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Let f(0) be integrable on (0, ) and define
Ay = Sg S cosnbde, b, = nt/? Sﬂ S (6)P,(cos 0)(sin 8)1/2d8H
0 (1]
where P,(x) is the Legendre polynomial of degree n. Then

(1) c= > lalMn+ 1?3 [balfn + D)* = C
n=0 n=0
for 1< p< oo, ~1<a< p—1, where C and ¢ depend on p
and « but not on f. From this we obtain a form of the
Marcinkiewicz multiplier theorem for Legendre coeflicients.
Also an analogue of the Hardy-Littlewood theorem on Fourier
coefficients of monotone coefficients is obtained. In fact, any
norm theorem for Fourier functions can be transplanted by
(1) to a corresponding theorem for Legendre coefficients,
Actually, the main theorem of this paper deals with ultra-
spherical coeflicients and (1) is just a typical special case,
which is stated as above for simplicity.

Let P} (x) be defined by (1 — 2rx 4+ r*)~* = 37, PM«a)r™ for » > 0.
The functions P)}(cos §) are orthogonal on (0, 7) with respect to the
measure (sin )**d6 and

Tn + 290U2T0 + 12) _ s
nl(n + NI (NT(2N) "

(1) § [PX(cos 6)](sin 8)d6 =

Observe that tX = An'~* 4+ O(n~*) where A will denote a constant whose
numerical value is of no interest to us. For simplicity we set pX(d) =
taP)(cos f)(sin #)*. The functions {p}(8)}:., form a complete orthonormal
sequence of functions on (0, ) which for A=1 reduce to {4 sin (n+ 1)6};.
Also lim,_, @}(0) = A cosnf so the functions @}(d) are generalizations
of the trigonometric functions which are used in classical Fourier
series. For uniformity we define @%(6) = (2/w)"* cos nf. Later we shall
state an asymptotic formula for () which shows another close con-
nection with trigonometric functions. In essence it says that ¢}(6)
looks like cos [(n + N\)0 — m(X\/2)]. All of the facts about ¢} that are
quoted without reference are in [15]. Since @3(f) are a bounded
orthonormal sequence we may consider their Fourier coefficients. Let
fe LY 0, ) and define
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nﬂwmmw

Let ||a,ll, = [Z0]@,|?]¥". Then using M. Riesz’s inequality [12] for
by = Sewn ti/(m — k), L. [|bu]l, < As | @]l 1 < p < oo, and Hilbert’s
inequality, i.e. if ¢, = Za,/(n + k) then ||¢c, ||, £ 4sll@nllp, 1 <D < oo,
it is easy to show that ||al||, < A,||a.|| and conversely ||al ||, < 4,]||ak]l,,
1< p< . It is this inequality that we generalize to all » > 0. For
some of the applications we actually want a slight generalization of
the above. Instead of considering the I norm we work in a weighted
I” norm,
[ 1/p

(2) 100l =[5 10a P + 1]
These applications will be given in the last section.

Our main theorem is as follows.

THEOREM 1. Let fe LY0,n) and define a) as above. Then if
l| @, llp,« 28 defined by (2) we have

(3) A = lazllse/ll @hllpe = A
Jorall ,p=z0and 1<p< oo, —1<a<p—1L

It will be sufficient to prove the inequalities (3) when g <A< £+ 1,
We first give in detail the proof when g =0 and 0 <X\ < 1. The
formulas that we use in this case are all in the literature and are
reasonably well known. Also this proof is easier to follow than the
proof of the general case. Then we will sketch the proof for general
My, # <A< p+ 1. For simplicity we set a) = a, and use cosnf
instead of @)(6).

Let £,(6) = Zr0a,r*cosnf. Since f,(8) — f(0) almost everywhere
and boundedly in L' we have

a? = lim S FA(0)pNO)do = lim &2 S £.(6)P(cos 6)(sin 6)*d6
r—1 0 r—1l 0

= lim S ayrit? S P>(cos 6) cos k6 (sin 6)*d6 .
0

r—1 k=0
We break the sum up into three parts, 0 < k = [n/2], [#/2] < k < 2n
and 20 < k. What we need in each of these intervals is a good
estimate for t3\ P} cos 6) cos k6 (sin 6)*d6 = G(k, n).

