3 nonnegative
symmetric matrix satisfying (1.13). A is not generalized stochastic
while A2 is generalized stochastic if and only if A is of the form
(1.37). In a recent paper [3] we characterize the matrices of this
type for every n.

1*3 Counter example for n ^ 4. In this section we bring a
counter example which shows that for n ^ 4 the conjecture of Marcus
and Newman does not hold. Let

(1.39)

a 0

0 0

- - 0"

0 1

] i

] I

I I

1 I

1 1 ! 1 1

i 0 - 0 1

0 1 - 1 0

a 0

0

0

0

,n ^ 4 .

An(a) is a n x n symmetric matrix depending on the real parameter α.
For a ^ 0 AJa) is nonnegative. Bn^ is a (n — 1) x (n — 1) nonnegative
symmetric matrix. J5*_i is generalized stochastic (while Bn_x is not
generalized stochastic). As
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U) = (n - 2)e , S(^_x) - (n - l)(n - 2) ,

- 2) , S(Bί_i) = 2(n - 2)2 ,

we obtain

n S(Al) - S(An) S(Al) = *ι[2(n - 2)2 + α3]

-[2(w - 2) + α][(ra - l)(n - 2) + α2]

- [α2 - (n - 2)][(π - l)α - 2(w - 2)] - fn(a) .

The zeros of the polynomial fn(a) are

a, = n — 1

and therefore fn{a) < 0 for

(1.40) 2(n ~ 2 ) < a <V^Γ^~2 .
n — 1

Hence, for every a satisfying (1.40) the inequality (1.1) does not hold.

REMARK. Consider the following generalization of conjecture (1.1):
Let A be a n x n nonnegatίve symmetric matrix. Then

(1.41) S(A) S(Am) ^ n S(Am+1) , m = 1, 2, .

For odd m (1.41) holds for every symmetric A [4, Th. 4]. For even
m and n ^ 4 a straightforward computation proves that (1.41) does
not hold for the matrices (1.39), for a satisfying (1.40). For m — 2
and n ^ 3 the validity of (1.41) is established in Theorem 1. For even
m > 2 and n = 3 the problem remains open.

2* Upper bound for the sum of the elements of a power of
a matrix*

2Λ. A conjecture. In this section we state a conjecture which
yields an upper bound for the sum of the elements of a power of a
nonnegative symmetric matrix.

We first define a class of matrices: Let s = (sl9 , sn) be a vector
for which the condition

(2.1) 0 < s1 < s2 < < sn

holds. Denote by SzζXs) the class of all n x n nonnegative symmetric
matrices for which s(A) = s.

By a straightforward computation, using (1.2), (1.4) and (1.5), we
obtain
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(2.2) S(A3) = ±s\- ± aiS(Si - Sjγ .

From (2.2) it follows that for every A e Stf%(s) the inequality

(2.3) ±

holds. Equality in (2.3) holds if and only if A is the diagonal matrix
in JK(s).

The following conjecture generalizes (2.3): For every AG Sfn{s)
the inequality

(2.4) S(Am) =g Σ sT , m = 3, 4,

holds. Equality in (2.4) holds if and only if A is the diagonal matrix
in JK(s).

REMARK 1. For m = 1, 2 (2.4) holds with equality sign for every
A e J^ζ(s). This is the reason why we did not include m = 1, 2 in
our formulation of the conjecture.

REMARK 2. In the definition of the class Stfn{s) we assumed that
s(A) satisfies (2.1). If we ommit this assumption only the equality
statement of the conjecture is to be changed.

2*2* Proof for particular cases* In this section we prove some
particular cases of the conjecture. The general case remains open.

THEOREM 2. In the following two cases
(1) m = 3, 4, 5 and n = 1, 2,
(2) m = 3, 4, and n = 1, 2, 3

the inequality

(2.4') S(A ) ^ ± sT

holds for every Ae J^n{s). The equality sign in these two cases holds
only for the diagonal matrix in

Proof. Let A = (α^ ) e J^i(β). Assume that there exists an ί,
<Ξ i < n, for which ani > 0. Define
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(2.5)

Here ε is a

dS[A«
dε

Hence,

(o a\ d S[A
a

I \

1
I

!
1

I
1

N like
\

\

- - dni

nonnegative parameter.

ι(s)] - S
ε=o

Γ dAm

L dί
m - 1

fc = 0

Γ(ε)]
ε ε=o jί

t-2

V IV771

(ε) "1
Jε=o

0 JA 0 I
) *JL t / l •

- sn

I
1

! \
7 \1 \
II
1
— e •

For

"it
m-1

) s

Uln

!

!

1
1

I
1

\ !

- - ann + ε_

small ε^l(ε) € JK(

] S[AkA'(0) Am~k~
1

(A'(0)β ( 1 —'-^(A),

[8i { ) - Sn ( )

s). We have

s{λ)(A))

1

W(A)i

n \ )\

Let us first bring the proof for the case (1). Let Ά = A(m) = (α i 3),
m = 3, 4, 5, be an optimal matrix of the maximum problem

Max S(Am) .

For a fixed m, m = 3, 4, 5, we use induction on w. For n = 1 the
theorem holds trivially. Suppose that the theorem holds for n — 1
(and the same fixed m). We prove shortly that the optimal n x n
matrix A has the following structure

0

(2-7) A = I(m) =
i

0

0

J5 is a (w — 1) x (n — 1) nonnegative symmetric matrix and s(B) =
(*i, •• ,su_1). Suppose that we have already proved that A has the
structure (2.7). By the induction assumption

s(Bm) ^
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and equality holds only if B is diagonal. Hence,

(2.8) S(Άm) = S(B™) +sΐ ^±sf .

Equality in (2.8) holds if and only if A is a diagonal matrix.
It remains to prove that A has the structure (2.7). Assume that

A has not the above structure. There exists at least one i, 1 ̂  i ^ n — 1,
for which ani > 0. For this i the matrix Ά(ε) is defined according to
(2.5). As A is an optimal matrix of the above defined maximum
problem, and as for a small enough ε > 0 Ά(ε) e Sfn{s), the inequality

(2.9)
dε

ε=o

must hold. From (2.6) and (2.9) we obtain

w-2
(2.10) g [sϊk)(Ά) - s^iA)]^-"-1^!) - βί—*-1}(iϊ)] S 0 .

We now consider separately the cases m = 3, 4, 5. By a suitable
choice of i we obtain a contradiction to (2.10).

m = 3. For this case the theorem has already been proved by
the representation (2.2). We give here an independent proof. Choose
any i, 1 g i ^ n — 1, for which αΛί > 0. According to our assumption
there exists such an i. By (2.10) we obtain for this i

(2.11) [Si(Ά) - sn(A)Y = (Si - sj S 0 .

(2.11) contradicts (2.1).

m = 4. Let ΐ, l ^ ΐ ^ n — 1, be the smallest index for which
ani > 0. According to our assumption there exists such an i. By
(2.10) we obtain for this i

(2.12) (βm - sάWWλ) - *?>(!)] g 0 .

We have

I s = s(2)(Λ) .

By (2.1) and by our choice of i we obtain

(2.13) s

(2.14)

Hence,
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(2.15) s

Equality in (2.15) implies equality in (2.13) and (2.14). Equality in
(2.13) holds if and only if

fin = = ff»,»-i = 0, ain = Si .

Equality in (2.14) holds if and only if

2«,<+i = * = finn = 0, ani = sn .

Hence,

(2.16) ain = αwί = 8̂  = 8,.

(2.16) contradicts (2.1) and therefore (2.15) holds strictly. (2.1) and
the strict inequality in (2.15) contradict (2.12).

m = 5. From the set of all the indices i, 1 ^ i ^ n, for which
αΛi > 0 choose that ί for which s{^(A) attains its minimum value.
According to our assumption there exists an i, 1 S i < n, for which
ani > 0. As we saw in the proof for m = 4, there exists an i, 1 ^
i <Uj which satisfies ani > 0 and for which strict inequality holds in
(2.15). It follows that the i chosen now satisfies i < n. By (2.10)
we obtain for this i

(2.17) 2(βm - β<)W8)(I) - β?>(2)] + K2>(i) - β?>(I)Γ ^ 0

We have

By (2.1) and by our choice of i we obtain

(2.18) s

(2.19) «

As αΛi ^ 0, it follows that 3$ =£ 0. As 3g} ^ 0 and as i < n, it follows
that the strict inequality sign in (2.19) is justified. (2.18) and (2.19)
imply

(2.20) 8?>(A) < s{:\A) .

(2.1) and (2.20) contradict (2.17). The proof of the case (1) is thus
completed.

We bring now the proof for the case (2). We give first the proof
for n = 3. Let Ά = Ά(m), m = 3, 4, , be an optimal matrix of the
problem



532 DAVID LONDON

Max S(Am) .

Assume that A(m), for a fixed m from m = 3,4, •••, has not the
structure (2.7). There are then two possibilities:

(2.21) α31 Φ 0 ,

(2.22) α31 = 0, α32 Φ 0 .

If (2.21) holds then, according to (2.10), it is sufficient to prove that

for every natural k the inequality

(2.23) sίk)(Ά) < s

holds, while if (2.22) holds it is sufficient to prove that

(2.24) s{

2

k)(Ά) < s{

3

k)(Ά) .

Assume that (2.21) holds. As

(2.25) s^(Ά) = Σ 3*iβJ*-1}(A) = Σ «»"%, i = 1, 2, 3 Λ = 2, 3,
i=i j=i

it follows that

(2.26) sίk)(Ά) ̂  min Us^iΆ), s, max βJ*

(2.27) sik)(Ά) ^ max k s ^ - 1 ^ ! ) , s3 min βJ*

We prove (2.23) by induction on k. For k = 1 (2.23) holds by (2.1).

Assume that

From this induction assumption follows that at least one of the two
following equations holds:

(2.28) βί*-l)(A) = minsf-^Ά) ,

(2.29) s^iΆ) = max8{f-l)(Ά) .

The minimum and the maximum are strict. As (2.28) or (2.29) holds,

it follows from (2.26) and (2.27) that

(2.23') s[k)(Ά) ^ sik)(Ά) .

To obtain (2.23) we have to show that equality cannot hold in (2.23').
Assume that (2.28) holds. Equality in (2.23') implies
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From the last equation, using (2.25) and the fact that the minimum
in (2.28) is strict, we obtain

(2.30) α32 = α33 = 0, α31 = s3 = α13 S *i .

(2.30) contradicts (2.1). Assume that (2.29) holds. Similar to our last
conclusion it follows now that equality in (2.23') implies

(2.31) α n = α12 = 0, α13 = su S£-ι> = ait1' = 0 .

As from α33 Φ 0 follows αjf-1* Φ 0, we obtain

(2.32) α33 = 0 .

If α32 Φ 0, using (2.31) and (2.32), we obtain

<*-u φ 0 , A - 1 even,
33)

* ' ( α ^ ^ 0 Λ - l odd.

(2.33) follows easily, e.g. from the directed graph corresponding to A.
(2.33) contradicts (2.31) and therefore α32 = 0. We obtained

(2.34) α32 = α33 = 0, α13 = α31 = sx = sz.

(2.34) contradicts (2.1). So (2.23) holds and the proof for this case is
completed.

Assume that (2.22) holds. We prove (2.24) by induction on k.
Assume that

(2.35) βί*

From (2.22), (2.25) and (2.35) follows

(2.36) 8lk)(Ά) ^

Hence,

(2.24') 8Ά

To obtain (2.24) we have to show that equality cannot hold in (2.24'),
Equality in (2.24') implies equality in (2.36) and this implies α33 = 0.
So we have

(2.37) α31 = α33 = 0, α32 = s3 = α23 ^ s2 .

(2.37) contradicts (2.1). So (2.24) holds and the proof for n = 3 is
completed.

For n = 2 it is sufficient to prove that for every natural k

s[k)(Ά) < s{

2

k)(Ά).
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This inequality can be easily proved by induction. Theorem 2 is thus
established.

REMARK. It is easy to prove that if A is a nonnegative matrix
with row sums su , sn; st ^ s2 ^ ^ sni then

s?~lS(A) ^ S(Am) ^ sΐ-'SiA), m = 1, 2, ,

where the two bounds are sharp. As for A e

and as the bound s^SiA) is sharp, it follows that the assumption of
symmetry in Theorem 2 is essential.

2*3* Generalizations* Theorem 2 can be generalized to a larger
class of matrices and also to a statement on minors of matrices.

Let A = (au) be a n x n matrix, perhaps with complex elements.
Denote | i i | = (|α4y|). The row sums vector of |A|,β( |A|), is denoted
by [s] = [s](A). The ith component of [s] is denoted by [s4] = [^(A).

We bring now the first generalization of Theorem 2: In the
following two cases

(1) m = 3, 4, 5 and n = 1, 2,
(2) m = 3, 4, and n = 1, 2, 3

£Λ>e inequality

(2.38) SflA D S i

/or every complex A such that \ A \ 6 J^ζ([s]). Γ/̂ e equality
sign in these two cases holds if and only if A is diagonal.

