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The question whether a system of n — 1 real algebraic
numbers (n = 2,3, ---) chosen from an algebraic field of degree
not higher than 7, yields periodicity by Jacobi’s Algorithm is
still as open and challenging as hundred years ago. The
present paper gives an affirmative answer to this problem in
the following case: let K(w) be an algebraic number field
generated by w = (D* — d : m)"/», where m, n, d, D are natural
numbers satisfying the conditions m =2 1,2 =23,d|D,1=d =<
D/2(n — 1). Then » — 1 numbers can be chosen from K(w),
so that their Jacobi Algorithm becomes purely periodic. The
length of the period equals n? (or n, if d = m = 1). This is
the longest period of a periodic Jacobi Algorithm ever known,
In three corollaries the following special cases are investigated

w = (D* — dr)» , r=0,1,---,n

w=<Dn,__er)l/n’ (7-:0,1,...,%_2)

w = (D* — pd/m)'/™ . (n = p*, p a prime,
u=1,2,---,m as before)

In all these three cases the Algorithm of Jacobi remains purely
periodic with length equal to n?,

The main tools in proving these results are the poly-
nomials

Ffw,D—1 =73 (” T 1+ ”‘)ws-i(D — i,
]
Fs(w,D)zi(n_szl_{_Z)wﬁDi, (s=1,---,m—1
0
of which each is an inverse function of the other,

This paper reveals new infinite classes of Periodic Jacobi Algorithms,
adding more and wider specific cases to already existing results explored
by the author in his previous works. For any given real number a©®
Euclid’s Algorithm, namely

1

1
a® = b(O) + o oo, a(v) — b(v) +

a(u+1)

, (=0,1,--+)

where b® = [a’] is the greatest integer not exceeding a, leads up
to Ordinary Continued Fractions. This Algorithm was generalized by
Jacobi [1], and its theory masterfully developed by Perron [2] for any
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440 LEON BERNSTEIN

number of # — 1 real numbers (n = 3) in the following way.

Let @} (k=1,2,:--,m — 1) be any set of n — 1 real numbers;
from this set (infinitely many) new sets a (v =20,1,--+;) of n — 1
real numbers each are being formed by the recursion formula

1
ath =

(1) o

apP = (@l — by
(v=0,1,--+; k=2,8,-+-,m — 1)

where again by = [a{”] is the greatest integer not exceeding a}”. For
n = 2 Jacobi-Perron’s Algorithm (henceforth denoted by JAPAL) is
Euclid’s Algorithm, namely a**" = 1: (a{” — b{). The JAPAL is called
periodic, if there exist two nonnegative integers t, m such that

(2) ay™™ =ap , k=12 ,n—Liv=¢tt+1,--+)
whereby the ¢ lines

a®, a, <., all, (v=0,1,--+,t —1)

are called the preperiod of the JAPAL, ¢ its length, and the m lines

a, a, .-, a, w=tt+1 ---,m+t—1)

are called the period of the JAPAL, m its length. the sum m + ¢
is called the length of the JAPAL. For ¢ = 0 the JAPAL is called
purely periodic. Whether or not there exist, for any » > 2, remarkable
classes of sets of » — 1 real numbers whose JAPAL becomes periodic,
could not be decided by Perron.

In eight previous papers |3] I succeeded to prove that the JAPAL
becomes periodic for certain sets of m — 1 Algebraic Irrationals of
degree n. Some specific results announced in my papers are the
following:

Let D, d, m,n be natural numbers such that

n=3; m=1l; d|{D; D=z=dC (C a positive constant)
and let w denote one of the following irrationals—
w= D"+ ad)y; D"+ d:m)"; (D*+ d*D)*»; (D" — d)*",
then the JAPAL of the » — 1 numbers
W, Wy eee, W

becomes periodic with the lengths 2n — 1; 2n — 1; 2n — 1; n* + (n — 1)*
respectively. Trying to enlarge the family of infinite algebraic fields
K(w) containing sets of % — 1 numbers whose JAPAL becomes periodic,
I naturally asked for the periodicity of (D* — d:m)", (D" — dF)»
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k=0,1,.--,m), (D - d*D)* (k=0,1, -.-,n — 2) and succeeded to
establish it. The results are announced in this paper. My previous
results thus become a special case of (D" — d:m)*" (m = 1); but here
I use much more refined methods to prove periodicity.

I1. Statement of the main theorem. In order to state the
main result of this paper it is advisable to introduce the following
new notations:

DEFINITION 1. A matrix of n rows and # — 1 columns of the form

Au Aﬂ’ ct Yy An—i’ An—-l
01 0) M) Oy 1
(3) 0,0 .-, 0, 1

0, 0, MY 0, 1

will be called a fugue. The first row of the fugue will be called its
accumulator, and the numbers ”

Au AZ; Tty An—l

the first, second, --., n — 1st element of the fugue’s accumulator.

DEFINITION 2. The meaning of a combined sigma-sign is given by
the formula
t—1/n

t—1 n
(4) Zai:c;}al‘*"zai-
1= 1=t

i=uc

We are now able to state

THE MAIN THEOREM. Let m,n,d, D be natwral numbers satisfy-
wng the following conditions

m=z1l; n=38; dlD; 1=2d=D:2(n—-1.
Let us further denote

w= (D" —d.:m):",

) fs<w,D—1>=>i<”“l_s”

=0

] )w““(D-—l)ﬂ (s=1,-«-,n—1
7

then the JAPAL of the # — 1 numbers

1 For n =2 we get Euclid’s Algorithm leading up to the periodic Continued
fractions of a quadratic irrational. We shall demonstrate the validity of the Main
Theorem in this case, too.
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fiw, D = 1), f(w, D = 1), +++, fus(w, D — 1)

is purely periodic and its primitive length is %n®. The period consists
of n fugues. The » — 1 elements of the accumulator of the first
fugue have the form

n—1—k+1
7

(6) Ak=—1+ﬁ_o( )D"‘i(D—l)";(k:l,---,n——l).

The accumulator of the sth fugue (s =2, ..., 7 — 1) has the form:
the first n — s elements have the form

1=k
| (A

: )D"‘i(D——l)"; (k=1,---,n—3)

the following s — 1 elements have the form

t—1/n—s+t [(s—1—t+1 n X
An-—s = '_1 ""1 v Dn—l+t—l ;
(6¢) t + i=‘wz:'n:a (=1) ( % )(s — ¢+ 7,)

(t=1,2 ++-,8—1).