0
Consider first the case k = 2n. We use the following well-known
representation for P)(cos #) in terms of cos j6.

(4) PMcos 6) = 3 a,a,_; cos (n — 25)8
7=0
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where a; = (j)\/7! = A7* + 0(3*). Then
Gll, n) = 3ty it} S (sin 6)*
Jx [cos (B — n + 27)0 + cos (k + » — 27)0]d6 .

Since SI (sin 6)* cos r8d@ = O(r—-*) and k = 2n we see that
0

n—1
|Gl m) | < A0 — Gy =k
Jj=1
= O((n/k)*™) = O(k™) .
For the theorem that we want the last estimate O(k™) is sufficient.
Observe however that we actually have a better estimate. Because
of this it is possible to change Theorem 1 to get similar theorems
where the Fourier coefficients are defined by S F(6)P)(cos 0)(sin 6)*n*db
0
for various values of «. A possible transplantation then goes to
S F(O)P)**(cos O)(sin )**Pn—tdf, Or the (sin@)* can be omitted from
0

both of these integrals. We mention these facts only because in the
dual case different transplantation theorems have been considered by
. Muckenhoupt and Stein [11] and by the authors [3]. The reason that
both types of theorems are true is best seen in the proof of the present
theorem, which is essentially easier than either of the theorems in [11]
or [3].

Next consider G(k, n) for k < [»/2], This time we need a formula
of Szego. For 0 <A <1

(sin 8)**~*P2(cos 0)

() _2 Tm+2) 3o .
TN T+ 1 +1) 2 finsin(n + 25 + 1)f

where f, =1 and

== M2=N--G =N m+1) - @+7) .
” J! (m+XN+1) e (m+ N+ 7)

See [15, p. 96]. A simple estimate shows that
Sin =003 n + D~*nY) .

Then
Gk,n) =0 2‘, nr A M Y (sin )
x [sin (1 + 2 — k + 1)8 + sin (n + 2§ + k + 1)0]da]
= 0[S un + a7+
= 0= + 0( S5 + §)n*) = 0@ .
J=1
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As usual in results of this nature the region where & and n
overlap is harder to handle. This is because a Hilbert transform of
some sort always seems to arise. This time we not only have the
usual Hilbert transform but we also get a strange variant of it. The
transformation we encounter is

2n n

1
b, = — a, lo .
n k= g.|'n,———k—i-7x+1|

In §2 we prove the following lemma, which we will use in the follow-
ing argument,

LeMMA 1. If {a,}el™, 1< p< o, —1<a<p—1, and

b:_l-_ 2n n

1
n k=[2n/2]ak °8 Imn—k+x+1]

then ||b,|ls. = Aol a,llsa-

For reference we state a form of the asymptotic formula for
P)(cos §) which we will use, [15, p. 195].
For 0<a<l, I/n=0 < 7/2

AT
I+ 2 !_A cos {(n + N)f — —2—}
T(n+x+1)| (sin 6)*

B cos {(n +r+ 10—+ l)—”—}
(n + A\ + 1)(sin )+

P}Mcos 6) =

(6)

+

+ O(rn~*(sin 6)“*—2)} .
where A and B depend upon )\ but not on 7.

From this we have

taP)Mcos 6)(sin 6)* = A cos {(n + \)8 —2127-:-}

(7) Bcos{(n+x+1)a(x+1)-”-}

+ popr + O((n6)™® + O(n™) ,

where 1/n < 6 < /2 and the O terms are uniform in » and 4. Also
we shall use the fact that t3P}(cosd)(sin §)* are uniformly bounded
functions, [15, 7. 33, 6]. Instead of considering

tr §R P)(cos 8)(sin §)* cos kfd8
0

. “IZ . » 3 . .
we may consider since the integrand is either even or odd with

0
respect to 6 = /2. Using (7) we get
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th Sm P)(cos 8)(sin 8)* cos k0do
0

=t S P)(cos 0)(sin 6)* cos k6do + O( 1 )