(2.39)

Proof. We have

n n

S j ^ J Σ I α α i <V2 α λ _ w I = S(\ A | ) .

As IA I 6 JK([s]) it follows from Theorem 2 that

(2.40) S(\ A |m) ^ Σ [β*l"

(2.39) and (2.40) imply (2.38). The equality statement follows from
the equality statement in Theorem 2.
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REMARK 1. For Aes*?n(s) (2.38) reduces to (2.4'). For m = 1
(2.38) holds with equality sign for every A. For m = 2 (2.38) holds,
but the equality statement stated above does not fit this case.

REMARK 2. The only essential assumption about A is that | A | is
symmetric. | A \ e J^([s]) includes the additional assumption that the
components of [s] are positive and distinct. This assumption is needed
only to obtain the equality statement.

The second generalization deals with minors of matrices. We
introduce now several concepts and notations.

Let p and n be natural numbers, 1 ^ p ^ n. Denote

Qvn = {(iu # # ' > ip) 11 = i\ < i* < * ' ' < ip Sn}

(iu % $ip a r e natural numbers).
Let i = (ily , ip) and j = (jίf , jp) be elements of Qpn, and

let A be a n x w matrix. The minor of A formed from the rows
(iu » ip) a n d the columns (j\, , iP) is denoted by

AΓ'*"'

The p£& compound matrix of A is denoted by CP(A). CP(A) is a

x ( J matrix with elements Aί J

Let us now define the class of matrices | JK(M)I A matrix A
belongs to the class \ S^n([s]) \ if and only if A is symmetric and | A |
belongs to JK([s]). Note that the definition includes the demand that
all the components of [s](A), Ae JK(W) l» are positive and distinct.
Note also that a matrix belonging to | JK([s]) | can be complex.

In [6, formula 12] Schneider obtained the following result: Let
A be a n x n matrix and p a natural member, 1 ^ p ^ n. Then

(2.41) ^Ki-

ln [5] Ostrowski obtained the following equality statement: //
[sti] [sip] Φ 0 then the equality sign in (2.41) holds if and only
if in every column of the submatrix of A formed from the p rows
iu i ipy there exists at most one nonzero element. From this
statement follows: If Ae\ JK(M) | and if p ^ 2 then the equality
sign in (2.41) holds for every i e QPn if and only if A is a diagonal
matrix.

We bring now the second generalization of Theorem 2: Let p and
n be natural numbers, 1 ^ p ^ n. In the following two cases

(1) m = 3, 4, 5 and n = 1, 2,
(2) m = 3, 4, and n = 1, 2, 3
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the inequality

(2.42)
,jβQpn

/or ever?/ A belonging to | JKfls]) |. The equality sign in these
two cases holds if and only if A is diagonal.

Proof. As A is symmetric, the compound matrix CP(A) is also
symmetric. Applying (2.38) to CP(A) (see Remark 2 after (2.38)), we
obtain

(2.43)
S{\ [C,(A))U 1} = S[\ CP(Am) I] = i Σp I A ( j ) I

^ Σ ( . Σ A(jj|):.
(2.42) follows from (2.41) and (2.43). For p = 1 the equality statement
follows from the equality statement corresponding to (2.38). Equality
in (2.42) for p ^ 2 implies equality in (2.41) for every i e QPn. As
Ae |JK([s]) I, it follows from the equality statement corresponding to
(2.41) that A is diagonal. It is obvious that if A is diagonal then
equality holds in (2.42).

REMARK 1. For p = 1 and A e Jtfn{s) (2.42) reduces to (2.4').
(2.42), including the equality statement, holds for p ^ 2 also for
m = 1, 2.

REMARK 2. If the conjecture (2.4) stated at the beginning of
this chapter holds true, then the two generalizations given in this
section hold also for all m and n.

The author wishes to thank Professor B. Schwarz for his guidance
and help in the preparation of this paper.
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INFINITE PRODUCTS OF SUBSTOCHASTIC MATRICES

N . J. P U L L M A N

This paper is about two types of infinite products of sub-

stochastic matrices {Aj} namely: the left product defined by

the sequence of left partial products A1$ A2Aί9 AZA2AU •••;

and the right product defined by the sequence of right partial

products Aίf AXA2, AιA2Az,

The basic theorem is that if the An are each oo by oo then:
a. There is a nonempty set E of substochastic sequences

each of which (except possibly the zero sequence, 0) is the
componentwise limit of a sequence of rows, one from each left
partial product;

b. Any sequence {ρn} of rows, one from each left partial
product, can be approximated by a sequence of convex com-
binations {cn} of points of E (that is, {pn — cn} converges
componentwise to the zero sequence), and c. E = {0} if and only
if every sequence of rows, one from each left partial product,
converges to 0.

Similar conclusions follow immediately for the right product
of oo by oo doubly substochastic matrices.

The asymptotic behaviour of the right product of a special
class of {Aw} is also considered.

The finite case (that is, when all the An are r by r) for stochastic
An is treated independently for convenience, even though the result
in this case (Theorem 1) is actually a direct consequence of the basic
Theorem 1'. Its conclusion is that there is an m by r stochastic matrix
A with 1 S m ^ r and permutation matrices Qn such that

a. if m < r then for some stochastic r — m by m matrices Cn:

and δ. if m — r then

lim {AnAn^ A, - QnA} = 0 .

Some results on fixed points are obtained in the finite case which
carry over, in restricted form, to the infinite case.

A real matrix is said to be stochastic if none of its entries is
negative and each of its row sums is 1. Two types of infinite products
which arise naturally from a given sequence {An} of stochastic matrices
are those whose nth partial products are Rn = AXA2 An and Ln —
AnAn_x Aί respectively. We'll call the sequence {Rn} the right
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product and the sequence {Ln} the left product of the An.
The right product is of interest in the theory of Markov chains

with possibly nonstationary transition probabilities because if An is the
matrix of probabilities a\f of transition from state i at time n — 1 to
state j at time n then the ijth entry r\f of Rn is the probability of
transition to state j at time n from state i at time 0.

The left product has a similar interpretation: l\f is the probability
of transition from state i at time —n to state j at time 0.

We shall obtain theorems on the asymptotic behaviour of these
partial products and on their fixed points. For example if the An are
oo by oo stochastic matrices we can show that there is a sequence of
rows, one from each Ln) which converges componentwise.

The finite and infinite cases are treated separately for clarity.

DEFINITION. A permutation matrix is a matrix of zeroes and ones
which exactly one 1 in each row and each column.

THEOREM 1. If Ln = AnAn_x Aι and each An is an r by r
stochastic matrix then there exists an m by r stochastic matrix A
with 1 ^ m 5g r, r by r permutation matrices Qn and, if m < r,
stochastic r — m by m matrices Cn such that:

lim Ln-Q,
A

= 0 if m < r and

lim || Ln — QnA || = 0 if m = r .
»-*oo

Proof. Let S be the convex hull of the basis vectors
vλ = (1, 0, 0, . , 0), v2 = (0,1, 0, , 0), , vr = (0, 0, 0, f 1). Each
(S)L% is a convex polytope (that is, the convex hull of p points), these
polytopes are nested (that is, (S)Ln+1 £ (S)Ln for all n) and none of
them has more than r vertices (a point # of a polytope is a vertex if
it is on no open line segment contained in the polytope). It can be
shown that the intersection of such a family of convex polytopes is a
convex polytope of r or fewer vertices. Let K = f | ^ i (S)Ln and denote
its vertices by klf , km. Let A be the m by r matrix whose ΐth
row is k{. Let i; n) denote (Vi)Ln. For each n and each t ^ m there
is a v{ζ] such that kt = lim^.^ i^2). We can assume that for each n
there are only m such v{ζ] so chosen. If m < r extend the definition
of it so that {v\f :m <t ^ r} is the set of vln) not already chosen.
Qn is the matrix (q\f) for which ĝS?5 is 1 if i — it and is 0 otherwise.
If m < r and t > m let &ίn) be the point of if closest to v%\ Since iΓ
is convex, k[n) is a convex combination, Σ?=i ctfkj> of the vertices if.
Therefore Cπ = (elf) is an r — m by m stochastic matrix and &[n) =

I A \ / A \ / A \
(vO ^ - f o r each m<t^r. Consequently (vit)QJ = (vt) if

\LnAJ \LnA/ \L>nA/
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m < r and (vit)QnA — (vt)A if m — r. Theorem 1 then follows from the
fact that l i m ^ v[f = kt if 1 S t g m and l i m ^ v\f - Kt

n} =0iit>m.

kλ
Notice that lim L« = I 11 if m = 1 because K then consists of the

one vertex klm

DEFINITION. A sequence {Pn} of r by r matrices is descending if
and only if (S)Pn+ι S (S)Pn for all n sufficiently large. (S is as in the
proof of Theorem 1). As a first corollary to Theorem 1 we have:

A
m,Qn, A and Cn (if m < r) such that limw_eo \\Pn — Qn - 0 if

\CnA)
m < r and linv^o \\Pn — QnA || = 0 if m = r> for all descending se-
quences because each such sequence (with the first N terms omitted)
is the left product of some sequence of stochastic matrices. (All left
products of stochastic matrices are, of course, descending sequences.)
Another immediate corollary concerns doubly stochastic matrices (that
is, stochastic matrices whose transposes are also stochastic). We shall
state the corollary emphasizing the matrix entries for variety's sake.

COROLLARY 2. If {An} is a sequence of doubly stochastic r by r
matrices and Rn = A{A2 An then there exists an m by r stochastic
matrix A with 1 g m ^ r and permutations qn of the r indices such
that for each 1 g j ^ r:

( a) if 1 g qn(i) g: m, lim^c (r{jl] — aqnii)j) = 0 and ifm<r there
exist r — m by m stochastic matrices Cn such that

( b) if m < qn(i) g r then:

lim (r(β] - X c^q^k^) = 0 .

Some examples of {An} with descending right products are provided
by all those sequences of stochastic matrices {AJ which commute pair-
wise within a row permutation (i.e. AnAn, — Qnn,An,A% for some per-
mutation matrix Qnn). Because of their connection with Markov chains
we shall investigate descending right products further. We'll impose
further conditions on the An which are not too stringent but which
give additional information about the Cn of Theorem 1. While doing
so we acquire some information on the fixed points of An and Rn.

DEFINITION. B occurs frequently among the An if and only if
B — An for infinitely many n.

LEMMA. If {An} is a sequence of r by r stochastic matrices whose
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right partial products Rn — AλA2 An are a descending sequence and
B occurs frequently among the An then, in the notation of Theorem
1 there is an m by m permutation matrix D such that AB — DA.

Proof. For some N, {RN+n} is the left product of some sequence
of stochastic matrices A!n. Let K be as in the proof of Theorem 1
applied to the A'n. Then K = f\n>N (S)Rn. (K)B £ K because K =
Π {(S)-B»-i :B = An and n > N}. Suppose xe K. Then, for infinitely
many n, there are xn e (S)Rn^ for which x = (xn)B. A subsequence {x%m}
converges to some point yeS. Therefore (xnm)B converges to (y)B and
hence x = (y)B. But y e K and hence K £ (K)B. Thus if = (K)B and
hence I? permutes the vertices of K (rows of A). Let Z) be the m by m
permutation matrix representing this row permutation then AB = DA.

JB permutes all the vertices of K and fixes the barycentre, l/m'^J^fc^,
of each subset {fc4l, fc<a> , &ίm,} of m' vertices of K (rows of A) which
it permutes. Therefore (x)B = a& for all x in the convex hull of these
barycentres. There may be (left) fixed points of B outside the convex
hull of the barycentres.

Let us enumerate all the matrices occurring frequently among the
An so that A%1 is the first such matrix and Anp is the pth such matrix
distinct from An _lβ Let Dnp be the m by m permutation matrix
corresponding to Anp (as in the lemma) and let Dn = Dnp if An — An

Applying the lemma to the first corollary to Theorem 1 we obtain: np.

THEOREM 2. // {An} is a sequence of r by r stochastic matrices
each of which (except for finitely many n) occur frequently among
the An and the n-th partial products Rn = AτA2 An are descending
then there exists an m by r stochastic matrix A {with 1 ^ m g r),
permutation matrices Qn and, ifm<r, r — mby m stochastic matrices
Cn such that given ε > 0 there is an N for which:

( a )
DIA

< ε (if m < r) ,

(b) \\Rn-QND'nA\\<ε (ifm = r),

for all n > N. D'n is the permutation matrix which is the product
DN+1DN+2 Dn of Dg defined in the previous paragraph. Moreover
the barycentres of those sets of rows of A which are permuted by all
the D%p is a (left) fixed point for all An (except perhaps the finitely
many n for which An does not occur frequently). In particular the
barycentre b = 1/m ΣΐLi (an> * •> air) of the rows of A is such a (left)
fixed vector.