The n — 1 elements of the accumulator of the nth fugue have the
form

n—1 t=1 [r—1—=t+\[ n\_ .
6d) A,,_,,+,=—1+(~1)< . )—i—(m:d)%(—l)( . )(t_%)D :
(t=1!2y e, M — 1)

In the case of m = d =1 the primitive length of the period is =.
The period consists here of one fugue, and the elements of its aec-
cumulator have the form (6).

In the quadratic case (n = 2) we have, according to the Main
Theorem, as can be easily calculated by the reader,

w=D*—-d:m)*; 2d<D; d|D,
filw,D—-1)=w+D—1;

the accumulator of the first fugue has the form
A =2D-1);
the accumulator of the second fugue has the form
A =2(mD:d — 1) ;
therefore we have the development in a periodic continued fraction:

(6e) (D*—=(d:m)**+D—1=[2D—1),1,2(mD:d — 1),1].
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Illustration for (6e): D = 12; d = 3; m = 10,
V43,7~ 11 = [22, 1, 78, 1] .

Two conclusions which follow directly from the Main Theorem are
the following corollaries:

COROLLARY 1., Let n,d, D be natural numbers satisfying the
following conditions:
n=3; diD; 1=d=D:2n—-1),
and let denote
w = (D" — dr)in (r=0,1,---,n)
(5a) fiw, D —d) =d- z (" B 17;_ 5 i)w*‘i(D —dy ;

(s=1,--,m—1)
then the JAPAL of the n — 1 numbers

.fl(w’D - d)yf?(wyD - d)y "'7fn—1(waD - d)

18 purely periodic and its primitive length is n*. (the case d = 1 s
excluded). The period consists of n fugues. The m — 1 elements of
the accumulator of the first fugue have the form:

n—1—k+1
%

(7) Ak=—1+d-'~'>f‘;(

1=0

Jo= D=5 =1, m =)

the elements of the accumulator of the sth fugue (s =2,3, «++,n — 1)

have the form: the first n — s elements have the form—
—1—-k+1

(Ta) Ak:—1+d~ki<n i

=0

; )D"‘i(D—d)i; k=1,.--,m—3)

the following s — 1 elements have the form:
t—1/n-s+t fs—1—t+1 n D\ r—stt—i
An—-s+ = -1+ —1) . . '—'> .
(Tb) ‘ i:O/zd;‘_" (=1) < 2 )(S —t+ ’&>< d
(t:lyzy "'78—1)

the n — 1 elements of the accumulator of the mth fugue have_the
form:

-1
An-—s+t = —1 + (_1)t<n ¢ )

t—1 —1— 3 n—s8+t—1
o e g e
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COROLLARY 2. Let n,d, D be natural numbers satisfying the
following conditions:
nz3d; d|D; 2dn—-1)=D=sd", (r=0,:-+,n—2)
and let denote

w:(Dﬂ_er)lzn, (7‘20,1,"',71/—2)
b) ﬁ(wﬂ—d)-—dﬂi(""l;”z)ws-f(D—dr; (5=1,2, -+, n—1).

=0
Then the JAPAL of the n — 1 numbers
fl(wyD - d)yfz(wy D — d), "'rfn—l(’wyD - 1)

18 purely periodic and its primitive length is n*. The period consists
of n fugues., The n — 1 elements of the accumulator of the first
Sugue have the form:

(8) A, = —1+d—ki(”-lfk“)m—i(n—d)i; (k=1,2,-++,n~1).
?

1=0

The n — 1 elements of the accumulator of the sth fugue have the
form: (s =2,8, -+, n — 1) the first n — s elements have the form—

(8a) A,=—1+4+d*>

1=0

k (n—-l—k-}—i
%

)Dk.—i(D - d)t ’ (k:1,2,° * -,n—s) .

The following s — 1 elements have the form

t—1/n—g+t (s—t—1+1 n D \r—eii—i
A = -1 —1) . = ;
(8b) + i=0/dzﬂ:—r;u( ) ( 7 )(S -t 4+ %)(d>
t=1,2 51

The n — 1 elements of the accumulator of the mth fugue have the

Sorm:
t—1/n—s+t (s—1—t L+ 1 n D\ n—s+t—i
A4, =-1 —1) =
(8¢) t i i=°/§-f:v( : ( ¢ ) (s —t+ z)( d )
—1
+(—1)t(n t )' (t=1,2,»-','n—1)

It is obvious that all the elements of the accumulators (6) to (8a)
are integers., We shall prove that the elements of the accumulators
(8b), (8e) are integers, too. To this end we have to prove that

(d’n—-f : D)(D : d)n——s—t—i
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are integers. Denoting n—s+¢t —7=1u, we have 1=u=n—1;
further

(dn-—r : D)(D : d)u — Du—l . du—n-{—r .
Since d|D, we have to prove u — n -+ r =% — 1. But
h—n+rsu—m+n—2=u—2,
III. Auxiliary functions-notations and identities. The es-

sential tools used here to prove the Main Theorem and its Corollaries
are the following functions:

- ’I’L‘*S‘—l"{-i 8—1 —_ 7.
(9) f,(w,D——l):%( ; )w (D —1)y;

s=1,++,2—-1), fllw,D—-1)=1,

s (m—1—s+73\ .

. F(w, D) = z( i )w D
(3:17"'yn_1)’ F(,('w,D):l.

t—1/n—s+t [s—t—1+1
gn—-a.t(er) = Z ("‘1)1 . Fn—a+t-—i(wy D) H
(11) 1=0/m:d T
(8=2,3,:+,m; t=1,2, "’,8—1)
For any polynomial P.(w, D) in w, D with integers ¢; as coefficients,
namely

(12)  Pw,D)=S,ew—D';  (s=1,--+,m—1), Pw,D)=1;
i=0

the following abbreviations will be used
(12a) P(w,D)=P,; s=1,---,n—1, P,=1).
(12Db) P(D,D)=P,; (s=1,+---,m—1 B=1).

P,(D,D)—P,(W,D)___P-’“P, 1
12 =L — wp,
(12¢) PD.D)—Pw.D) B —P

(s=1,---,m—1; WP, =0),

w

The following identities are essential for the proof of the Main Theorem
and its corollaries:

(13) fs(Dﬂl,D—l)=<:>(D—1)s; (6—-0,1,:+,m—1).