/2

=A S cos {(n + A\)0 —-5} cos k8do

1/n

ez COS {(n + A+ DI - N+ 1)%} cos kfdo

+B Slln n sin 6
/2
off,. ]+ o5)-

The last two terms are O(1/n) and the first is A’/(n — k + \) + O(1/n).
We need to consider the second term. Using the addition theorem

for cos § we get B/n S " [{cos (n — k + 1)6}/sin 6]d6 + three more terms

which are similar but easier to handle. Since 1/sinfd — 1/ is a
bounded function for 0 < # < 7/2 we may instead consider

J____lism cos(n —k+ )+ 1)0d0.
n Jin 7

Assume first that £k < n + 1+ A. Then changing variables by
(m—k+ N+ 1)§ =y, we find

B S‘ cos ydy + B g"“"““ cos ydy

(n—k+A+1)/n Y n Ji Y

n
The second term is O(1/n) by an integration by parts. The first term is

1 1
_B;S - Gy o(i S y dy)
n (n—k+A+1)/n Y N Jn—k+A+1)/n

=%logn—k?—x+1 +O<'n1_)'

If >n+ N+ 1 we get instead that

Jz"f_logk—nﬁx—l +0<71z'>'

Using all of the estimates, we have

a=0[La]+a 5 %

il m—k 4+ N
B n
el |
n k=rznma" 8 |m —k+ N+ 1|
+ O[i E‘, | @y, |] + lim i a,r* Ak, n)
n k=i=n/2] r—1 k=2n
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where Ak, n) = O(k™).

To show the I”* boundedness of these sums we need two forms
of Hardy’s inequality and M. Riesz’s inequality for the discrete
Hilbert transform as well as Lemma 1. The relevant forms of Hardy’s
inequality are in [6], p. 255, #346 (a), (b), part (@). The continuous
analogue of the I”"* boundedness of the discrete Hilbert transform is
in [5].

Using these inequalities we see that the first and fourth terms
are bounded by Hardy’s inequality., By dominated convergence we
may let »— 1 in the fifth term and it is bounded in !** by Hardy’s
inequality. The second term is just the discrete Hilbert transform
plus two terms like the first and last terms, Thus it is bounded in
[*=, The third term is handled by Lemma 1.

In actual fact the second and third terms given above are not
exactly right since the terms in which k¥ and » have opposite parity
are zero. The notation to include this is too cumbersome to be worth
including and this point causes no trouble.

To show that ||a,||. =< A||a}||.. observe that (formally)

@ = 76) cos kot = 3. a3t |" Pi(cos ) cos kt(sin 0)*d .
0 2=0 0

We have the same G(k, n) that we analysed above and so no more
work need be done on it. However there is the problem of Abel sum-
mability of ultraspherical expansions. Estimates for the Poisson kernel
which allows us to prove the dominated L' convergence of the Abel
means are in [11, §4]. The argument that is needed to prove this is
well known.

We now consider the general case of Theorem 1 with g <A < £+ 1,
“The proof proceeds along the same general lines but the formulas for
P} that we need are considerably more complicated. To take the place
of (4) we need the following result of Gegenbauer [4].

If 0 <a< B then

(8) P(cos 6) = 3, a;Pgy;(cos 6)
7=0

where

a.=L@n—2j+al'G+B—-—a)n—35+8)
’ rere—ailln—j+a+1)

Instead of (5) we need a result that follows from (8) and is given in
[2]. If (B—1)/2< a< B then

(9) (sin 6)* P*(cos 6) = 5:"% B;P5,,,(cos ) (sin 6)**
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where

g, = LB (n+ 2 n+ 2]+ HIn+2a)(n+j+ B (j+ B—a)
! r—al(@jnl(n+j+a+ D0+ 25+ 26) ’

Observe that B; is positive if @ < 8. This result also holds for @ > 8
but then the coefficients are no longer positive and changes must be
made for a =8+ 1, 8+ 2, ---, since the right hand side is then a
finite sum. A simple computation shows that

10) a; ~ (n— 25 + a)jf—tnf-et
and
(A1) B, ~ (0 + 2 Pn=GP= = + P~ (n - ) Pemegpet
fora< B, Fora>Fanda=pL+1 86+ 2, --, we have
B3] ~ (n o+ gysmemieijpect.
By a; ~b; we mean 0 < ¢ =a;/b; £C < .
If in (9) we let n = 0 and use (1) we have

(12) . Y (sin 6)*PE(cos 6)do | = O(5=2) .