Let F be the convex hull of the barycentres mentioned in Theorem
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2. F is fixed (pointwise) by each of those An which occur frequently.
If all the An occur frequently then (x)Rn = x for all n and all x e F.

The fundamental theorems on the convergence of the powers of the
transition matrix and the "classification of states'' of a finite Markov
chain with stationary transition probabilities (see for example [4] pp.
170-184) can be obtained from Theorem 1 by examination of the
position of K in S. In the interest of brevity we shall not do so here
but shall instead discuss two notions from the stationary case by way
of sample applications of Theorems 1 and 2.

In the notation of the proof of Theorem 1 let T be the set of all
i for which v{ is not in the set of basis vectors spanning K. Following
the custom (see e.g. [2]) for the stationary case we'll say that i leads
to j (written i ~s j) if and only if rff > 0 for some n. If the right
product of the An is descending then for each i, lim^*, rif — 0 for all
je T and; each ieT leads to some j & T by the first corollary to Theorem
1. In the stationary case (i.e. when An = Ax for all n):

T = U {i : i~?3 and j φ*i) .
3*1

This is precisely the definition of the set of transient (sometimes
called inessential) states in the stationary case.

The notion of regular chain (in the terminology used in [6]) can
be extended to the nonstationary case so as to obtain the same kind
of basic result. Suppose the right product of the An is descending and
that there is a product P = Ani9An^ An^ of frequently occuring Anpi

(in the notation of Theorem 2) which is positive (i.e. pi3 > 0, all i, j).
(The nPι are not necessarily distinct nor in increasing order). Call such
{An} regular sequences. It then follows that the right products Rn of
regular sequences {An} converge to a matrix all of whose rows are the
vector k. No component of k is zero, (k)Rn ~ k for all sufficiently
large n (for all n, if (S)Rn+1 £ (S)Rn for all n) and k is the only vector
in S with this property. Although this is equivalent to the correspond-
ing result for the stationary case it is easy enough to obtain using
the first corollary to Theorem 1 and the lemma preceding Theorem 2:
All we need do is show that m — 1. To this end observe that according
to the lemma, P permutes the vertices of K so that, for some n:
(x)Pn — x for all x € K. If K had more than one vertex the line joining
two of them would meet the boundary of S in a point x which is fixed
by Pn. (x)Pn can have no zero components because P is positive but
x has zero components because it's in the boundary of S. This second
application may also be found in a slightly less general form as
Theorem 3 of [5].

DEFINITION. A real matrix is substochastic if and only if none of
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its entries is negative and 1 is an upper bound for its row sums.
Most of the foregoing results including Theorem 1 and its corollaries

can be extended to infinite as well as finite substochastic matrices. To
do so, consider the set So of all substochastic sequences (i.e. the set
of all real sequences of nonnegative terms whose sum is at most 1).
So is a compact, convex subset of the space of all real sequences under
the product topology. The °o by °° substochastic matrices are associative
and closed under matrix multiplication so that left and right product
is defined for every sequence of such matrices.

THEOREM 1\ // {Ln} is the left product of a sequence of oo by oo
substochastic matrices then there is a nonempty set, E, of substochastic
sequences with the following properties:

( a ) For each keE (except possibly the zero sequence) and each
n there is an integer iny k such that for all j :

( b ) For each sequence {in} there is a convex combination x{i>n)

of elements of E such that for all j :

(c) The zero sequence is the only element of E if and only if
for all sequences {in} and all j :

lim 1% = 0 .

Proof. For each subset F of So let co(F) be the set of convex
combinations of elements of F and cδ(F) be the intersection of all
closed convex sets containing F. Let Wn be the set consisting of 0
and all the rows of Lni let Ln = cό( Wn) and K — f|n>i Ln. K is convex
and compact and 0 € K. Let E be the set of extremals of K (that is,
keE iί and only iί ke K and k is an interior point of no line segment
in K) then K — Έδ(E) by the Krein-Milman theorem. Part (a) of
Theorem 1' is proven by contradiction. Suppose keE and a neigh-
bourhood of k excludes 0 and all rows of Ln for all n in an infinite
set Ω. Then, for a finite set A and some ε > 0, Wn is in the com-
plement of Z Ξ= f\jeΛ {x e S o : I x3- — kj\ < ε} for each n e Ω.

Let T ; = {x e S o : x5 ^ kά + e}, Tj = {x e S o : xs ^ k, - e} and
Ts = Tj U Tj. Then

\jβΛ

- co (\J Έδ(Tj Π Wj) (see [3] V 2.5)
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= co (\J cδ((Tf Π Wn) U(TjΓ\ Wn)))

= co (\Jfo(cδ(Tt Π Wn) U cδ(Tj Π Wn)ή

(again by [3] V 2.5)

£ co ί\J co((Tf Π Lw) U (Tj n L.)

If [7"iw = Γy n I/w is empty for some j e A, neΩ then Ujm = <j> for all
sufficiently large m because the Ujn are nested for fixed j . Rather
than change notation, we can assume that Ujn Φ φ for all neΩ and
all j e A. Thus k is a convex combination, Xj €i! λin%Λ, of elements
%„ of co(C7iπ). Ujn is the union of Ufn = Γ; Π Lw and ί/jw = Γj Π Ln.
Assuming first that Ufn and Ujn are nonempty for all neΩ we have
0 ^ μ iw ^ 1 such that ujn = ^ inw^ + (1 - jH^Jn for some ujn e Ujn and
some ujne Ujn. By successive extraction of subsequences we obtain uf,
uj, μ, and λ3- such that

lim ufn = ut , lim MJ = uj , lim μύn = ^ ,

lim λi% = Xj , U //,• ^ 0 , 1 ^ λ, ^ 0 and X λ, = 1 .

Therefore A; = χ i € ^ ^Aμ^ί + (1 — μi)uj)), and for all jeΛiuj, ujeK
and M+, uj € Γj. The extremality of & implies that & = u+ or wj for
some j and hence that ke T3. Consequently kg Z, a contradiction. If,
however, U$n or Z7ĵ  is ^ for some (and hence all subsequent) n we
can use a similar argument using the ujn instead of the ufn and ujn.

If k Φ 0 we can therefore assert that each sufficiently small
neighbourhood of k excludes 0 but contains an element of Wn for all
sufficiently large n. These elements must be rows of the Ln. There-
fore k is the componentwise limit of a sequence of rows, one from
each Ln.

To prove part (b) let d be the metric on So which induces the
product topology (see [1] II prop. 6, p. 97). Let yn e Ln and zn be a
point of if closest to yn in the metric. d(zn,yn) is a null sequence be-
cause the Ln are nested. A sequence {xn} in co(E) can be found for
which d(xnf yn) is a null sequence because co(E) is dense in cδ(E) (see
[3] V 2.4). Part (b) then follows if the inih row of Ln is used for yn.
Part (c) follows directly from parts (a) and (b). This completes the
proof of Theorem 1'.

The conclusion of Theorem Γ is valid if {Ln} is replaced by any
descending sequence {Pn} of oo by oo substochastic matrices using the
previous definition of ' 'descending'' with S replaced by So. Such se-
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quences too are, except for finitely many terms, the left product of
some sequence of substochastic matrices.

The statements about commutivity also carry over to the infinite
case.

Corollary 2 extends to:

COROLLARY 2\ // {Rn} is the right product of oo by oo doubly
stochastic matrices then there is a nonempty setf E, of substochastic
sequences with the following properties:

( a ) For each non-zero keE and each n there is an integer ίn,k

such that for all j :

lim rιjtl k = kj and
n-*oo

(b) For each sequence {in} there is a convex combination χ{i>n)

of elements of E such that for all j :

limr^ - xfn) = 0 ,
n—»oβ

(c) The zero sequence is the only element of E if and only if
for all {in} and for all j :

lim r # = 0 .r a.
n-*oo

A substochastic matrix is continuous on So if and only if all of
its columns are null sequences. If a continuous B occurs frequently
among the An and their right product is descending then (K)B = K.

Theorem 2 and the remarks following it concerning fixed points
also hold for oo by co substochastic matrices An provided each An is
continuous and K has only finitely many extremals.
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REFLECTION AND APPROXIMATION BY
INTERPOLATION ALONG THE

BOUNDARY FOR ANALYTIC FUNCTIONS

JAMBS M. SLOSS

Let there be given a function f(z) analytic in an open
connected set, not necessarily simply connected, which is
bounded by simple closed analytic curves such that the
function is continuous on the closure of the region and such
that the real part of the function satisfies boundary conditions
that are analytic in a neighborhood of the boundary. We
want to interpolate f(z) along the boundaries and find con-
ditions that make the interpolants converge maximally to f(z)
throughout the closure of the region. The boundary condition
on the real part of f(z) permits the analytic continuation of
f(z) across the boundary curves and ensures that we are
interpolating at points interior to the region of analyticity.
In our error estimates (Theorem 1) maximal convergence
depends in an essential way on how far we can reflect fiz)
and this in turn depends on the boundary values of the real
part of f(z) as well as on the geometry of the given region
and its analytic boundaries. In Theorems 2 and 3, a simply
connected region is considered. Special points of interpolation
are given, these depend only on the parametric representation
of the boundary curves and not a conformal map. These
points are the image points of the Chebyshev polynomials.

Finally an example is given for a multiply connected region.
As is well known [2] Runge's beautiful theorem shows us that

there exist certain "equidistributed" points on the analytic curves such
that if we interpolate at these points the interpolants converge to the
function. However, the proof depends on knowing the conformal map
in order to know what the interpolation points are. Here we shall
give conditions that do not require knowledge of the conformal map
but for convergence depend on how far we can reflect. Along with
these, we shall give simple error estimates. Moreover, we shall show
that possible interpolation points are the images on the boundary of
roots of the Chebyshev polynomials.

The aspects of this paper which are novel are
( i ) the use of reflection
(ii) interpolation at boundary points which are gotten directly

from the parametric representation of the boundary and do not depend
on a conformal map
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(iii) the use of the images of the roots of the Chebyshev poly-
nomials as possible interpolation points.

Notation. Let R be a connected set whose boundary is Γ. Let
Γ — Γ1 U Γ2 U U Γ* where the Γ3 are bounded analytic contours in
the z = x + iy plane given by Fj(x, y) = 0 with (Fi)2 + (F3)2 Φ 0 along
Γj, j = 1, 2, , s, where the F° are real-valued analytic functions of
x and y. We assume further that the Γ3 are pairwise disjoint. Let
Γ1 contain in its interior Γ2,^, , Γ8 and contain in its exterior the
point at infinity. Let Γ3 contain in its interior a3 2 g i g s . As shown
in [3] there are "reflection" functions G3(z) defined on a neighborhood
D3 U Γ3 U D3 of Γ3. Assume G3(z) single-valved on D3 U Γ3 U D3 [3] shows.

( 1 ) z = G^i) is /* .
( 2 ) Gj(2) is analytic on D^ U Γ5 U J5J, where D3 is contained in

the connected R and JO'' is contained in the complement of Γ3 U D3 for
j = 1,2, • • - , § .

( 3) The transformation

( 4 ) If z is in D3 then

j = G(z) is an involution; i.e. z — z.

is in JD 7' and if z is in D3 then 2 is in

( 5 ) G[Dj] = .D '̂ and ]
that is not Γj, is a contour Cj and

We assume the boundary of .
ΓJ(Z) is continuous on D3 (J C3.

THEOREM 1. (H 1) Let f(z) be an analytic single valued function
on R whose boundary is Γ such that the real part of f(z) solves the
Dirichlet problem in R with real boundary values Bά{z) on Γ3 where
Bj(z) are single-valued and continuous in D3 (J Γ' U D3 U C3 and analytic
in D3 U Γ3 U D3\ Let f(z) be continuous and single-valued on R{J Γ.

(H. 2) Let z3

)U z3.2<t , z3.%5+u ns = 0,1, 2, , be points of
Γ3\ j = 1, 2, , s. Let p3

ni(z) be the polynomial in z of degree nx

that agrees with B^z) at z\u z1^, , zl1%i+1 and let p3

nj(z) ( 2 ^ i ^ s)
be the polynomial in 1/(2 — a3) that agrees with B3{z) for z — aά = z3

njl,
zip > zi5n5+i where a3 is a point inside c3.

(H. 3) Let

h\ = min Π | ί — z\k \
t on Oι A; = l

Wj + 1

μ\ = max Π | z - z\k \

and

min
t on CJ

i

= max Π

t

z

— (

t

— (

z

X; ~ zί,k

- a3

ΪJ - zijk

- a3

, 2 ^
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(H. 4) Let μijδίj — 0 as nά -* co, j = 1, 2, , s. Then for

, — ) and | ^ | = max
nj

, , , ) |̂ | { f , ,
nί n2 nj I nγ n2 ns

(C. 1) Rμ.(z) — Σi=i Pij(z) converges uniformly to f(z) in R{j Γ
as I μ I —-> 0 <m<2 £/ms ϋte i?μ(£) converges uniformly to u(%, y) in R
and uniformly to Bά{z) on Γj.