Proof of (13). We have from (9):
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1=0

:(D—1)8§<%_1;s+i)=(D—1)*(7:),

(13a) Fs:<:)ps; (s=0,1,---,m—1)

s fm—1—84+14 ) )
f,(D—l,D—1)=Z( ; )(D—l)"’(D— 1y

Proof of (18a). This is completely analogous to proof of (13).
(14) WE = F,_,; (s=1,2,---,n—1).

Proof of (14). We have from (10)—

1 —2 3 .
F1=2(" i“’)wl—mz:wﬂn—lw;

F.=D+ (n—1D=uD;
Fl"_ﬁlzw_D.

We thus have to prove
F,—F, =(w-—D)F,_,.
We have

F, - ;(n—l.—sﬂ) ‘"‘D"—-(n)D';

7 8
=1 (N — 8+ 1 o
(w— D)F,_, = (w— D) % ( ; )w’“‘"‘D'

— ! (n - S + i)wa—iDi _ E (n - S + i)wa-—i-—l‘Di+1

o
|

1=0 1=0 ?

s-1 (N — 8 2 n—s8 ’l: - 1 .
— : ( + z)ws—-iDi — Z < . + )w:—th

i=o i= 2 — 1

e [T e
s-1<n— 8 : 1+ i)w‘*"’D"+ (n:1>D,_(’;’)Da
Z:‘('n—s—l—l- z) W=D — (?S@)D,.

) fi=3(-1 ("_1;‘8“)141_,-; (s=0,1,-r,n—1).

”
uM

lI
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Proof of (15). If we arrange the expression on the right hand of
the equation

s (m—1—s+1
fi=3 (-—1)’< . )F
1=0 2
.:28‘(_1){(”_ 1’.‘S+ ’0>§<’n— 1—-.9+'i+j)w,_i—jl)f
=0 % =0 J
in descending powers of w, we get

n—s—:l-{—j)(n—s—l—i—i)pi_j.

f= g;)w'“j:z;(—w( ; i

Now the identity holds:
(n—s—-l-{—j)(n—s—l—i—i): M—8—1+4+H(n—s—1+ )
i i—j (n—s— DG~ ln—s— 1+ j)!

_ _(m=—s—1+9)! _  (m—s—1+ 9!
Tl — 8 — 1)l(z —J)! (m— s — DIFIE — 5)!

()

In view of this identity we get

J=0

s (n—s—l—}—i
%

)w—*(p — 1),
16  of, = ’zjk—l)*‘(" TR %)F L =12 -1).

Proof of (16). We have from (15):

-1 (n—1—s+ 1 n—1
=S e T ras oY),
=0 2 S
— a1 (n—1—8+ 17\ n—1
£=5 (—1>*( . )F + (-1>:( ) .
1=0 (A S
In view of these two formulas and according to (14), we ‘get
n—1—s+ 1
%

= .21 ("'1)‘(’” -1 ; - ?;>Fa—1—i .

1

we = Sz S o s (_1)5( )(F,_,. —F,_):(D — w)
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(17) Ofy — Yfers = fomr « (s=1,2,.-,n—1).
Proof of (17). We have, on the basis of (16)
(l)faz'_ (l)fa—l

=1 fn—1—s+ 1
=3 (—1>*( : )F

-5 <—1>"(" e ’)F

i=

s=t fn—1—84+14
=Fas HEo(" T

s—2 n-—8-+1
- Fa-—l - gé (_1) ( + 1 )Fa—z—i
s=3 n—s+ 1
-Sen(" T R

—F 1_0( 1y ( — 8+ z) (’n - : + i))F._2_i

(
Fr- S (- 1)(" S )F
(

= s—1+2( 1)

g—1—1¢

n——s+z)

=5 1)( :“)F._l_--f,_l.

t—1 n—a4t~1 (s —t — 1 + 7
(1) —_ —1) .
(18) Gnesit = i=0/2m:d ( 1) ( ?; )Fn-—a+t—1-s

(=2,8,oe,m;t=1,2,++.,8—1).

Proof of (18). This follows directly from (16), if we interprete
e 88 (Fust ~— Gns,s) : D — w). (It will be shown later that this
interpretation is in acecordance with the general notation of P,

19) Do — Pfae = Guternn - (s=1,2-+,m—1).
Proof of (19). We have from (16), (18):
Vs — Dfas
R 1 M
d = )
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n—s—1 (8 — 1 + %
- 1% (_—1)‘< ?: )Fn——s—-—l—i

_om n—s—1 qyit s—1 + 'I:)F )
- —E'Fn_a + = ( 1) < 7: + 1 N—=g—1—1t

n—s— s—1+1

Z:l ( )Fn-a—l—i
B n—s=1 ier s—-1+i) (s—l—i—i))F '
- d + & D (( iv1 )7 i e
_m Sy S + 'I')F .
= —d—F + DY (-1 <i pop)fmmees

n—s (8 — 1 + 2

= TFn——s + = (—1)1‘< ’I; )Fn—a——i

Il

s—1+1
( 1)1( ) n—8—1i gn—(a+1) 1

(20) NG gets — Vnont = Fnotsrnier o
(322’ ,,.,n_l; t:]_’ -ao,S—l).

Proof of (20). We have from (18):

1 (1)
¢ )gn—a,t+1 — Gn_st

tin—s+t s—t—2+1
S (—1)( z )F

t=0/m:d
t—1/n—s+t—1 (s —t—14+17

- Z (—1)1’( . )Fu—ﬂ-t—l—i

i=0/m:d 7
(s —t—2+1
=0y (-1)*( : )F,,_m_,-
d i= 0
t-1 fs—t—14+1

- —g’l— = ("“1)"< . )Fn—c+t—1—1
n—s+t ,s—t—-2+’5

+ (—1)‘( )Fn—c+t—1
i=t+1
n—g+t=1 ~S‘—t—1+i

— 2 —1)'( )Fn—:+t—1—-1

= — _"1 ¢ Fn—a -3

" S (1) ( ; N

om & afs—t—2+1
7 ; ( 1) ( i — 1 Fn—-a+t—1
n—s8+t S t 2 + '&.