Next we need something to take the place of coszcosy =
[cos (x + y) + cos(x — ¥)]/2 and sinx cosy = [sin (x + y) + sin (x — y)]/2.
For the first we use a formula of Dougall which is given in [9] and
reduces to it for x— 0. If x> 0 then

%) Po) PAo) _ & o o gy P2

PND) PiD)  e-ftm (1)

where c,(k, m, n) = 0 and >, c\(k, m,n) = 1. We define ¢,(k, m,n) = 0
if t<|n—m| or k>n+ m and then we may sum on all non-
negative %. The numbers ¢, are known [9], but we shall not need
them in our argument.

For the second formula above we use the following substitute
which again reduces to it for x— 0. If A > 0 then

Piti@) Pax) _ " Pi(z)
4 Py (1) Pr(1) k=|n§n(-sz(k’ m, m) Pr(1)

where dy, =2 0if n = m — 1. Thisis found in [1]. From (14) it follows
that S, dy(k, m,n) =1 where d\(k,m,n) =0if k<|n—m|—2or
k > n + m. Finally recall that

(15) PA1) ~ niht



400 RICHARD ASKEY AND STEPHEN WAINGER

These results are sufficient to allow us to estimate S‘ Pr(0)pi(6)d6 for
0

p<x < p+1and k=n/2 or n <k/2. To estimate this integral

for k/2 < n <2k we use the following asymptotic formulas due to

Szega.

LEMMA 2. Let p >0, ¢ not an integer. Then

I'(n 4+ 2p)

Pi(cos ) = —7% sinmp T

+ 0 — (m+ )=
«| %t Lm+ pIom — p+ 1) c°s[(” m+ ()0 = (m ”)2] R
a0 I'(n + m + g+ Lym! (2 sin §)™** ?

where
| R, | = O[(sin 8)—P—#n+—"-1]

and the O holds uniformly for 0 < 6 < 7.
For 0 =1,2,3, ..+ we have

LEMMA 3.

P¥(cos §) = 2 "Z_:’o(__l)m(m +: - 1)<n + 2y — 1)

p—m+1
cos [(n +m + p)f — (m + ;1)—725]
[(2sin 6)(m + )]

The same estimates hold for an error term in Lemma 3 as in
Lemma 2 if one stops before m = ¢ — 1. These two lemmas are in
[14, p. 49 and p. 59]. In fact we do not need the full force of either
of these Lemmas but they are relatively inaccessible and not as well
known as they should be.

Now to complete the proof of Theorem 1. Let g<ia< p+1
and f,.(0) = ;. air*pt(f). Then by dominated convergence and the
boundedness of the Abel means of an ultraspherical expansion we
have

a = lim [ £.0)220)0 = lim 507" tO)220)0 .
=17 Jo 717 =0 0

As above we need to estimate g: P (0)ph(6)d6 = G(k, n) for three cases,

k=n/2, n/2<k<2n, and 2n0§ k. Consider the third case first.
Using (8) and (13) we have
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Gk, n) = )¢t S Py (cos 8) Pcos 8)(sin 0) +d6
0

{n/2] T
= S o, S P(cos 6)PE,,(cos 6) (sin 8)+d8
7= 0

= S it PrOPLLW 500, B0 — 2)[PHOT
= =0

J

o

. S P} (cos 0)(sin §)*~+(sin )**d8 .
0

Then using (10), (12), (15), and recalling that ec.(l,k,n —27) =0
unless k —n+27<l<k+n—27and sol ~ k.

For simplification of printing we use 7, k, § in the following argu-
ments instead of n+1,k+ 1,7+ 1, ete. This leads to some infinite
terms which clearly aren’t infinite and they are to be interpreted in
the obvious way.