(C. 2) Moreover in R U Z1:

I f(z) - R,{z) \^±± ^ψ^ μίjiί,

where Lά = ϊβnfifίΛ o/ Cy, Mά = max | /(ί) | α-̂ cί δy = inf min 11 — z \ .
z on Γl t on

Proof. In order to avoid notation that only confuses, we shall
prove the theorem for the case s = 2.

We first analytically continue f(z) into R U Γ1 [j D1 [j Γ2 \j D\ Let
/*(*) = /[Gv(z)] for z in ΓJ' U &. ff{z) is defined and analytic for z
in ΓJ u Dj since z = Gj(z) is in J9-7" for z in J9J" and Gj(z) is analytic
for z in Γj U ^". But //(2?) = βz) for 2 on Γ\ thus on Γ^

Thus f(z) = 2^(2;) - //(z) analytically continues /(«) into Γ> U ^
since /(z) is continuous up to and on Γj. Moreover, f(z) is continuous on

Γ> U Dά U Cj since G,(z) and Bά{z) are. Thus //(«) s fs[G(z)] analytically
continues f*(z) into Γj (J ̂ J since /*(«) is continuous up to and on Γj.
Let an+ι(z) = (3 - zL)(z - ^ (2 - zL+i)

\z-a2 zltly\z-a2 z\J \z-a2 z2

mm+1/

Then for z on Γ:

a^{t) - an+ι(z) d tf dt
2πi J a t - z an+ί(t)

β ( * ) d t

2πi Jo* t — z βm+i(t)

where pnm(z) is a rational function of zy pnm(z) — pi(z) + p2

m+ί(z) in
which pι

n(z) is the polynomial in z of degree ^ w got by interpolating
f(z) along Γ 1 at z\u zn2i , znn+ι and pi+i(«) i s the polynomial of degree
m + 1 in l/(z — α2) got by interpolating f(z) along J"2 so that
pl+ifa + z2

mJ) = f(z2

mj). To see the latter let x = l/(z - α2) and 2/ =
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l/(t — α2) then βm+1(t) = bm+1(y) where bm+1(y) is a monic polynomial
in y of degree 5^m + 1, thus we have

βm+1(t) - βm+ι(z) = 6w+1(α?) - bm+1(y) = (a? - y) g «<(»)»*

where α^x) are polynomials in x of degree ^ m . But

x - y = — = (* —
z — a2 t — α 2

thus

t-Z βm+1(t)

is a polynomial of degree ^ m + 1 in 1/(2 — α2). The error for z on
Γ is given by:

Note that:

M 1 f
2πι )d

1
z - a2

1

f(t)
t-z

Ut) I

1

1

2; ft

_ z

t

L ( Z ) 7

for z

- α2

- α2

, 1
' 2ττ

on Γ 1

- 2li t

and

- α 2

- α 2

/(ί)
t-z

t on σ and:

ί — α2

and thus

^ r £ for 2 o n Γ and £ on C2.

From these it follows:

IΛ*) " *-(.) I ^ -f { ^ 4 + ψ" # } for * on Γ,

where Lά is the length of C\

Mj = max I/(£) | , and δy = inf min \t — z\
t on cJ z on Γ3 t on CJ

which is the result.
We next consider the case when Γ is a single analytic contour

and (Cj = C) we write Γ in parametric form as z(σ) = x(σ) + iy(σ)
where —1 ^ σ <i 1. Let | z(σ2) — z(cΓi) | g A | cr2 — σλ |, let Z1 contain
the origin and
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THEOREM 2 (H. 1) Let f(z) be an analytic single-valued function
on R whose boundary is Γ such that the real part of f(z) solves the
Dirichlet problem in R with real boundary values B(z) on Γ where
B(z) is a single-valued analytic function on D (j Γ (j D continuous
on Γ U D U C, Let f(z) be continuous and single-valued on R (J Γ.

(H. 2) Let zn

ά = z{σf) where

σnj = cos [(2i - 1) π/(2n + 2)] , j = 1, 2, , n + 1

(H. 3) δ = inf min | ί - z |
z on Γ t on O

(H. 4) 4 < 23.
Then

prime denotes differentiation, converges
uniformly to f(z) on R \J Γ as n —» oo

(C.2) i Λ β ) - , . ( , ) ,

where M is a constant depending on /, L is length of Γ.

Proof. As in the proof of Theorem 1 we have for z on Γ

I/O*) - Vniz) I ^ ^ i k f max I <yΛ+1(s) |/S*+2.

But

I ω . + 1 ( s ) I = I (« - «r)(« - « ? ) • • • ( « - « t n ) I
^ AΛ+11 (£T - σΐ)(σ - αj) (σ - σ:+1) |

where the α? are the roots of the Chebyshev polynomial

Tn+ι(σ) = cos [(n + 1) arc cos σ]

of degree n + 1. Thus since (σ — σ?)(σ — tf?) (σ — <τl+ι) is monic

Thus

max I ωn+1(z) \ ^ A«+ί/2« and | f(z) - pn(z) \ <ί M ^ ( 4 -
, u»r oπ \2o

Next let /": ^(s) = cc(s) + ί#(s) where s is arc length 0 ^ s ^ L.

THEOREM 3. (H. 1) Same as Theorem 2.
(H. 2) Same as Theorem 2 δwί 2? = z(s*) where
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βj = -JL COS [(2J - l)π/2(n + 1)] + A , j = 1, 2, . . . , n + 1

(H 3) δ = inf min 11 - z \ .
z on Γ t on 0

(H 4) L < 4δ.
(C 1) Same as Theorem 2.

where M is a constant depending on f.

Proof. As in the proof of theorem for z on Γ:

I f(z) - pn(z) I ̂  — Af max | ωw+1(z) \/δn+z .
2π

But since | z — zn

ά \ ̂  | s — sj | where ^ = «(β) and z* = β(sj) and since
I (β — β*)(8 — 8j) (β — 8j+1) I ̂  Ln+1/22n+1 see e.g. [1] we

w+l

EXAMPLE. We shall now apply the ideas of this paper to a par-
ticular geometrical configuration. Let

Γ1 be a circle of radius 15 centered at the origin
Γ2 be a circle of radius 1 centered at ( — 13, 0)
Γz be an ellipse

£ + -£ = !, α=1.075, 5 = 1.

Fig. 1.
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Let R be the interior of Γ1 less Γ2, Γ3 and the interiors of Γ2 and Γ\
Let f(z) be analytic on R and continuous on R U Γ1 (J Γ2 (J Z73. Moreover
let the real part of f(z) satisfy boundary conditions Bλ(z) on Γ\ B2(z)
on Z*2 and B3(z) on Γ3 where:

Bx{z) is analytic on
J52(z) is analytic on

= 15
z + 13 I = 1

and Bz(z) is analytic in and on /^-{-.Sθδ < a? < .395, y = 0} See
figure.

For example we might have ϋte /(«) = Pk(Xj 2/) on Γ1* (& = 1, 2, 3)
where Pk{x, y) is a polynomial.

Then since:

\CΛ JL) IJΓ$\Z) = — ^CM f

and 2 = 2 = Gfc(2) on Γk we have on Γk

which are meromorphic functions that fulfill the requirements of
B^z), B2(z) and Bz(z) (in the case of Bz(z) we make a cut between the
foci ± t / α 2 - δ2) .

Let

rk = 15 exp ( 2πz k) and an+1(z) = (« - rx)(« - r2) . (« - rn+1)

and

an+ι(rk)(z - n)

where the prime signifies differentiation. pn(z) is clearly the polynomial
of degree ^ n that interpolates /(z) at z = rk on Γ11, & = 1, , n + 1.
Next let

and

and
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k z + l2>

qm(z) is a polynomial of degree ^ m in l/(z + 13) such that qm(sk — 13) =
f(sk — 13) where sλ - 13 is on Γ2, k = 1, 2, , m + 1.

Finally let i be the length of the ellipse Γ3 and

σk = cos [(2fc - l)ττ/2(i + 1)], k = 1, 2, . . , j + 1 .

Then the ellipse Γ13 can be written

z(σ) = x(σ) + ίy{σ) = α cos (2πσ/l) + ib sin (2πσ/l)f -ί/2 ^ σ ^ Z/2

σ is are length parameter shifted. Let

tk = z(σkll2) and W . ) = ( i . - i ) ( i - 1 ) ... ( 1 - JL)

and

r^(z) is clearly the polynomial in 1/z of degree ^ j such that
f(tk) k = 1, 2, , j + 1 where ίλ is on Γ3.

Then the assertion is

converges uniformly to /(z) on R u Γ1 U Γ2 U Γ s as

m

For JΓ1, we use Runge's theorem. Since B^z) is analytic on Γ\
then f(z) can be continued across Γ\ i.e. /(«) is analytic for 15 <̂
I z I ̂  15 + ε where ε is some positive number. Thus in the notation
of the theorem

min
|ί|=iδ+ε

n+ϊ

fc = l

min 15W + 1

max
|z|=lδ

n+l

-n)

r * ) |

| = min *•+' - 15-

1 — 11 ^ 15*+ 1 min
|r|=l+ε/lδ

= 15*+ 1 max ζ Λ + 1 —

and
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(E 2) ul/δi ^ 2/{[l + ε/15]w+1 - 1} -> 0 as n -> oo.

For Γ 2 , since B2(z) is analytic on Γ 2 , t h e n f(z) can be continued

across Γ12, i.e. /(z) is analytic for 1 — ε ^ | z + 1 3 | ^ l where ε is

some positive number. Thus if C2 = {z: \ z + 13 | = 1 — ε} we have:

max I βm+1(z) I = max
zonΓ2 z on Γ2

Y + 1 - l <:
\ζ\~i \\ζ

^ m a x — i ) - 1

and

min I βn+1(t) I = min I ( _ i
tonO2 tonO2 | \ t ++ 13

- 1

K 1 \m+l / 1 \m+l

1 ) - 1 ^ (—i—) - 1 .
ζ/ \ 1 — 6/

From these we see that

max I βm+1(z) I 2

(E. 3) m^- < = > 0 as m
V } min | iβ . + 1 ( ί ) | " / 1 \m+ί ,

For Γ3 we note from the reflection function G(z) given by (E. 1) that
the interior of the ellipse Γ* minus the line — c S % ̂  c, c2 = a2 — δ2,
is reflected exterior to the given ellipse but interior to the ellipse e2

— + -£- = i
α2 δ2

where ά = (α2 + 62)/c, 6 = 2 ab/c.

In the case of our ellipse we have a = 1.075, 6 = 1 and c = .395,
a = 5.46, 6 = 5.44, thus e2 is contained in Γ1, and does not intersect
or contain points of Γ2 and thus f(z) can be extended to be analytic
in Γz —{z\ —.395 < x < .395, y = 0}.

The length of the ellipse Γ* is given by:

I = 4aΓ / 2 l/l -k2sin2θdθ
Jo

where

k = c/a < 1. In our case A; = .368 and thus

I = 4α (1.516)

using a table for elliptic integrals. Let c3 be the rectangular contour
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(-.395 - ε ^ x ^ .395 + ε, y = - ε ) , (x = .395 + ε, - ε ^ y ^ ε) ,

(-.395 - ε ^ x ^ .395 + ε, # = ε) , (x = - .395 - ε, - ε ^ y S e)

where ε > 0 is arbitrarily small. Then consider

1 f fit)
2πi JO3 t — z

But

'π '"-
k=l * C

Π ""'

\tk I
. , = arc length,

where - l ^ ί ^ l since

l*i+i(ί)l =

^ 1 for 2 on Γ\ Also for ί on C3

^ (o - c - ff
\tk\\t\

where 7] is some fixed constant. But since | ί | ^ c + e/2 for ί on c3

we see that

Combining the above results gives

where we have utilized the fact that the σk are the roots of the
Chebyshev polynomial Tj+1(θ) = cox [(j + 1) are cos θ]. Thus

a — c —
Y+V LY+'.

V 4 /

680 ~

But

J_ = 1.516 < -1 α ~ c - ff = - i
Aa a c + εV2 1.075 .395

where gr(ε) —• 0 as e —• 0. Thus for e sufficiently small

, = 1.60

(E. 4) 1/4 ^
α - c ~lε .

c+ εi/2

Utilizing (E. 2), (E. 3) and (E. 4) we have from Theorem 1 that

P«(s) + P«(s) + ^i(^) converges uniformly to /(z) in i2 U Γ1 U Γ 2 U Γ 3

as (1/n) + (1/m) + (1/j) — 0.
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We remark finally that there would be no new difficulties if Γ had
contained in addition ΓA\JΓ*\JΓ* where ΓA is the circle \z — 10 i\ — 4,
Γδ the circle | z + 10 i \ = 4 and Γ6 is the circle | z - 12 | = 2.
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VISUALIZING THE WORD PROBLEM, WITH AN
APPLICATION TO SIXTH GROUPS

C. M. WEINBAUM

The word problem in certain groups is studied in algebraic
terms with a geometric background. A relator is made to
correspond to a plane complex so that generators are associated
with 1-cells and defining relators are associated with 2-cells of
the complex. In the case of less-than-one-sixth groups, the
results obtained are essentially those found by Greendlinger.