+ _;:_1 (—'1)'( )Fn—a-l-t [
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o iafs—t—2+74
'.ZIH ( 1) ,1: _ 1 Fn—a-H—i
m s—t—1474

d Fn-—s+t + "/"‘?“ ‘ngf (—1)1( 7: )Fn—s+t-—i

n—g4t S—'t'—1+7:
+ Z (—1)t( i )Fn—a+t—-i

t=t+1
t/n—s+t (s—t—1+1
= Z (——1)‘( . )Fn-—s+t-—i = GaetatDit+1 o
3=0/m:d 7
' t—1—q
(203') (l)gn—s.t - (l)gn-—a:q = % gn—(s+1),t—i . (q < t)

Proof of (20a). We have from (20)

t—1~

q
1 (1 —_ (1) (1
( )gn——nt - )gu—a,q - Z! ( Gn—s,t—i — )gn—l.t—i—l)

t=1—gq

— (1)
= 3 Vutstii-i

=0

(20b) “%d—“mm4=%%ﬂq. t=1,2 +-o,m—1).

Proof of (20b). From (18) we derive:

, t-1 n—t—14+1
Rl ‘% & (-1 ( i )Fz-1—z ’
t—2 n—t4+1
g = %’ & ("‘D'( i )Ft-—2—-i ’
Do — Vg0 t~1
o m—t—1474
> 1C (A |
=0 2
t=2 fn—t+1
SRl
1=0 ()
= [fn—t—1+1
= ln—Ft—i + o 2 (""1)1 . Fo
d d = 1
m =2 i n—t—1 -+ %
B M
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(200) g"—"s—lg gn;;,s—l +1 = Gn—ls+1)1s » (S = 27 3; e, M — 1) .

Proof of (20c). We have from (18) and the definition of w

On—s,s—1 — .‘_jn—s,a—i + 1 — 1 — (1)g
D—w D—w e
— w"! + w™2D 4 oeee D )
- n 2 = On—sis—1
D™ —w
— Fﬂ.—l — (l)g
D" — (D" — d:m) et
= %Fﬂ—l - (l)gn—a,s-—l
8~2/n—2
= F~ 5 (1) Fa.
d 1=0/m:d
m s—1/n—1 3
= "'_'Fn—-l + Z (_l)an-—1-i
d 1=1/m:d
3—~1/n~1 R
= . (-_l)tFu—-l—i = On—ts+1)rs o
i=0/m:d
20d Gon—s — Jonr + 1 = fi_,.
(20d) (m:d)yD — w) Fams

Proof of (20d). We have from previous proofs and formulas

a — (1)
1 . go.n—l go,n—l — gn—n,n-—l

(mww—w=ﬂﬂwm@w—m_ m:d
=L S (DFuai= B (D Furss;

i=0/m:d
therefore
Gon—1 — Jons + 1 =F . — tSH —1yF .
(m . d)(D . w) n—1 %( ) n—=2—~4%
n—1 .
= S () Fei= frs -
(172) O, = 0f, =3 fi lsg=s—1).
1=0

Proof of (17a). We have from (17)

8—g—1 g—q—1
(l)fa - (l)fq = Z‘g ((l)fs-—i - (l)fa—-i—l) = Z:) fs—-l—-i .
= =

T

B—=3—q—1

t—1
(209) (1)gn—8-t - (1)f<1 = g& gn—(s+1)t—i + gt‘) fn—a—l—i . (1 é q é n — S) .

Proof of (20e). This follows immediately combining (17a), (19), (20a).
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IV. Inequalities, In this chapter we shall establish magnitude
relations between the auxiliary functions f,, F,, g._.... We first note
that

@) D—-1<w<D; D—1F<w<Dt, (k=12 -, n—1)

(21) follows directly from the definition of w. From (21) and the
definition of f, and F, follows further

f,(D—l,D—1)<f,<F,<F,; fs<f—'s<F'¢'

(22) (8=1,2,++.,n—1)

1 n—2
(23) (1+ D—l) <165 for2n—1)<D.

Proof of (23). Since D = 2d(n — 1), d = 1, we have D = 2(n — 1),
D—-1=22n—1) —1>2(n—2). Therefore

(1 + D 1— 1 >"—2 < (1 + 2('n1— 2)')”—2 - ((1 + 2(7,,1__ 2) )"""‘”)”

< €' =1,64872-+- < 1,65 .
(24) F,<Fy,(D-1,D~-1). t=0,1,---,m—2).

Proof of (24). We have to pfove, folléwing (13a):
n n
Di< D — 1)i+
(s, Yoo

(1+ Dilyé ?;f(p_l)’

qsi+lfy 1 ¥
D l_n—i\+D—l)°

We prove a fortiort, since (¢ + 1): (n — ) is an increasing function,

b-1= 2 ’ >n—i\+D—1)'

but

n—1

D—12z2dn~1)~122n—1)—1>165"—

F,<F,,,.

2
(242) (8=0,¢ee,m—2;t=1,ccc,n-1;1=s+t=n-—1)

Proof of (24a). It follows from (22), (24)
F3<Fa<Fa+1(D_1sD_1)<Fa+1’
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so that
Fa<Fs+1<Fs-FZ<"'<Fs+t'

(24b) fs<fs+to
s=0+,n—2;t=1, - ,n—1;1=s+t=n-—-1).
Proof of (24b). It follows from (22), (24)
fi< i<F,<FuD—-1,D-1)=f(D~-1,D—=1)< fis,.

(25) oF, , < -{%Fn_l .

Proof of (25). We have to prove
23 (6 + Dw== D < = S D"
=0 =0
and prove a fortior:

2"22(7’ + D =Di < 2(n — 1) "Z"‘lw,,_l__iD,-
=

1=0 D
< 711_ n_lwn——i—iDi .
=0
We thus have to prove
G+ DDt < LoD L B g

which is always true, since ¢t +1=n -1, 0 < (® — 1)w*Y/D,

(26) Wf,=F,,. (s=1,2,+--,m—1).
Proof of (26). We have from (15)
u)fs = Fs—l

-nizffn—8+ 21 — 2 m—s+2—1

— F,_, — o
= (( 2i — 1 ) - ( 2i )F 2'"’)

n—2 .
- e(s 1) , (¢ =0, when s is odd, =1 otherwise)

so that Wf, < F,_,, if we can prove that the expression under the
sigma sign is not negative. We shall therefore prove
n—s+ 2t — 2 n—s+ 2, —1
. Fs—zi o Fs—-2i-—-1 )
21 —1 21

or
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Fa—2i > 2,1: 8—2i—1 9

and prove a fortiort

Fo > ( " .)(D ey RS2 1( " ) D=t
8 — 21 %

s—21—1

n—s+2’£—1F

> - aminl
27’ 29—1

We thus have to prove

( n )(D — 1) > n—s+2—1 Dot

s — 2 23

or
D — 1)-% > (n—s+ 21 —1)(s — 29) D=t
( ) - 2tln — s+ 26+ 1)

or

D_lzn—s+2'i—1.8—2’l:/1 1 '_2‘—1.
( )_n—s+2'£+l 27 \+D—-1>

But from D = 2d(n — 1) we have

—3 n—s+20—1 s—21 1 s—2i~1
D—-1>"2—"°.165 . 1 )
3 T m s+ 2+l = (+D—1>

(27) (l)gn—a»t < (m . d)Fn—c+t—1 . (S = 2! 3’ ) In; t = 1) 2! M) 8 — 1) .