[n/2]
|Gk, n) | = 2, () (k) ~*(n — 25 + W)@ () (n — 27)* (k)
=0
= A(n/B)NEk)™ = A(R)™ .
Next we consider G(k, n) for k < n/2. Using (9) and (14) we have

o

Gk, n) = S, 8348, S Py (cos 6) P (cos 6)(sin 6)%—+2d0
0

j=0
= 3 8B PEDPLD) 3 du(, ky 1 + 2)[PE(D)]

j=0 =0

: S Pu+(cos 6)(sin 6)*~(sin 6)*+°d0 .
This time d,(l,k,n + 27) =0 unless »/2 + 7 =1 < 2n + 47 (actually

it is zero for many values in this range also but that doesn’t matter)
and so ! ~n + 27 and thus using (11), (12), and (15) we obtain

|G, ) | = % ()= (k)—*(k)™'8; S: Piii(cos 0)(sin )*—*+3dg,
= ; ()= (E) ()Y (m - F)~>H(F+ S: Pii(cos 0)(sin 0)—*+2d0
= (’n)l\(]c)ﬂ-]g (_7‘)“"'}‘(% + j)—"—“(n + j)_z+z(“+1)_2+)\_3,‘

= ] 3 Gy o+ 5 0]
< ME)H(n) "+ + (n)" A < [k/n]Mn)t .

For the terms with %/2 < n < 2k we use Lemmas 2 and 3. As
in the case # =10, 0 <\ < 1 we first reduce the integral to

| PhO)pt0)d0 + O~
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and then terms of the same type as previously appear. The proof is
then finished by the same appeal to Hardy’s inequality, M. Riesz’s
inequality, and Lemma 1,

Theorem 1 then follows by a repeated application of the inequalities
just proven.

2. A lemma. We now give a proof of Lemma 1. Recall that

1 & n
bnz—- al .
n e mm g Im+x+1—Fk|
We define 4; = 3%-(n ;. Then
1 & n 1 n
b, = — A, — A, )1 =g lOg ——————
nk=anI;]+1( k ) Og|n+7\,+1——k|+'naimog

n
non+1
2

= _]; 5S A [log L — log __n___._]

W e n+ N+ 1—Fk| n+ N — k|
1 Azn

o k) + o[ £2)

n

=+

A,,Iogl n+x—kk|+Rn

1
N ¥=[w/2] n4+rN+1-—

where R, is a bounded sequence in " if {a,}€l™*. But

il P il R
1 1
= 0 .
+k—n—7»+ (F—mn—2\)?
So we have '
=L $ A 1 3 4, +R

nem n+rn—=Fk -';b_k=[znll2] (k—mn— N

The second term is a bounded sequence in " by [6, p. 198, # 274].
We write the first term as

—A,
LA o =y s A

nieem n+N—Fk Smmant+rn—k  efaln nlk—n)

But A,/(k — )\) is in I”* and so we have that {b,} is an [** sequence
by Hardy’s inequality and M. Riesz’s inequality for the discrete Hilbert
transform.

A similar proof also shows that
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noa, n
C, = Zk log — 7
k%“m k gin‘—lc+a|

is a bounded operator for «« not an integer. If « is an integer the
transformations are bounded if the term when the logarithm is un-
defined is dropped.

A similar theorem is also true in the continuous case where an
integration by parts takes the place of our summation by parts.

3. Applications, Our first application is an analogue of a theorem
of Hardy and Littlewood concerning the Fourier coefficients of even
functions, monotonically decreasing in (0,7), [16, p. 130]. Their
theorem is

THEOREM A. If f(0) is a decreasing integrable function on (0, )
and if a, are the Fourier cosine coefficients of f, then

- y»
DIEARCEY
s finite if and only if
[[7150) pooeeas]”
18 finite, 1< p< o, —1l<a<p—1.
From this and Theorem 1 we obtain

THEOREM 2. Let f(6) be decreasing and integrable on (0, w) and
a, = t*S F(0)PXcos 6)(sin 0)*d6, 0 <. Then [zm (0 + 1)&] is
finite +f and only if [g [f(ﬁ)]”ﬁ”—z—“dﬁ] 18 finite, 1 < p < oo,
—1l<a<p-—1.