Let & = J?~lyi/~ where Λ ^ is a normal subgroup of a free
group ^ with fixed free generators (understood to include inverses).
Let <yy~ be the smallest normal subgroup containing a set & of
cyclically reduced words (defining relators for S^). Nonempty words in
^V are relators for Sf'. Let & be closed under inverses and cyclic
permutations. Assume each free generator appears in at least one
defining relator.

In this paper we use complexes to study how relators depend upon
defining relators. A complex is determined by a finite set E of elements
(called edges), a partition of E into subsets (called boundaries), a par-
tition of E into pairs of edge&> and a cyclic order for the edges in
each boundary; vertices and the property of connectedness can then be
defined. After a free generator is assigned to each edge (with inverse
free generators assigned to paired edges), the above-mentioned cyclic
orders determine words (called values) for each boundary. More pre-
cisely, some word and all its cyclic permutations are the values of a
boundary.

It is shown that each relator is a value of one of the boundaries
of some spherical complex (a connected complex with Euler characteristic
2) whose other boundaries have defining relators for their values. The
converse is also proved: if defining relators are the values of all but
one of the boundaries of a spherical complex, then a value of the re-
maining boundary is a relator. Thus the question of recognizing the
relators in &—the word problem in S^—can be viewed as the question
of determining the words which can correspond to one boundary of a
spherical complex whose other boundaries correspond to defining relators.

These results are essentially a reformulation of the first two lemmas
in a paper by Van Kampen who approached the problem geometrically.
The proofs given here are combinatorial in nature.

In passing from a relator to a complex, we use a system (called a

Received October 12, 1964. The work was supported by grants from the National
Science Foundation, N.S.F.-GP-27 and N.S.F.-GP-1925.
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structure) which characterizes one construction of the relator from a
collection of defining relators. Structures help to define certain basic
relators.

The problem of recognizing relators is reduced to finding basic
relators by showing that each freely reduced relator contains a sub-
word which is a basic relator. When W is a cyclically reduced basic
relator, some subword of W is a subword of a defining relator. The
number of such sub words, contained dis jointly in the cyclic word W,
is estimated via simple calculations using a spherical complex associated
with W. The calculations are given in §8; they were suggested by
the proof of the Five Color Theorem in [1] Courant and Robbins.

This estimate is applied when W is in a group Sf which is a less-
than-one-sixth group or, briefly, a sixth group. A group Sf is called
a sixth group if any subword common to 2 distinct defining relators
has a length which is less than one sixth of the length of both of the
defining relators. As a result, W is seen to contain a subword which
is more than one half of a defining relator.

Thus a nonempty cyclically reduced word is a relator in a sixth
group only if the word can be shortened by replacing one of its sub-

. words X by a shorter word Y~ι where XY is a defining relator. This
solves the word problem for sixth groups. Other proofs have been
given by Tartakovskii arid Greendlinger.

Our results are contained in the following

MAIN THEOREM. In a presented group, each freely reduced re-
lator contains a subword which is a certain kind of relator called a
basic relator.

If a cyclically reduced word W is a basic relator for a sixth
group, then either W is a defining relator or the cyclic word W con-
tains disjointly Pk subwords which are greater than 7-&/6 of a
defining relator (ft=2, 3, 4) and the integers Pksatisfy 3P2 + 2P 3 +P 4 ^6.
Thus W contains a subword which is more than 1/2 of a defining
relator.

2. Constructing relators* Let W = FXXF2 and V= VΊV2 be words
in J^~. Here " s " stands for "identically equal to". We write
W-» V (delete X) and V— W (insert X). If also F-> U (delete Γ),
then W-* U (delete X, Y). This leads to a definition of W-+W
(delete Xx, , Xn) and W-+W (insert X%, , Xx) for n^l.

A word W splits into one or more words Wu •••, Wn if the W€

can be put in a sequence WΊ, , Wr

n so that 1 —> W (insert W[, , Wή)
where 1 denotes the empty word. An &-word of type t is any word
which splits into t defining relators.

A product of a free generator and its inverse is a null word. If
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W, W are words such that either W~Wfov W-> W (delete Nl9 , Nk)
where the N{ are null words, then W partially reduces to W and W
is a partially reduced form of W. If, in addition, no subword of W
is a null word, then W is the freely reduced form of W. A relator
of type t is a partially reduced ^-word of type t (i.e. a partially re-
duced form of an ^-word of type t).

The first lemma shows that each relator can be constructed from
the empty word by insertions of defining relators, possibly followed by
deletions of null words.

LEMMA 2.1. Each relator is a partially reduced &-word. In
other words, each relator has at least one type.

Proof. The collection of & -words is closed under inverses and
products. If W is an ^-word and x is a free generator, then it must
be shown that xWx"1 is a partially reduced form of some ^-word W.
Suppose 1 —• W (insert Ru , Rn) where the R{ are defining relators.
Let x be the first letter in a defining relator R = x Y. Put W =
x WYY~ιx~ι so that Wf partially reduces to x Wx"1 and 1 —> W (insert
R, Ru , Rn, R"1). This completes the proof.

It can be shown if W" is a cyclic permutation of a word W which
splits into Wu •••, W%, then W" splits into some cyclic permutations
Wϊ, •••, W'ή of Wu •••, Wn, respectively. Hence,

REMARK 2.1. The set of ^-words of type t is closed under cyclic
permutations. The set of relators of type t is closed under cyclic
permutations.

3* Structures for relators* We need terminology for permutations
of a finite set in order to define a structure. In this section, all sets
are finite; 0 denotes the empty set.

Let θ be a cyclic permutation, acting on a set E. If EΦ 0, suppose
E — {alf , am} and either m = 1 with aβ — a1 or m ^ 2 with αx0 =
α ί+1(l ^ i ^ m - 1) and αm0 = α1# Then 0 is represented by an array
H = a1 αm and by the m cyclic permutations of H. Any subword
of H is said to partially represent θ. If j£ = 0, then 0 is the empty
permutation, represented by the empty array 1.

A set of words in J?~ is associated with θ by assigning a free
generator to each element in E. If #{ is assigned to aiy then V =
x1 xm (a word in ^~) is called the value of H or a value of θ.
The values of θ are the cyclic permutations of V. If E = 0, the empty
word is the only value of #.

A cyclic permutation ΘB corresponds to each subset B of E. If
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B Φ 0 and the elements of B form a subsequence bu , bk of a19 ,
am, then ΘB is represented by the array δx bk. If 5 = 0, then 0B

is the empty permutation.
A permutation β, acting on a nonempty set E, determines a par-

tition of E into nonempty subsets El9 fEnf called β-orbits: two
elements α, δ are in the same /3-orbit if α/3i = 6 for some integer i.
The β-cycles are the restrictions of β to the sets El9 , !£„. The
length of a /3-cycle is the number of elements in the corresponding
/3-orbit. β is a reflection (pure reflection) if the length of each /3-cycle
is at most 2 (exactly 2).

A structure S = (U, /3, p, 0) consists of a nonempty set £7 which
is#acted on by a permutation β, a reflection ô, and a cyclic permutation
#. S has carrier E, reduced carrier F = {a:ae E, ap = a], map θ,

and reduced map ΘF. It is required that there exist arrays H, Hp,
representing θ,θFf respectively, such that

( I ) There exist arrays Hu * 9Hnf n ^ 1, representing the β-
cycles, such that 1 —• H (insert Hu , Hn).

(II) Either p is the identity and Hp = H or there exist arrays
lu flkf k^lf representing the ^-cycles of length 2, such that
H->HP (delete I l f •••,!*).

S is said to be of type n. The members of F are ./ία ed elements;
the members of E — F are cancelled elements.

If Hp contains a subword /, of length 2, whose elements are α, 6,
then S' = (£7, /3, <τ, θ) is also a structure where aσ = δ, bσ = a and
σ = |O except on the set {α^6}. Indeed, if ifα- is defined by #p—*Hσ

(delete J), then iyσ represents the reduced map of S'. We say that S
contracts to S' in one step.

S is an ^-structure (^4^-structure) if a free generator is assigned
to each element in E in such a way that the values of the ^-cycles
of length 2 are null words and the values of the β-cycles are words
in ^? (in .Ar). When S is an ^-structure, of type ny with map θ
and reduced map tfj,, then the values of θ are & -words of type n and
the values of ΘF are relators of type n.

THEOREM 3.1. Each relator is a value of the reduced map of some
^-structure.

Proof. Use the definition of ^-structure and Lemma 2.1.
We now turn to some more definitions concerning a structure

S = (E, β, p, θ). S is called noncancelled if there exist fixed elements
in E. S is cancelled if E contains only cancelled elements. In the
latter case, p is a pure reflection.

If A is a nonempty subset of E, then A is the carrier of a sub-
structure T whenever A is closed under β and p. In this case, T =
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(A, 7, σ, ΘA) where 7, σ are the restrictions of β9 p, respectively, to the
set A. T is a proper substructure if A Φ E. S is minimal if it has
no proper substructures; S is simple if it has no proper cancelled sub-
structure.

THEOREM 3.2. Each relator is a value of the reduced map of some
simple ^-structure.

Proof. Use previous theorem and next lemma.

LEMMA 3.1. Each structure has the same reduced map as some
simple structure.

Proof. Consider a nonsimple structure S — (E, β, p, θ) determined
by the expressions 1 —>H (insert H19 9Hn) and H—+Hp (delete
Il9 , Ik) as in the definition of a structure. Suppose Sx = {El9 βu ρu 0X)
is the maximum cancelled proper substructure of S. Let H' denote
the array that results from deleting all the elements in Ev from H.

A sequence H'u , H'm remains after deleting from H19 , Hn the
terms which represent the A-cycles.

A sequence Γu •••,/{ remains after deleting from Il9 •• ,/fc the
terms which represent the ^-cycles. Then the expressions 1—>H'
(insert H[, •• ,iJ^ι) andίΓ—>H? (delete /[, •••,/[) determine a simple
structure having the same reduced map as S.

4* Complexes* A complex C — (E, β, p) consists of a finite,
nonempty set E which is acted on by a permutation β and a pure re-
flection p. If a is the map β, followed by p (i.e. a = βp), then the
α-orbits, the elements in E, and the /3-orbits are the vertices, edges,
and boundaries^ respectively, of C. Whenever a free generator is
assigned to each edge, the values of the /3-cycles are called the values
of the boundaries of C.

C is a disjoint union of 2 complexes (Eit βi9 p^) for i = 1, 2 if E
is a disjoint union of Eu E2 and βi9 p{ are the restrictions of β9 p,
respectively, to the set E{ (ί = 1, 2). If this is never the case, C is
said to be connected.

Since E is a disjoint union of the ̂ -orbits and each |O-orbit contains
exactly 2 edges, the number of edges is always even. Whenever α is
an edge, αp is called the inverse of α. If v, 2e, n denote the numbers
of vertices, edges and boundaries of C, then v — β + n is the Euler
characteristic. A spherical complex is a connected complex with Euler
characteristic 2.

Note that when S1 — (E19 β19 pu θ^ is a cancelled structure, then
Cx = (El9 β19 PJ) is a complex. Furthermore, St is minimal if and only
if CL is connected.
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5* From structures to complexes* We now describe a transition
from a noncancelled structure S to a cancelled structure Sύ with St

there is associated a complex Cx.
Suppose S = (JE7, /3, ft 0) is a noncancelled ^-structure, of type

n*zl, with iϊ, JEZp, i^, , Hn as in § 3. A cancelled .^-structure
Sx = (£Ί, A, ft, #i), of type w + 1, is defined as follows.

Let Hp = ax αm. Since S is noncancelled, Hp is nonempty and
m Ξ> 1. Choose m new elements 6lf , 6m; put JE7X = JS7 U {&i, , bm}.
#! is represented by HHn+1 where Hn+1 = bm bx. Then HpHn+1 —> 1
(delete J^, , Jm) where J{ = α ^ (1 ^ i ^ m). The ^-cycles are re-
presented by Hu •••, Hni Hn+1. The /Si-cycle represented by Hn+1 is
called the distinguished ^-cycle of Slβ

If p is the identity, then the ^-cycles are represented by
Jit * '>Jm' If p is not the identity, then we have H—*HP (delete
Iu i h) where the I{ represent the ^-cycles of length 2. In this
case, HHn+ι~* 1 (delete /lf , Ik, Ju , Jm) and the Ii9 Jι represent
the ft-cycles.