Proof of (27). We have from (18) for t =2r + 1
(l)gﬂ—s,t = (m : d)Fn—H't—-l

(s —t+ 2t —2 s—t+21—1
——(m . d) ;__;{(( )Fn-—s+t—2i - ( . )Fn—l+t—2i—l)

2t —1 2
n—s+2r S-—-t+2'l:_2 S—t+2i—1 \
e Z ( . Fﬂ-—s+t-—2i - ( . Fn—a+t-2i—1 .
i=ort 1 21 — 1 21

We shall now prove that the expressions under both the sigma signs
are nonnegative, so that Vg, _,. < (m:d)F,_,.,.,. We have to prove

s—t+2—2 s—t+21—1
( )Fn—s+t-—2i ( .

F—s —2i—1 9
2 —1 2 )"““

or

3 —8+t~2i—]
27’ n—3s

Fn—s+t-—2i >
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We shall prove a fortior:

n
F_' iy . D__ln—-s+t—-2i
n+t2>(8—t+2'b>( )
> s —t+ 21— 1( n )Dn—u+t—2i-—1
= 23 \s—t+2i+1
> s—t+.2z—1Fn—a+t—25—1 .
27

We have to prove

( n _)(D _ 1)1,,—-3+t-2i > s —t +‘2’I; -1 / n . )D’B—H-t-—?i—l ’
s—t+ 20 20 \s —t+2i+1

or

— ) — —_ I V'S N8t t—2i
D—lzs t+20—1 n—s+1¢ 21,'(1_*_ 1 ) +t 1’

s—t+20+1 21 D-1

which follows immediately from 2(n — 1) —1 < D — 1 and the upper
and lower bounds of s, ¢, as at the end of the previous proof.

For ¢t = 2r + 2 we have
(l)gn—nt = (m : d)Fn—c+t—1

r (([s—t+2t—2 s—t+21—1
—(m . d) Z (( . )Fn—-ﬁ-t—% - ( . Fn-—H—t—zi—l
=1 2?, -_ 1 2?:

(st e~ )

n—st2r+l [[§ —E 4+ 20 — 2 s—t+21—1
- F —8+t—2¢ N—gt—2i—
i=221-+3 (( 2?: _ 1 ) n—g+t—2: . < 2’i )F +¢—2 1) ,

so that in order to prove (27) in this case of { = 2 + 2 we have only
to add the proof of

Ot W LS Ly L ST 3

Since m = 1, we prove a fortiori
l<S - 2) n—sg g (s B 1)F'n—c—-1 b
d\t—1

t
Fn—a

e

or

—1)d
(S_?J_ P

v
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We prove a fortiori

n — 1)n—s (S _ 1)d n n—g—1
Fn_,>(s)<D ez B=1E (s+1)D ,

or

-1z i ()

which follows immediately from D — 1 = 2d(n — 1) — 1 > d(n — 2)-1,65.
(28) gn—a,t<(m:d)Fn—s+t- (8:2,3,"','n;t=1,2,'°',8—1).

Proof of (28). This is completely analogous to proof of (27).
(29) [fa]=_1+j_‘8' (S=1,2,°~',’n——1).

Proof of (29). We have to prove
(A) —1+j:<fl; (B) fs<fs'
To prove (A) we have to show that

fo—f.<1, or, dividing by D —w >0,
“f, < (m:d)F,;.

From (25), (26) we have
Wf, <F,_,<F,,<(m:d)F,,.

(B) follows from (22). Thus (29) is proved.
(30) [gn—-a,t] = —1+4 Gps - 8=2,:-+,n; t= 1: rrey 8 — 1)

Proof of (30). We have to prove
(A) -1 + gn—s»t < On—s.t 5 (B) [/ P— < g-n-nt .
To prove (A) we have to show

Toest — Juse < 1, or, dividing by D — w,
(l)gn-—ut < (m H d)Fn—l .

But from (27) we have
Bpey <(M:AF, oy s = (m:d)F, , < (m:d)F,_, .
To prove (B) we have to show, after dividing by D — w
e > 0.
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But for s< n
st Z Vet = Vncaitct = Gnoarne > 05
and for s=n
D0, Z Y0 — Vor = (M d)fl, >0,

(that the expressions g,_,,, are positive entities will become clear,later,
while carrying out the JAPAL for the f;).
- — o+ 1 . . .
(31) I’—-—‘——?—-————<1. (J<i<n—1;,7=1,+,n—2).
fi—fi+1

Proof of (31). It was shown that the denominator 1s positive.
We therefore have to prove, after dividing by D — w

Of; = ©f; >0,
which follows directly from (17a).

(32) %{%<1. (G=0,1,-,8—2 5=2,38,+,n—1).
Proof of (32). We have to show
D—-wf;i<fi—f+1, or, dividing by D — w,
Fi+ Of, <(m:d)F,_,.
But
fi+ % <fixt Firu<Foy+ Fo's <2F, . < (m:d)F,, .

33) 1<fi}f”_‘f;f—;*i1<2. G=1 -, m—1).

Proof of (33). We have to prove, since the left hand inequality
was proved in (31)

fin—Fia+1<2fi—F)+2,
or carrying over and dividing m by D — w

2:0f; = Vfi < (m:d)F,_, .

But
2.0f, —Of, | £2.9f, S 2F,, < %—Fn_l )
On—s.t — —g-n—s,t + 1 < 1 .

(34) fo—fa+1
(3=2,3,+ce,m t=1,2+40,8—1,9g=1,2 ¢¢c,n—3),
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Proof of (34). We have to prove
Gnmst = Jnoan + 1< fu— Fu+ 1,
or, dividing by D — w,
Vpee — Vfe >0,
which follows directly from (20e).