Another application is the analogue of the Marcinkiewicz Multiplier
theorem. In the case of Fourier coefficients it is due to Sunouchi [13]
for {a,}€!” and to Igari [10] for {a,}cl™".

Tuporem B. Let £(8)e L0, 1), a, = SO £(6) cos n8dod, |#(8)] = C,
[ laol=c, n=01,--

Then if b, = g"t(o)f(e) cosnbdd and {a,} € 1P*, 1<p< oo, —l<a<p—1,
0
we have {b,} €™ and ||b,|ls. = Al @, 5.0

From this we get a form of the Marcinkiewicz theorem for ultra-
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spherical coefficients.

TrEOREM 3. Let f(6)e LY0, ), a, =t} S F(6)PMcos 6)(sin 6)*d6,
A>0,|t0) =C,

[ Jaeisc, =01,

Then if b, =t} S” t(0) f(6)P)cos 0)(sin 6)*d6 and if {a,} e l™*, 1<p< o,
0
—l1<a<p-—1then {b,}el” and [|b,|,« = Al a5

For p =2 Hirschman has already obtained a form of the
Marcinkiewicz theorem. If we let

1 0=6=1/r

(6) ={0 1r<b =

then we get the projection theorem of Hirschman [8] but only for
ultraspherical coefficients. Hirschman proves his result for Jacobi
coefficients and presumably Theorem 1 is also true for Jacobi poly-
nomials. However this is still open.

REFERENCES
1. R. Askey, Products of wultraspherical polynomials, to appear in Amer. Math.
Monthly.
2. , Orthogonal expansions with positive coefficients, to appear in Proc. Amer.
Math. Soc.

3. R. Askey and S. Wainger, A transplantation theorem for ultraspherical series, to
appear in the Ill. J. Math.

4, L. Gegenbauer, Zur Theorie der Functionen C)(x), Denkschriften der Akademie der
Wissenschaften in Wien, Mathematischnaturwissenschaftliche Klasse, 48 (1884), 293-
316.

5. G. H. Hardy and J. E. Littlewood, Some theorems on Fourier series and Fourier
power series, Duke Math, J. 2 (1936), 354-381.

6. G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge, 1952,

7. 1. 1. Hirschman, Jr., Weighted quadratic norms and ultraspherical polynomials, II,
Trans. Amer. Math. Soc. 91 (1959), 314-329.

8. , Projections associated with Jacobi polynomials, Proc. Amer. Math. Soc.
8 (1957), 286-290.

9. H. Y. Hsii, Certain integrals and infinite series involving ultaspherical polynomials
and Bessel functions, Duke Math, J. 4 (1938), 374-383.

10. S. Igari, On the decomposition theorems of Fourier transforms with weighted norms,
Tohdku Math. J. (2) 15 (1963), 6-36.

11. B. Muckenhoupt and E. Stein, Classical expansions and their relation to conjugate
harmonic functions, Trans. Amer. Math., Soc. 118 (1965), 17-92,

12, M. Riesz, Sur les fonctions conjuguees, Math, Z. 27 (1928), 218-244,

18. G. Sunouchi, Discrete analogue of a theorem of Littlewood-Paley, Tohoku Math.
J. (2) 13 (1961), 320-328.




TRANSPLANTATION THEOREM FOR ULTRASPHERICAL COEFFICIENTS 405

14, G. Szegd, Asymptostiche Entwicklungen der Jacobischen Polynome, Schriften der
Konigsberger Gelehrten Gesellschaft, Naturwissen Schaftliche Klasse, 3 (1933).

15. , Orthogonal Polynomials, New York, 1959.