A free generator is assigned to each hi so that the values of Hp

and Hn+1 are inverse words. This insures that the values of the J*
are null words and the value of Hn+1 is a relator. The ^^-structure
Si is now complete and Cί = {Eu βu /Oj.

With reference to the construction of Su we have:

REMARK 5.1. If ab is a subword, of length 2, of some cyclic per-
mutation of Hp and if apt = c, bpx = d, then dc is a subword of some
cyclic permutation of Hn+ί. In other words, if α, b are distinct fixed
elements of S and aθF = b where ΘF is the reduced map of S, then

LEMMA 5.1. 7/ S is simple or minimal, then Sx is minimal.

Proof. Since minimal implies simple for structures, we assume S
is simple. Suppose a nonempty proper subset 4i (of JEΊ) is closed under
βx and px. Then A2 = Eλ — Ax also has this property; Alf A2 are
carriers of substructures of Slm Thus all the elements b{ are in the
same Aj9 say in A2. Therefore all the elements in Ax are cancelled
elements in S. But then Ax is the carrier of a proper cancelled sub-
structure of S, contary to the assumption that S is simple.

THEOREM 5.1. For each relator W there is a cancelled, minimal
Λr-structure Sι = (Elf βί9 p19 θλ), of type t^2 and a connected complex
d = (El9 β19 pλ) such that the β-cycles can be represented by t arrays
whose values are W~ι and t — 1 defining relators.
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Proof. By Theorem 3.2 there is a simple ^-structure S, of type
n ^ 1, where W is one of the values of the reduced map of S. Ear-
lier we constructed a cancelled ^//"-structure Sι — (Eu βu plf ΘJ, of
type n + 1, whose ^-cycles satisfy the desired condition. By Lemma
5.1 Sί is minimal; hence, C1 = (2£lf A, p j is connected.

6* Spherical complexes* The relationship between relators and
spherical complexes is given in Theorem 6.2 and in Theorem 6.4. Their
proofs depend on Theorem 6.1 and Theorem 6.3, which are converses.
Three preliminary lemmas are needed.

LEMMA 6.1. Let Hlf ,Hnbe arrays with disjoint sets of elements
satisfying 1—*H (insert Hu , Hn) where H is an array and n^2.
Suppose H has a subword I, of length 2, whose letters α, b are in
Hif Hh respectively, for i < j . Then 1 —> H {insert Hu , H^lf K,
Hi+1, , f/y_i, Hj+19 , Hn) for some array K, having subword I,
such that 1—+K (insert Hi9 Hά).

Proof. Let W be the array such that 1 -> ΈL' (insert Hu , Hi9

•'-,Hj) and H'—* H (insert Hj+1, •••, Hn). Then / is a subword of
H'. We also have 1-+H' (insert Hlf , H,_u Hif H3, Hi+U , H^).
Let Hi = AxaA2 and H, = BώB,.

lί I ~ α&, then B2 is the empty array and we put K ~
If / = 6α, then £ x is the empty array and we put K =

LEMMA 6.2. Let the array abc± cr (r ^ 1) represent a β-cycle
μ corresponding to a β-orbit B of a connected complex C = (E, βf p).
Assume ap = &. T/ten C /ιαs the same Euler characteristic as some
connected complex C = (£", /S', ̂ ') having 2 fewer edges than C.

Proof. Put JB' = {clf , cr) and E' = E - {a, b}. Let p{' be the
cyclic permutation represented by the array cι cr. Define pr to be
the restriction of p to the set E\ Define β' by putting βf = ̂ ' on
J5' and β' — β on Ef — B'. The connectedness of C follows from the
connectedness of C. Thus, it suffices to show that C has one more
vertex than C\

Since aβp = δ̂o = α, {α} is a vertex of C. cr is the only edge in
Ef having different images under βp and β'p'. In fact, crβρ = ap = b
and crffp* — cφf = c1(o. Furthermore 6 ̂  ĉ o since a Φ cι and ap — &.

Let (Z = cxp, a = /3^, α' = /3'^'. There is an tf-orbit V whose a-
cycle is represented by an array of the form crbdD and V is a disjoint
union of {&} and an α'-orbit V whose α'-cycle is represented by crdD.
Thus C, C have the same vertices, except that {α} and V in C are
replaced by V in C". This completes the proof.
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LEMMA 6.3. Let C = (E, β, p) be a connected complex with n ^ 2
boundaries. Let A = {a19 , αr}, j? = {δx, •••,&,} fee β-orbits whose
β-cycles μ, v are represented by arrays aλ ••• ar and bx δβ, re-
spectively. Assume bφ = α r. Tλew C /&αs £/&e same Euler characteristic
as some connected complex C = (£7, /3', /θ) having n — 1 boundaries.

Proof. Let μ' be the cyclic permutation represented by the array
0i M i •••&.. Define /3' by putting /3' = μ' on the set A u S and
βf = /3 otherwise. Then C has one more boundary than C" since 2
/3-orbits Λ, -B are replaced by one /3'-orbit A (J B. We must show that
C" has one more vertex than C (i.e. that /3'jθ has one more orbit than βp).

Only b8 = fc^"1 and αr have different images under βp than under
yS'/O. In fact b8βp = 6 ^ = αr and 68/5'/> = aφ\ arβp = α ^ and αr/37> =
6 ^ = α r. Furthermore aφ Φ ar since a1 Φ b1 and 6αio = ar.

Let c = aφ, a — βp, and a' = /3'|0. There is an α-orbit V whose
/3-cycle is represented by an array of the form b8arcD and V is a dis-
joint union of 2 α'-orbits F ' , V" whose α'-cycles are represented by the
arrays ar and b8cD. Thus C, C have the same vertices, except that V
is replaced by V and V". Therefore C has one more vertex than C.

The connectedness of C follows from the connectedness of C.

THEOREM 6.1. Lei S = (E, β, p, Θ) be a minimal, cancelled structure
of type n ^ l . Then C = {E, β, p) is a spherical complex.

Proof. Use induction on the number 2e of edges of C. Suppose
2e = 2. Then E = {α, 6} and α/9 = 6, bp = α; hence C is connected.
If the /3-orbits are {a} and {6} so that n = 2, then α/3|0 = αp = 6,
δβ ô — bp^a and {α, 6} is the only vertex. Thus v — e + n = 1 — 1 + 2 = 2.
If {α, 6} is the only /S-orbit so that n = 1, then α/3/> = bp = af bβp =
ap — b and {α}, {6} are the only vertices. Thus, t; — e + ̂  = 2 — 1 + 1 = 2.

Now assume that 2e ^ 4 and that the theorem holds for complexes
with fewer than 2e edges. Let H, Hu , Hn represent θ and the
/3-cycles and let Ix = α6, 72, , Ie represent the |O-cyeles. Assume that

l~*H ( i n s e r t Hu *--,H%)

H-+1 (delete J l f •••,/.).

Suppose α is in Hiy b is in iί^.

Case 1. (i — j) Then Ix is a sub word of H^ Let A be the
/3-cycle represented by Hi. It cannot happen that Hi = J2 since then
Cx = (Eu βί9 px) is a subcomplex of C where E1 = {α, 6} and /x represents
the only ^-cycle. Also S is minimal so C is connected; hence C = CΊ.
This is contrary to 2e ^ 4. Therefore, some cyclic permutation of H{

is of the form abc1 cr (r ^ 1).
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A minimal, cancelled structure S' = (25", /3', p', Θf) is determined as
follows. Let H', Hu , H^u H\, Hi+U ---,Hn represent θ' and the
^'-cycles, and 72, , Ie represent the ̂ '-cycles, where

H-> H' (delete Ix)

H{ — H[ (delete I,)

1 — H' (insert Hl9.- , H^l9 HI, Hi+ι, , Hu)

H'-*l (delete J2, •••,/.).

The complexes C" = (25", /?', ̂ ') and C have the same Euler charac-
teristic and C" is connected by Lemma 6.2.

Case 2. (i Φ j) Suppose i < j (Treatment of j < i is similar.) A
minimal, cancelled structure S' = (E, /3', p> θ) is determined as follows.
Let Hl9 , Hi_u K, Hi+1, , H3_u Hj+1, , Hn) represent the /3'-cycles
where K has the subword Ix and

1 —• H (insert Hu , H{_lf K, Hi+1, , 2?^!, Hj+1, , 2ϊJ

1 -> K (insert H,, Jϊ,) .

This is possible by Lemma 6.3.
The complexes C" = (E, β', p) and C have the same Euler charac-

teristic and C" is connected (by Lemma 6.1). In fact, some cyclic
permutation of 2Γ, Hit and Hά are of the forms at ar6i 6β, at ar,
and δx 6β, respectively, where /x = αr&lβ Now S' and C" can be
treated as in Case 1, since Ix is a subword of 2£.

Thus, in either one or two steps, we can always find a new minimal,
cancelled structure whose associated connected complex has 2(e — 1)
edges such that the original and new complexes have the same Euler
characteristic. By the induction assumption, the new complex has
Euler characteristic 2; hence, so does the original complex. This com-
pletes the proof.

THEOREM 6.2. For each relator W there is some spherical com-
plex C with n^2 boundaries such that a free generator is assigned
to each edge (with inverse free generators assigned to inverse edges),
W"1 is a value of one of the boundaries, and defining relators are
the values of the remaining boundaries.

Proof. Use Theorem 5.1 and Theorem 6.1.

THEOREM 6.3. Let C = (E, β, p) be a spherical complex with
n^l boundaries. Then there exists some minimal, cancelled structure
S = (E, β, p, θ).
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Proof. Use induction on n. We first prove the case n = 1. Here
β itself is the only /S-cycle. This case will be proved by induction on
the number 2e of edges. When 2e = 2, we have β = p and we take
θ = £.

Now assume w = 1, 2e ̂  4 and the theorem holds for complexes
having one boundary and fewer than 2e edges. There must be a
vertex containing just one edge since, if not, we have 2e ^ 2v and
v — e + 1 = 2 (where v is the number of vertices). But this implies
e Ξ> v and v = 1 + e which is impossible. If {α} is a vertex, let b — ap.
Then aβ = 6 since α/3^ = α. Thus /3 is represented by some array
i ϊ = IXH' where Λ s ab.

A connected complex C = (£", /3', ̂ ') with 2e — 2 edges and 1
boundary is defined by E' — E — {αδ} if we take /θ' to be the restric-
tion of p to Ef and put βf — βA with A = Ef. Now apply the induction
assumption to C". There exists a minimal, cancelled structure S' =
(£", /?', |θ', θr). There exist an array X representing θ' = yS' and arrays
Jg, •••,!! representing the ̂ '-cycles such that X—> 1 (delete Γ2, , 7^).
But since H' is a cyclic permutation of X, there exist arrays 72, •••,/«
representing the p'-cycles such that jff'-^l (delete I2, ••-,!«).

Since H—»Hr (delete IJ, we have that ^ = β is represented by an
array i f satisfying i f-> 1 (delete Iu J2, , /,). Thus S = (E, β, p, θ)
is a cancelled structure which is minimal since C is connected.

Now suppose n ^ 2. Assume that the theorem holds for complexes
having fewer than n boundaries. We need only consider the case that
there exist two edges α, 6, in different boundaries, such that ap = b.
For if an edge and its image under p are always in the same boundary,
then one boundary Et consists of the edges in some subcomplex which
must be the whole complex C, by the connectedness of C. But then
w = l .

Thus, we can choose two /3-cycles μ, v represented by arrays
αλ ar and bx b8f respectively, such that arp = δ lβ Form a con-
nected complex C" = (E, β\ p), having n — 1 boundaries, as in Lemma
6.3. The induction assumption implies that there is a minimal, can-
celled structure Sf = (E, β'y p, θ). Here one of the /S'-cycles μ' is
represented by the array αx arbλ •••&,. There exist arrays H, Hu

• , Hn^x representing θ and the n — 1 /3'-cycles such that 1 —»H
(insert Hl9 , Hn^). Then αx αr6x δ8 is a cyclic permutation of
Hif for some i. Thus 1 —> Hi (insert A, B) or 1 —> fl, (insert J3, A) for
some arrays A, J5 which are cyclic permutations of αx ar and δj δβ,
respectively. In either case, H splits into Hu , i ϊ -i, A, 5 , ϋΓi+1,

• , iϊw_i which represent the /S-cycles. Thus S — (E, β9 p, θ) is a
cancelled structure which is minimal since C is connected.

THEOREM 6.4. Let C = (E, β, p) be a spherical complex with n^2
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boundaries such that a free generator is assigned to each edge (with
inverse free generators assigned to inverse edges). If all but one of
the boundaries have values which are defining relatorsy then each
value of the remaining boundary is a relator.