(35) [ gn-—syt ::: 12)< 1. (1 §j < tjé s—1 =n- 1)
Gn—si — Gn—s.i

Proof of (35). We have to prove
On—sst — gn—a,t + 1 < On—sii — gn—a,:’ + 1 y
or, after carrying over and dividing by D — w
(l)gn—a t u)gn—ni > 0 [
which follows directly from (20a).

(36) 1< fn—a—fn._g"'l <2. (822’3,01.,72).
Gnesin — Gn—sn1 + 1

Proof of (36). We have to prove
(A) On—s1 — g_n—a,l + 1< fn—a - ﬁb-—a + 1 3

(B) fn—s - f_-n—x + 1 < z(gn—hl - gn—a,l) + 2 .
To prove (A) we have to show, after carrying over and dividing by
D—w
(l)g'n—hl - (l)fn—c > 0 ’

But from (19) we have
(1)gn—n,1 - (1)f”_‘ = Gam(s+1)01 9 for s<n.
For m = s we have
o1 — Vo0 = m:d)yf, >1.
To prove (B) we have to show, after carrying over and dividing
by D —w
2'“)gn—3,1 - u)fn—-a < (m : d)Fn—l .
But
2°(1)gn—-s,1 - (1)fn-—3 é 2'(1)gn-—a.1 < 2Fn—s é 2Fn-2 < (m . d)Fn—l .
(D —_?’U)fr—l < 1 .
(37) On—st — Gn—sit + 1
r=1,2++-,n—88=23,.--,n—1,¢t=1,2,.+0,8—1),

2 While carrying out the JAPAL in the following chapter, it will become clear
that the numerator and denominator are positive entities.
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Proof of (37). We have to prove
D = wfroi < ot = Tnmse T 1,
or, after carrying over and dividing by D — w
Vst + oo < (m:d)F,_,,
or a fortiors
OGpat T o < Foors + Fr g <2F, , < (m:d)F,

— Gase + 1
1 < gn-—s,t gn 85t
(38) Gnesit+1 — Fn—sit+1 + 1

(322,3,"',7@; t:1,2,"',8—-2).

<2,

Proof of (38). We have to prove
(A) On—st — g’n—s,t + 1 > Gnesit+1 — gn—-s,c+1 + 1 ]
(B) On—s,t — gn—s,t + 1 < z(gn—syt+l - g‘n-—Byt""l) + 2 .

To prove (A) we have to show, after carrying over and dividing
by D —w

1 (1)
{ )gn—-s,t+1 - Gu—sst > O 3

which follows from

(1 (1) —
)gn—a,t+1 = st T Jn—ls+1)t4+1 > 0

for s < n — 1. For s = n the proof is exactly as before.
To prove (B) ‘'we have to show, after carrying over and dividing

by D —w
2'(1)gn—syt+1 - (l)gn—-s,t < (m : d)F —1

which follows from

2'(l)gn—s,t+1 - (1)gn—s.t é 2'(1)gn—s,t+1
<2F, .. <2F, ,<(m:d)F,_, .

V. The JAPAL of the f,, f2 -+, fu-:. We shall now carry out
the JAPAL of the numbers f,, f;, +- -, f._, and thus complete the proof
of the Main Theorem. To this end I shall introduce still a few more
new conceptions.

DEFINITION 4. The set of n — 1 numbers e (¢=1, .-, n — 1;

v=20,1, ...) shall be called the vth generator of the JAPAL, the
number a{® its ith element; the set of » — 1 numbers

b = [af]
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(¢, v as before) shall be called the wth genus of the JAPAL, b® its
tth element, The key to the final proof of the Main Theorem now

rests with the

LEMMA. Let the n — 1 elements of the vth generator fulfill the
following conditions:

() @ = P(w,D); P(w,D)=w+eD; Pfw,D)=Pw,D)=1;

(B) [a”] = —1 + Py(w, D).
(t=1,2,.-+,m — 1; ¢, a nonnegative integer)

Pt+k_:t+k+1 <1
P,— P, +1
=1, n—2;k=1--,n—2;t+k=n-1)

0 < (-D _ w)((l)P —1 T (I)Pq_z) < 1 :

© 0<

39 z
39) P,—-P +1
(q=2’3,"',t;t:2y35°"sn’—1)
P_,—P_ +1
| IR < 2. t=1,.---,n—1).
P,—P +1 (
Then the n genera
b{u+k)’béu+k),.,.’b;ﬁk) (k:O,l,"',’n—l)

form a fugue, and the elementé of the v + nth generator, namely
the af*t™ (1=1,2, ---,n — 1) have the form
aptm = Wp,.  — wp, . ¢t=1.0,m—2)

(40) gorn = Pay = Py 41
n—1 .
D—w

Proof of the lemma. In view of (39) (A), (B) and following
formula (1) the elements of the v + 1st generator have the form

P, — P, +1 ;
aé'o-}-l) — i4+1 _H—! , — 1, e, n — 2 ;
o) P_P +1 @ )
g = — 1
P —P +1

Since the elements of the v + 1lst generator fulfill the conditions (39)
(C), the elements of the v 4 1st genus have the form

(40b) b£”+1) =0 ; (1: = 1’ 2, oo M — 2) b;vj—ll) =1.

On the basis of (40a), (40b) and reminding from (39) that P, — P, =
D — w) =D — w)(P, ~ “P) we obtain, following (1), for the n —~ 1
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elements of the » + 2nd generator

P.,— P, +1 .
(0+2) — ite i+2 ; = 1, 2, e, — 3
% P,— P, +1 @ )
vt D — w)(WP, — “P)
40 (j»):( = ’
(40c) Bn—s P,— D+ 1
oo - =B+l
P,—D,+1

Now the elements af®** (1 =1,2, ---,n — 1) again satisfy conditions
(39) (C), and therefore the elements of the v + 2nd genus have the
form

(40d) b§v+2)=(); (/j:l,...,n_z) bt =1,

In view of (40c), (40d) and (1) the elements of the v + 3rd generator
have the form

o = B = Buad 1| (=1,2,-+,n—4)
3 3
s = (D= 0P, = P
' P,— P+ 1

40e
( ) a(v_+23) — (D _ w)((l)Pz - (1)P1)

P,—P +1 ’
a‘”_ﬁs’:—————-——P 132_,_1.
" P,—P +1

Continuing these considerations one arrives quite easily and by indue-
tion at the conclusion that the v + ¢th generator takes the form

arr = By e 2L (=1 n—t—1)
(40f) awd, = D —;’)(“’i ; (ll’P: 1) , G=1,-+,t—1)
a;‘v_-.l-lt) — Pt—-l — I_)_t—l + 1
P,—P+1 °
and that the » — 1 elements of the » + tth genus have the form
(40g) bt =0; (t=1,---,n—2) b =1,