16. A. Zygmund, Trigonometric Series, vol. 2, (Cambridge), 1959.

UNIVERSITY OF WISCONSIN
CORNELL UNIVERSITY






PACIFIC JOURNAL OF MATHEMATICS

EDITORS
H. SAMELSON *J. DUGUNDJI
Stanford University University of Southern California
Stanford, California Los Angeles, California 90007
R. M. BLUMENTHAL RICHARD ARENS
University of Washington University of California
Seattle, Washington 98105 Los Angeles, California 90024

ASSOCIATE EDITORS
E. F. BECKENBACH B. H. NEUMANN ‘F. WOLF K. Yosmpa

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY

CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF TOKYO

UNIVERSITY OF CALIFORNIA UNIVERSITY OF UTAH

MONTANA STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA UNIVERSITY OF WASHINGTON

NEW MEXICO STATE UNIVERSITY * * *

OREGON STATE UNIVERSITY AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON CHEVRON RESEARCH CORPORATION
OSAKA UNIVERSITY TRW SYSTEMS

UNIVERSITY OF SOUTHERN CALIFORNIA NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be
typewritten (double spaced). The first paragraph or two must be capable of being used separately
as a synopsis of the entire paper. It should not contain references to the bibliography. Manu-
scripts may be sent to any one of the four editors. All other communications to the editors should
be addressed to the managing editor, Richard Arens at the University of California, Los Angeles,
California 90024.

50 reprints per author of each article are furnished free of charge; additional copies may be
obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price
per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual
faculty members of supporting institutions and to individual members of the American Mathematical
Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal
of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6,
2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

* Paul A. White, Acting Editor until J. Dugundji returns.



Pacific Journal of Mathematics

Vol. 16, No. 3 BadMonth, 1966

Gert Einar Torsten Almkvist, Stability of linear differential equations with

periodic coefficients in Hilbert space . .....................cccoou... 383
Richard Allen Askey and Stephen Wainger, A transplantation theorem for

ultraspherical coefficients . .......... ... i 393
Joseph Barback, Two notes on regressive isols . .......................... 407
Allen Richard Bernstein and Abraham Robinson, Solution of an invariant

subspace problem of K. T. Smith and P. R. Halmos ................... 421
P. R. Halmos, Invariant subspaces of polynomially compact operators . . . .. 433
Leon Bernstein, New infinite classes of periodic Jacobi-Perron

AlgoFitRIMS . . .. e 439
Richard Anthony Brualdi, Permanent of the direct product of matrices . . . .. 471
W. Wistar (William) Comfort and Kenneth Allen Ross, Pseudocompactness

and uniform continuity in topological groups . ....................... 483
James Michael Gardner Fell, Algebras and fiber bundles . ................. 497
Alessandro Figa-Talamanca and Daniel Rider, A theorem of Littlewood and

lacunary series for compact groups .............ccooeeeeeeneninnn.. 505
David London, Two inequalities in nonnegative symmetric matrices. .. ..... 515
Norman Jay Pullman, Infinite products of substochastic matrices . ......... 537

James McLean Sloss, Reflection and approximation by interpolation along
the boundary for analytic functions ................
Carl Weinbaum, Visualizing the word problem, with an ap
BEOUDS .o oottt e e



http://dx.doi.org/10.2140/pjm.1966.16.383
http://dx.doi.org/10.2140/pjm.1966.16.383
http://dx.doi.org/10.2140/pjm.1966.16.407
http://dx.doi.org/10.2140/pjm.1966.16.421
http://dx.doi.org/10.2140/pjm.1966.16.421
http://dx.doi.org/10.2140/pjm.1966.16.433
http://dx.doi.org/10.2140/pjm.1966.16.439
http://dx.doi.org/10.2140/pjm.1966.16.439
http://dx.doi.org/10.2140/pjm.1966.16.471
http://dx.doi.org/10.2140/pjm.1966.16.483
http://dx.doi.org/10.2140/pjm.1966.16.483
http://dx.doi.org/10.2140/pjm.1966.16.497
http://dx.doi.org/10.2140/pjm.1966.16.505
http://dx.doi.org/10.2140/pjm.1966.16.505
http://dx.doi.org/10.2140/pjm.1966.16.515
http://dx.doi.org/10.2140/pjm.1966.16.537
http://dx.doi.org/10.2140/pjm.1966.16.545
http://dx.doi.org/10.2140/pjm.1966.16.545
http://dx.doi.org/10.2140/pjm.1966.16.557
http://dx.doi.org/10.2140/pjm.1966.16.557

	
	
	