Proof. A minimal, cancelled structure S — (E, β, p, Θ) exists by
Theorem 6.3. Suppose an array H represents Θ. Since H splits into
arrays representing the ^-cycles, W splits into null words so that W
is a relator. Since H splits into arrays representing the /3-cycles, W
splits into n — 1 defining relators and a word K (a value of the "re-
maining" /3-cycle). Since W is a relator, K must be a relator.

7* Sides of nontrivial complexes* In this section each complex
C = (E, β, p) is nontrivial (i.e. has n ^ 3 boundaries). When C is also
spherical, we show that each /3-cycle can be represented by an array
which is broken up into a product Xx Xt (t ̂  1) where each Xi has
certain properties. The X{ will be called sides. In order to define
sides, we classify the edges of C. Let a be an edge.

If either apβ = a or apβpβ Φ α, then a is initial. If. either
aβp = a or aβpβp Φ α, then a is final. Thus, if a is initial, final, or
neither, then ap is final, initial, or neither, respectively. Also, if a
is initial, then α/3"1 is final; if a is final, then aβ is initial.

An array X = αt ar (r ̂  1), which partially represents a /3-cycle,
is a side if αx is the only initial edge in X and αr is the only final
edge in X. If X = αx ar is a side, then the array Y = δr bu

where aφ = b{ (1 ̂  i ^ r), is called the inverse of X.

LEMMA 7.1. // X = αx αr is a side, so is its inverse Y = br 61#

Proof. It suffices to check that F partially represents a /3-cycle
when r ^ 2. i.e. δί+1/3 = b{ for 1 ̂  i ^ r — 1. Indeed, bi+1β — ai+ιpβ =
a>iβpβ = bφβpβ = 6i# The last equality holds since &; is not initial
for 1 ̂  i <; r — 1.

LEMMA 7.2. Lei C = (E, β, p) be a connected complex with n^S
boundaries. Then each boundary contains at least one initial edge
and at least one final edge (possibly the same edge).

Proof. Suppose the array A = ax αr, r ^ 1, represents a β-
cycle so that {au , ar} is a boundary. Let B = br 6X be the
inverse of A. Suppose all the a{ are not final. Then all the b{ are not
initial.

When r ^ 2, bi+1β = b{ for 1 ̂  ΐ ^ r - 1 as in the proof of the
previous lemma, bβ = aφβ = αr/3|0/3 = brρβρβ = br. When r = 1,
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aβ — ax and bβ = bφβpβ — bx. In either case, Ex = {au , αr, bu , δr}
is closed under /3 and p. Hence CΊ = (2^, βu ρx) is a subcomplex where
A, Pi are the restrictions of β, p to Eλ. CΊ must be the whole complex
by the connectedness of C. But CΊ has just two boundaries: {au ,
ar) and {δx, , δr}. This contradicts n ^ 3. Thus some α{ is final and
then aβ is initial.

LEMMA 7.3. Let C = (J5, /3, p) δe α connected complex with n^Z
boundaries. Then each β-cycle can be represented by a product
Xx Xt (t ̂  1) where each X{ is a side. This representation is
unique to within a cyclic permutation of these sides.

Proof. Let μ be a /3-cycle. Choose an array M> representing μ,
so that the first letter of M is an initial edge. (Then the last letter
of M is a final edge.) Therefore M s Xλ Xu t ^ 1, where an edge
in M is initial (final) if and only if it is the first (last) letter in some
Xi. The essential uniqueness of this representation follows from the
fact that each edge can be placed uniquely in one of four classes:
initial but not final, neither initial nor final, final but not initial and
both initial and final. This completes the proof.

Vertices containing exactly 2 edges are called nonessential; all
other vertices are essential. If the inverse arrays X ~ ax ar and
Y = br δx (r ^ 2) are sides, then {a{, δi+1} are nonessential vertices
for 1 ̂  i ^ r — 1 since aβp — ai+1ρ = δ i + 1 and bi+1βρ = bφ = a{. The
next lemma shows that all nonessential vertices arise in this way.

LEMMA 7.4. // {alf b2} is a nonessential vertex of a complex
C — (E, β, p) and if a2 = aJ39 bx — b2β, then axa2 and b2bx are subwords
of sides.

Proof. a2p — aβp = δ2; bφ — b2βp = αx. We must show that aι

is not final and α2 is not initial. Indeed, aβp Φ at since δ2 Φ ax;
aβpβp = a2pβp = bβp = αx. Also, α2iθyδ Φ a2 since α2io/3 = bβ = δx and
6^ z= αj =̂  δ2 = a2p. Similarly, δ2 is not final and bλ is not initial. This
completes the proof.

The relationships between essential vertices, final edges, and sides
can now be given.

LEMMA 7.5. Let C = (E, β9 p) be a nontrival complex. An edge
is in an essential vertex if and only if the edge is final. An edge
is final if and only if it is the last letter in some side.

Proof. Let a be an edge. Suppose a is in an essential vertex V.
If V — {α}, then aβp = a and a is final. If V contains at least 3
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edges, then α, b — aβp and c — bβp are distinct edges. Thus, aβpβp =
c Φ α; hence, a is final.

Now suppose a is final. If aβp = a, then {a} is a vertex. If
aβpβp Φ α, then b — aβp Φ a and c — bβp Φ a. Also a Φ b and the
fact that βp is a one-to-one map imply that b = α/3<o 9̂  δ/3̂  = c. There-
fore there is an essential vertex containing α, 6, c among its edges.
The second statement of Lemma 7.5 follows from the proof of Lemma 7.3.

THEOREM 7.1. Let C = (E,β,p) be the connected complex associated
with a cancelled, minimal Λ^-structure S — (E, β, p, θ), of type n ^ 3.
Assume that the values of the β-cycles are cyclically reduced words.
Let 2s, w denote the number of sides and the number of essential
vertices of C. Then there is no vertex containing just one edge,
2s ^ Zw, and w — s + n — 2.

Proof. If {a} were a vertex, then aβp = a; hence aβ — ap. Let
b — aβ. Then ab partially represents some /3-cycle μ. Since ap — b,
the value of ab is a null word which is a sub word of a value of μ.
This contradicts the assumption that the values of the /3-cycles are
cyclically reduced words. Hence, there is no vertex {a}.

Therefore each essential vertex contains at least 3 edges. Using
Lemma 7.5 and the resulting fact that there is a one-to-one corre-
spondence between final edges and sides, we get 2s ^ Sw.

We know that v — e + n = 2 where v, 2e are the numbers of
vertices and edges of C. We show that v — e — w — shy letting each
pair of inverse sides (of -length m ^ 2) replace 2m edges and m — 1
nonessential vertices. In fact, if X = αx αm, Y = bm bx are in-
verse sides (m ^ 2), then the letters in X, Y are the discarded edges
and {aiy bi+1} for H i ^ m - 1 are the discarded vertices. Thus each
step reduces both v and e by m — 1. Lemma 7.4 assures us that each
nonessential vertex (if any) will be discarded in this process. After a
finite number of steps, we have discarded all edges which are not sides
and all nonessential vertices. Thus v — e = w — s and w — s + n = 2.

8* Calculations* Let S = (E, β, p, θ) be a noncancelled, minimal
^-structure, of type n ^ 2, with reduced map 0 .̂ Assume that the
values of ΘF are cyclically reduced words. Let S1 — (Eu βu pu ΘJ be
a cancelled, minimal ^y-structure, of type n + 1, associated with S.
(Thus the values of the ft-cycles are cyclically reduced words.) Suppose
that the distinguished β^cycle has m sides in the complex C1 — (Eu βu pj.

Consider a side X of a nondistinguished /3x-cycle of C1# X will be
called .a ĵ α̂ βcZ side whenever the inverse of X is a side of the distin-
guished &-cycle. In such a case, the letters in X are all fixed elements
in E.
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Let Bi denote the number of nondistinguished boundaries having
k sides, i sides of which are fixed; put Bk = Σ i Bi. Then we have

m = X

From Theorem 7.1 applied to CΊ we get 6w — 6s + 6(n + 1) = 12
and 4s ^ §w. Therefore

(2) 6n — 2s ^ 6 .

From (1) and (2) we get

Σ (6 - k)Bk ^ m + 6 + Σ ( Λ - 6)Bk

5

and

(3)

Now expand the left hand side of (3):

(4) Σ (6 - k)Bh = Σ (5 - k)Bl + Σ JΪJ + Σ (6 -
A l fcl ϋ s 1 A l

Σ
ϋ s - 1

(6 -
fc=2 i=2

Further,

(5) Σ Σ (6 - k)βi ^ 2Bj + Bϊ +
fc^2 ΐ=2

This can be seen as follows:
When (i, fc) is neither (2, 2) nor (2, 3), we have (6 — k) ^ i.
When i = k = 2, (6 - fc)Bi = 2J51 + iSί.
When i = 2, Λ = 3, (6 - &)#£ = J53

2 + i5£.
Now use (3), (4), and (5) to get:

(5 - k)B\ + X(6

But

Therefore,

m ^ Σ JB* + Σ Σ
fc=2 i=2
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(6) Σ (5 - k)B\ + Σ (6 - k)B\ + 2B\ + B\ ^ 6 .

9 Minimal relators* A minimal relator of type n is a value of
the reduced map of a minimal .^-structure of type n (i.e. a minimal
structure, of type n, which is also an ^-structure). Similarly a non-
minimal relator corresponds to a nonminimal ^-structure.

We aim to show that each relator splits into minimal relators. We
prove this by showing that an analogous situation holds for the reduced
map of a structure S and the reduced maps θu , θr of the minimal
substructures of S. This requires the following.

DEFINITION. Let θ,θu , θr be cyclic permutations acting on sets
E, Eu , Er, respectively, such that E — Ex U U Er is a disjoint
union (r ^ 1). θ splits into θu , θr if the θ{ can be put in a sequence
θ'u , θ'r and if arrays H, Hu , Hn representing 0, θ[, , #£, re-
spectively, can be chosen so that 1—>£Γ (insert Hu •• ,£Γr).

THEOREM 9.1. The reduced map of any structure S splits into
the reduced maps of the minimal substructures of S.

The proof of Theorem 9.1 requires a lemma.

LEMMA 9.1. Suppose the structure S = (E, β, p, θ) contracts to the
structure S' = {E> β, σ, θ) in one step. If S satisfies Theorem 9.1,
so does S'.

Proof. By assumption there exist arrays Hp, Hσ representing the
reduced maps of S, S', respectively, such that Hp —* H* (delete 7) for
some array /, of length 2, whose elements are α, 6. σ = p except on
the set {α, 6}; aσ = 6, bσ = a. Let Hμ = XIY and H9 S 1 7 .

If S { = (E{1 βiy pu θi) are the minimal substructures of S (1 ^ ΐ ^ r),
then there exist arrays Mlf , Mr representing the reduced maps of
&u •> £r, respectively, such that l~>iϊp (insert Mu , Λfr). Suppose
aeEif beEjm

Case 1. (ί = j) Since JŜ  is closed under β and σ, Et is the carrier
of a substructure Si of S'. The fact that S{ is minimal implies that
each nonempty proper subset A (of Eζ) is not closed under both β and
p; hence A is not closed under both β and σ. Thus Si is a minimal
substructure of S\

Let Mi = P/Q. Then the possibly empty array Ml = PQ represents
the reduced map of St . Finally, 1 —> H* (insert Mίf , M{_u M\, Mi+1,
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Case 2. (i < j) By Lemma 6.1, there is an array K such that
1 — Hp (insert Ml9 , M^u K, Mi+U . , M^u Mj+U . , Mr), 1-+K
(insert Miy Ms\ and ϋΓ is of the form K = PIQ.

Eiy ESi and hence E{ U Es are closed under β and ô. Then E{ U -Ej
is closed under σ and is the carrier of a substructure SJ of S\ Since
2£4, 2?if and each nonempty proper subset of either E{ or E3 are not
closed under both β and σ, we have that SI is a minimal substructure
of S\

The possibly empty array K = PQ represents the reduced map of
Si; l^Hσ (insert AΓlf , ifM, K\ Mi+1, , ikf,̂ , M i+1, , Mr). This
completes the proof of Lemma 9.1.

Now Theorem 9.1 can be proved. Let S = (E, β, p, θ) be a struc-
ture with k /O-cycles of length 2. If it = 0, then p is the identity,
the /3-orbits are the carriers of the minimal substructures of S, and θ
is the reduced map of S. Theorem 9.1 holds in this case since θ splits
into the yδ-cycles (by the definition of a structure).

If k ^ 1, then there exist structures To = (E, β, ρ0, θ), , Tk =
(2?, /3, jθfc, 0) where />0 is the identity and ρk = p, Tk = S such that Γf

contracts to Γ ί+1 in one step (0 ^ ΐ g i - 1). Use Lemma 9.1 and the
fact that To satisfies Theorem 9.1 to get that Tk = S satisfies Theorem
9.1. This completes the proof.

Since each relator is a value of the reduced map of some &*-
structure, we have

COROLLARY 9.1. Each relator splits into minimal relators.