Following the formulas (40f), (40g) and (1) we obtain that the » — 1
elements of the v + n — 1st generator have the form

aern=D = (D — w)(WP;, — WP;_))
P”“‘l - Pn—l + 1 ’

ai‘v_-}in—l) — Pn—2 — Pn—Z + 1
Pn—l - P’n—l + 1

(¢=1:-,m—2)

(40h)
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and that, on ground of (39) (C) the elements of the v -+ n — 1st
genus have the form

(40i) bt =0; (1=1,2 +++,m—2) brv=1,
Thus the » genera
bt b+ s D (7=0,1,.-+,m—1)

indeed form a fugue as was stated in the lemma., Now we have from
(40h)

g = D= WP —“P) _ __ D-—w

P'n—l—Pn—-1+1 Pﬂ—l_P‘u—l_‘_l’

so that on the basis of (40h), (40i), (40j) we receive for the n —1
elements of the v + nth generator

(40j)

aEtm = WP, — WP, (=1,2 -+, n—2)
(40k) a(v-*-ln) —_ P’n—l + Pn—l + 1 .
i D—w

By this the lemma is completely proved.

We are now able to prove the main Theorem quite easily in the
following steps:
(1) Let be

(41) P(w, D) = fi(w, D) = ;" . t=12--,n—-1).

Following (29), (31), (32), (33) the functions f; (¢ =1, --+, % — 1) indeed
fulfill the conditions (39) (A), (B), (C). Therefore, following the lemma,
we get for the n + 1st generator, which is the first generator of the
second fugue of the JAPAL

am = WOf,  — Of, t=12 +-+,n—2)
), = Jomt = Fams + 1
n D—w ’

so that on the ground of

Jocs — Jas + 1 — 1 —wf
D—w D—w "

=m:d)F,_, — :% (=1} F

0/n—1

(_l)iFn—l—i = G-z,

i=0/m:d

and on the basis of (17) we have for the » — 1 elements of the first
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generator of the second fugue of the JAPAL

(41a) a” = fi; (=12 ---,2—2) a® =g, 5, .
(2) Let

(41b) P(w,D) = f;; (2=12,---,m—2) P,_,(w,D) =g,_,,.

Following the formulas (29) to (37) the functions of (41b) fulfill the
conditions (39), and therefore the elements of the first generator of
the third fugue have the form

(42) o = Of iy — Vi (G=1,2-,n—39
S YL
U= Oy — Wfurp; o= Temm e T2
D—w

Following the formulas (17), (19), (20c) we get for the functions (42)
afm = f, ; (=12 -, n—3)
A2y = Gposzy A = Gugys »

(422)

In the same way we get from (42a) that the » — 1 elements of the
first generator of the fourth fugue have the form

a('an):f.. (’521,2,"',%—-4) a'ﬁza-ﬂ:gn-—hl;

1 79

(43) [S:1) — . (3n)
a’n—-z - gn—4,2 ’ a’n—l - gn—4.3 °

Continuing this process of the JAPAL we get from (43) that the
elements of the first generator of the sth fugue have the form (s =
2’ 3’ ) n)

afe=vm = f, t=1,2,---,m—8)

44
(44 e =g .. t=1,2---,5—1).

From (44) we finally deduce, for n = s, that the elements of the first
generator of the nth fugue have the form
(45) a.f',(“—”“) = gg,t . (t = 1, 2, .. ®y n — 1) .

But we have from (11)

o1 [ —2+ 1
Inni = Gou1 = Z ("1)l< . >F1—i
i=0/m:d 2
=m:)F,— (n — DF, = (m:d)F, — (n —1),
so that
gon — Joa = (md)(F’l - Fl) = (md)(D - w) .

With this and on the basis of the lemma, we get from (45) that the
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elements of the first generator of the n 4 1st fugue have the form

a™ = (Vo — Vo, )(m 2 d) ; (t=1--+,m—2)
(46) aﬁ[‘fi — Yom—s — oy + 1
(m:d)(D — w)
Now aceording to (20b), (20d) we have
(46a) a™ = fi; (t=1,2+,n—2) afi=/f.,.

From (41) and (46a) we have
(47) e = af”, (t=12---,m—1)

so that the n — 1 elements of the first generator of the first fugue
are identical with the » — 1 elements of the first generator of the
n + 1st fugue. Thus (47) shows that the JAPAL of the f; (2=
1,2,...,n — 1) is purely periodic with the length n* (n fugues), as
stated by the Main Theorem.

Now since
- s (m—-1- \
(48) ﬁ=2( sJ”’)D“(D (=1 --,n—1)
=0
N —lln-s+f s—t+1
gn—-s,t = ( l)b( ) n—s+t—i
—O/m d
—1/n-s+t s—t+n n )
48 —_ 1 [ Dn—a+t—| ,
(482) —O/md (=1)° ( )(s-—t—!—z)

§=2,8,---,m; t=12 2,81,

and since we have for the elements of the various genera of the JAPAL
either

_1+ﬁ or —1+gn—a,t

the pattern of the accumulators of the n fugues of the JAPAL as
indicated in the formulas (6) to (6d) becomes immediately obvious. If
m =d =1 we have

n—1
On_s,1 = Z ( 1) ne—l—i — Z.:l) (_l)iFn-—i—i = fn-—-l .

We therefore get from (41a) that in this case the elements of the
first generator of the second fugue have the form
aﬁ’”:f,-, (?::1,2,"',')’&—1)

so that here
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(48b) o =a, (i =1,2,---,m— 1)

as stated in the Main Theorem, which, through this final remark, is
completely proved.

Proof of Corollary 1. We make the following substitutions in
w= (D" —d:m)"*: Let T,t be natural numbers such that ¢|T,

t =1, let denote

(49) D=T:t; d=1; m=t"*. (k=0,1,---,m).

Following the conditions of the Main Theorem, we have here
1<t<T:2n-—1).

Further w takes the form

(49a) w=W:t; W= (T — th,

The functions f,, F,, g._.,. take the form

s fn—1—s+1
fs=t‘“2( .

1=0

)WM@—QH (s=1,+--,mn—1)
v
s (n—l——s+1}

4y F,=t 3% )WT =1, n—1)

=0

()
u—1/n—s+u 8 — U — 1 -+ ’i
(—1)‘(

Jn—s,u =

’b. >Fn—s+u—-i
(s=2,3,--+,m;u=12--+,8—1).

i=0/tn—k

If we substitute again in (49a), (49b)
(49c¢) D for T d for ¢ ; w for W,
we get from the Main Theorem, that the JAPAL of the # — 1 numbers

fi=d= 3

s (n—l—s-{—i
7

)ws—i(D _ d)i , w = (Dn __ dk)l:n
(8:1,2’ "',’)’L-'l; k:(),]_, ...,'n)
takes the form as indicated in Corollary 1.

Proof of Corollary 2. Here we make the following substitutions
in w, Let T,¢ be natural numbers, ¢|T; let
(50) D=T:t; d=1; m=t—":T. (r=0,1,---,m—2).

The reader should note that the condition that m is a natural
number is necessary only for the purpose that the elements of the
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accumulators in (6c), (6d) be integers. For the proof of the Main
Theorem we made use only of the fact that m = 1. The elements of -
the accumulators in (6¢), (6d) may be integers even if m is not an
integer, as was proved at the end of Chapter II. From1l <m =t T,
we derive

(502) T,

and from 1 £ D:2d(n — 1) and (50a)

(50b) 2n — ) T St*; t= (2(n — 1))ster-r-0

From ¢|T and (50a) we derive the condition of (50), namely » =
0,1,.--,n—2, For r=n—2 we have T = #*, w takes the form
(50c) w=W:t; W= (T"—-tT). (r=0,+-+,n—2),

If we again substitute
(50d) DforT; dfort; wfor W

and follow the proof of Corollary 1, the proof of Corollary 2 will be
completed,

COROLLARY 3. Let d, D, u, m be natural numbers and p a prime
number such that

(51) diD; uymz=1; dp=D:2p*—-1),
and let denote

w = (D* — pd :m)*™™,
52) fw,D—1) =3 (“ Thoe '”)w'-w —1y

=0

=1+, n—1),
Then the JAPAL of the n — 1 numbers

f;_('LU,D - 1)7f2(w7D - 1)1 "'1f(pu..1) (w7D - 1)

is purely wperiodic and its primitive length is p*™. The period
consists of p* fugues, each fugue being a matrix of p* rows and
p* — 1 columms. The accumulators of the fugues have the form as
those im the Main Theorem, wnamely (6) to (6d), where d is sub-
stituted by pd and n by p*.

Proof of Corollary 3. All we have to prove is to show that all
those integers which appear in the accumulators and are multiples of
d are also multiples of ». This concerns all the numbers
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(___1)i<s -1 " t+ 1,)( p* .)Dn_sw—i ,
7 s—t+1

(?I:O,l,---,t—l; t’—“l,Z,*“,S'—'l; 822:37"';1)“)

(52a)

where the decisive point is the relation
(52b) l1<s—t+e=p~1.

But since, as is well known,

(52¢) D

(Z) foru=1,2,.-;k=1,2..-,p*—1

it follows from (52¢) in view of (52b) that the numbers in (52a) are
all multiples of p.

We leave it to the reader to prove the interesting fact, that each
element of all the accumulators (6) to (6d) appearing in the Main
Theorem are multiples of p, if » = p* (p prime, v =1,2, -++)

V1. Illustrations. (1) To illustrate the Main Theorem let us
take n = 5. Then the Main Theorem would sound:
Let d, D, m be natural numbers such that

d|D; m=1l; 1=<d=D:8.
Let
w=(D*—d:m)*,

f,=i(4—z+i)w‘%0—1>f. (5=1,23,4).

3=

Then the JAPAL of the 4 numbers

w+4D—1); w+3wD—1) + 6D —1);
w4+ 2w (D — 1) + 3w(D — 1) + 4D — 1) ;
w+ w(D — 1) + w(D — 1) + w(D — 1% + (D — 1)

is purely periodic and its primitive length is 25. The period consists
of five fugues, and the accumulators of these fugues have the form:

First fugue

5D—1); 5D—1)@2D—1); 5D —1)2D*—2D + 1);
5D(D — 1)(D* — D + 1) ;

Second fugue
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5D—1); 5D—1@D—1); 5D —1)@D'—2D+1);
mD? . _1).
5D(T 2D* + 2D 1) ,

Third fugue

5D—1; 5D —1@D—1); 5D<27’;D3 — 4D* + 8D — 1) ;

5D(ﬁ§i(p —2)+2D — 1) ;

Fourth fugue
. (omD* . s(2mD* . 3
5(D — 1) ; 5( LD~ 3D+ 1) ; 5<___.d (D 2)) +15D — 5,

: 517(%.0_(1)2 — 2D +2) — 1) :

Fifth fugue
(M2 —1); 5(Z2@D-9+1); s72(er—4D+3)-1);

-5—"-’5-12-(D3 —2D* 42D —1).

In the case of n =5, m =d =1, the JAPAL of the 4 numbers

=3 (4 - : i i)W""(D -1 (6=1,23,4 w= D" -1

=

is purely periodic and its primitive length is 5. It consists of one
fugue, the accumulator of which has the form

5D—1); 5D —1)2D—1); 5D —1)@D*—2D + 1)
5D(D — 1)(D* — D + 1) .

To illustrate Corollary 3 we shall take »p = 2; v = 2, Then Corol-
lary 3 would sound:

Let d, D be natural numbers such that d|D, d < D:12 and let
w = (D* — 2d); then the JAPAL of the three numbers

w+3D—1); w+2wD—1) + 3D —1);
w* + w(D — 1) + w(D — 1)* + (D — 1)°

is purely periodic and its primitive length is 16, The period consists
of four fugues, the accumulators of which have the form



NEW INFINITE CLASSES OF PERIODIC JACOBI-PERRON ALGORITHMS 469

First fugue
4D —1); 2D — 1)(3D — 1) ; 20— 1)2D* - D+ 1);

Second fugue
mD? .
4D —-1); 2D —1)BD—1); 2(7—30 +2D——1>;

Third fugue
4D —1); 3_";22_—81”2; -”%11(217—3)+2(2D—1);

Fourth fugue

mD mD mD
me _9)y. MI3p_4)+2: mZ op: — 3D -9,
2< 7 2) ; ¥ 3D )+ 2 ; 7 @D 3D 4 2) — 2
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