The next 3 lemmas will be useful later.

LEMMA 9.2. A nonminimal relator, of type n ^ 2, splits into re-
lators having, types smaller than n.

Proof. Observe that a relator of type 1 is necessarily minimal.
Use Theorem 9.1 and the fact that a nonminimal structure, of type
n ^ 2, has minimal substructures whose types have sum n.

LEMMA 9.3. Let S = (E, β, p, θ) be a structure. If the array
H = α<?i crbDy r ^ 1, represents θ and if the fixed elements a, b
satisfy aβ = 6, then {clf , cr} is closed under β and p.

Proof. There exist arrays Hlf — ,Hn representing the /3-cycles
t*u * ι J"»> respectively, such that 1—*H (insert Hu •••,#„). Since
aβ = by ab is a subword of Hi for some i, 1 g i g n. Since ab is not
a subword of JT, we have i < n. The set {cu , cr} must be the
union of the /3-orbits corresponding to some subsequence of μi+1, ,
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μn. Hence, {cly * ,cr} is closed under β.
Since a, b are fixed elements, we have that {cu , cr} is closed

under p.

LEMMA 9.4. Let α, 6 be fixed elements of a minimal structure
S — (E, β, p, θ) with reduced map ΘF. If aβ = 6, then aθ — b and
aθF = 6.

Proof. If a# Φ b, then there is an array acγ crb, r ^ 1, which
partially represents θ. Lemma 9.3 implies that {cu , cr} is the carrier
of a proper substructure of S. This is impossible since S is minimal.
Thus, aθ = 6. But then α#p = 6 since α, 6 are fixed elements.

10* Asymmetric relators* Let W be an ^-word with 1 —> W
(insert Ru , ϋίj where the JB̂  are defining relators. We always
consider just one mode of performing the insertions (if there is more
than one). Since each letter of W originates from a letter of one of
the Rif there is a one-to-one correspondence between the letters in W
and the letters in Ru , Rn.

Let X = XλxX2 and Γ = Yύ/Yi be any two of the R{. Suppose
that x, y correspond to the letters u, v in W; that u, v can cancel with
each other during free reduction of W; and that the words X2Xxx and
yYxYt are inverses. Then we say that u,v can cancel symmetrically
or that W is a symmetric ^-word.

In this situation, either u, v are adjacent in W or u,v are separated
by a nonempty sub word (of TΓ) which freely reduces to 1. We indicate
this by saying that u, v can cancel either immediately or eventually;
W is either immediately or eventually symmetric. If no two letters
of W can cancel symmetrically during free reduction of W, then W is
an asymmetric ^-word. Finally, an asymmetric (symmetric) relator
of type t is a partially reduced asymmetric (symmetric) ^-word of
type ί.

LEMMA 10.1. // a word W splits into t ^ 2 defining relators,
two of which are X, Y, then W splits into two words U, V such that

U splits into p ^ 1 defining relators, one of which is X,
V splits into q ^ 1 defining relators, one of which is Y,
and p + q = t.

Proof. Use induction on t. The lemma holds for t = 2 with
U = X, V — Y. Let t ^ 3 and assume the lemma is true for smaller
*. Suppose 1-+W (insert Ru , Rt) and X = Riy Y= Rό for i < j .
Let PΓ be the word such that l-> W (insert Rlf , Rt^) and W-+W
(insert Rt).
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If j = ί, choose Z7 s IF', V = JR*. If j < ί, then by the induction
assumption TF' splits into two words U\ V which split into pf defining
relators and qf defining relators among which are X and Y, respectively,
where pf + qf = t — 1, We can choose U, V so that either U = Uf and
F ' — F (insert Rt) o r F = 7 ' and Z7' — U (insert i2f).

LEMMA 10.2. An eventually symmetric &-word W, of type t ^ 2,
is freely equal to some immediately symmetric &-word W, of type t.

Proof. Suppose 1 —> W (insert Ru , Rt) where the Rk are de-
fining relators. Let W contain the letters u, v which can eventually
cancel symmetrically during free reduction of W. Suppose that u, v
correspond to the letters x, y in Ri s X1xX2y Rό = Y^yYi. Apply the
previous lemma with X = Rit Y = Rό to find the words U, V. Then
C7, F have cyclic permutations Z7', F', respectively, such that the
product U', F ; is a cyclic permutation of W.

Let ΣΛ = MiViMi and F ' = N2 = N2nN1 where m, n correspond to
x, y, respectively. Since u, v can cancel in W, either N1Mι or M2N2

freely reduces to 1. Thus W has a cyclic permutation mM2N2nN1M1

which partially reduces to either M2N2 or NJH^
Put W" = M2M1mnN1N2 which is an ^-word of type t. In fact,

MfMjm is a cyclic permutation of U and is an ^-word of the same
type as U by Remark 2.1. Similarly, nNtN2 and F are ^-words of
the same type. Thus W" is a product of ^-words whose types have
sum t.

Either W" partially reduces to M2M1 or W" has a cyclic permu-
tation which partially reduces to NMi. Thus W" has a cyclic permu-
tation W which is freely equal to W.

LEMMA 10.3. Let W be a word which splits into t ^ 2 defining
relators R19 , Rt. If two letters u,v in W can immediately cancel
symmetrically j then W also splits into t — 2 defining relators and
one or more null words.

Proof. Let Ri = XλxX2 and Rά = Y2yYχ where x, y correspond to
u,v, respectively. By assumption, X2Xxx and yYxY2 are inverses so
that XxxyYγY2X2 and XxYxY2yxX2 freely reduce to 1.

The proof of Lemma 6.1 shows that W splits into t — 2 defining
relators and a word C7. Either U = X^i/ ^1^2 (with Y2 = 1) or Z7 =
X2Y2yxXi (with Fj = 1). In either case, Ϊ7 freely reduces to 1 so that
U splits into one or more null words. Thus, W splits into t — 2 defining
relators and one or more null words.
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LEMMA 10,4. Suppose 1 —> U (insert X, Y) where X, Y are re-
lators of types p , g ^ O with the understanding that a relator of type
0 is a null word. Let U have a subword N which is a null word
whose letters u, v correspond to a letter in X and a letter in Y,
respectively. Let V be defined by U-+V (delete JV). Then V is a
relator of type p + q.

Proof. If p = q = 0, then X, Y and hence V are null words. If
p > 0, q = 0, then V s X. If p = 0, g > 0, then either V = Y or F
is a cyclic permutation of F.

Finally, if p > 0, g > 0, then X, Y are partially reduced forms of
& -words P, Q of types pf qf respectively. Then U is a partially re-
duced form of an ^?-word ikf, of type p + q, such that 1—»M (insert
P, Q). Thus C7 is a relator of type p + q; hence so is V.

LEMMA 10.5. If a word W splits into null words and/or relators
having types whose sum is t ^ 1, then this is alεo true for each word
W which is freely equal to W.

Proof. It suffices to check the cases when W is obtained from
W by a single insertion or deletion of a null word N. If W—> W
(insert JV), then W satisfies the lemma.

Now suppose W—» W (delete JV). By assumption 1—> W- (insert
Wlf •••, Wr) where Wu •••, Wr are null words and/or relators having
types whose sum is t. Let Wk have type tk with tk = 0 if Wk is a
null word. The lemma holds when each Wk is a null word since then
W also splits into null words. Therefore, assume some Wk is not a
null word so that t1 + + tr = t.

One possibility is that the letters in N correspond to letters in the
same W{ so that Wi -+ W\ (delete JV) for some word W\. If t{ = 0,
W\ is the empty word. If t{ ^ 1, W\ is either empty or a relator of
type U. In any case, 1 -> W (insert W» , W^u W'iy Wi+U , WX

The other possibility is that the letters in N correspond to letters
in two words Wu Ws so that r ^ 2. Lemma 6.1 implies that W splits
into r — 2 Wks, having types whose sum is t — t{ — tjy and a word U
which splits into Wif W,. Then W splits into the same r — 2 Wks
and a word V such that ί7—> V (delete N). By the previous lemma,
V is a relator of type t{ + t3>. This completes the proof.

LEMMA 10.6. A symmetric relator W, of type t ^ 2, splits into
null words and/or relators having types smaller than t.
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Proof. Let W be a partially reduced form of a symmetric ^
V of type t. By Lemma 10.2 V is freely equal to an immediately
symmetric ^-word V of type t. By Lemma 10.3 either t = 2 and
V splits into null words or t ^ 3 and F ' splits into null words and
relators having types whose sum is t — 2, (since a defining relator is
a relator of type 1). By Lemma 10.5, W splits into null words and/or
relators having types whose sum is t — 2. This implies Lemma 10.6.

THEOREM 10.1. Each relator splits into null words and/or
asymmetric relators.

Proof. Let W be a relator of type t ^ 1. When t = 1, W is a
defining relator which is an asymmetric relator. Use induction on t.
Let t ^ 2 and assume the theorem for relators of type smaller than
t. Theorem 10.1 then follows from Lemma 10.6.

II* Proof of Main Theorem* In order to solve the word problem
in the presented group &, it suffices to be able to recognize the
asymmetric, minimal relators \$iich we call basic relators.

THEOREM 11.1. Each relator splits into null words and/or basic
relators.

Proof. Use Lemma 9.2, Lemma 10.6 and the fact that a relator
of type 1 (a defining relator) is a basic relator. This completes proof.

We now consider a basic relator in a sixth group. More specifically,
consider a cyclically reduced relator W which is a value of the reduced
map of a minimal, noncancelled ^-structure S = (E, β, p, 0), of type
n ^ 2. Then some cyclic permutation of W is the freely reduced form
of an ^-word V of type n, where V is a value of θ. We assume
that V is an asymmetric ^-ward so that W is an asymmetric relator.
The structure S characterizes one method of freely reducing V to a
word which is a cyclic permutation of W. As usual, let Sx = (Eu βu pu 0X)
be the cancelled ^/"-structure associated with S; Cx = (Eu βu pλ). Note
that Ci has no vertex containing just one edge (by Theorem 7.1).

In this situation, consider the B\ of § 8. The following lemma
implies that B\ = B\ = B\ = 0.

LEMMA 11.1. Let S = {E, β, p, θ) be a noncancelled, minimal
structure with associated cancelled structure Sλ — (Eu βu ρu ΘJ. Let
d = (E19 βlt pj and assume that Cλ has no vertex containing just one
edge. Suppose the product XY of nonempty arrays partially re-
presents a nondistinguished β^cycle and X, Y are both sides in Cx.
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Then X, Y are not both fixed sides. Also, there is no nondistinguished
β^cycle tvhich is represented by one fixed side.

Proof. Suppose X, Y are fixed sides. This assumption together
with the fact that XY partially represents a nondistinguished A-cycle
imply that XY partially represents ΘF, the reduced map of S. Let a be
the last letter in X; let b be the first letter in Y. Since Y is a side of
Cu b is an initial edge. Also, since {b} cannot be a vertex of Cu we
have bρβt Φ b.

Since α, 6 are fixed elements of S and aβ = aβx = δ, we have
<xθF = 6 by Lemma 9.4. By Remark 5.1 bp1β1 = apt. Hence bp^βφSi —
aPipβi = dβi = b. This contradicts the fact that 6 is an initial edge
of d . Thus, both X and Y cannot be fixed sides.

Now let Z be a fixed side, representing a nondistinguished &-cycle.
If Z is of length ^ 2 , let α, 6 be the last and first letters of Z, re-
spectively, so that a Φ b. We get a contradiction as before.

If Z is of length 1 and Z ~ α, then α/3 = α& = α and α<o = α.
Hence, {α} is the carrier of a proper substructure of S, which is again
a contradiction. This completes the proof.

Let the arrays MX and YN represent nondistinguished /Si-cycles
JΛ, v. respectively. Assume that the values of MX, YN are the defining
relators Rlf Ru respectively, and that X, Y are inverse sides.

If μ Φ vy then Rlf R« are not inverses since Fis asymmetric. Hence,
R1 and Rϊ1 are distinct defining relators with a common subword (the
value of X). The less-than-one-sixth property implies that

< * ) l(X) < — l(MX) and l(Y) < — l(YN) .
6 6

It is also possible that μ — v. In this case Ru R2 are cyclic per-
mutations of one another. Once again (*) will hold provided that Rl9 R»
are not inverses. But this proviso holds.

LEMMA 11.2. If T is a nonempty cyclically reduced word, then
-no cyclic permutation of T is the word Γ""1.

Proof. Let Z7= Γ22\ be a cyclic permutation of Γ = T,T2. If
U = T~\ then Tt = T^\ Γ2 = T;1; hence Tu T2 are empty words,

•contradiction.
Thus, for Cί9 we also have B°k = 0 for 1 g k ^ 6. From (6) in

§ 8, we get W\ + 2B\ + B\^ 6. This implies the Main Theorem with
Pk = B\, k = 2, 3, 4.
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