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This work contains a number of theorems about pseudo-
compact groups, Our first and most useful theorem allows us
to decide whether or not a given (totally bounded) group is
pseudocompact on the basis of how the group sits in its Weil
completion. A corollary, which permits us to answer a question
posed by Irving Glicksberg (Trans. Amer. Math. Soc. 90 (1959),
369-382) is: The product of any set of pseudocompact groups
is pseudocompact. Following James Kister (Proc. Amer, Math.
Soc. 13 (1962), 37-40) we say that a topological group G has
property U provided that each continuous function mapping
G into the real line is uniformly continuous, We prove that
each pseudocompact group has property U,

Sections 2 and 3 are devoted to solving the following
two problems: (a) In order that a group have property U, is
it sufficient that each bounded continuous real-valued function
on it be uniformly continuous? (b) Must a nondiscrete group
with property U be pseudocompact? Theorem 2.8 answers (a)
affirmatively. Question (b), the genesis of this paper, was posed
by Kister (loc. cit.). For a large class of groups the question
has an affirmative answer (see 3.1); but in 3.2 we offer an
example (a Lindel6f space) showing that in general the answer
is negative,

Much of the content of this paper is summarized by
Theorem 4.1, in which we list a number of properties equivalent
to pseudocompactness for topological groups., We conclude
with an example of a metrizable, non totally bounded Abelian
group on which each uniformly continuous real-valued function
is bounded.

Conventions and definitions. All topological groups considered
here are assumed to be Hausdorff. The algebraic structure of the
groups we consider is virtually immaterial; in particular, our groups
are permitted to be non-Abelian,

A topological group G is said to be totally bounded if, for each
neighborhood U of the identity, a finite number of translates of U
covers G. It has been shown in [10] by Weil that each totally bounded
group is a dense topological subgroup of a compact group and that this
compactification is unique to within a topological isomorphism leaving
G fixed pointwise. We refer to this compactification of G as the Weil
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484 W. W. COMFORT AND KENNETH A. ROSS

completion of G, and we reserve the symbol G to denote it.

Kister’s property U was defined in the summary above. In the
same vein, we say that a topological group has property BU if each
bounded continuous real-valued function on G is uniformly continuous.
The uniform structure on G referred to implicitly in the definitions of
properties U and BU should be taken to be either the left uniform
structure, defined as in 4.11 of [7], or the right uniform structure.
It often happens that these structures do not coincide, and in this case
there is a left uniformly continuous real-valued function on G which
is not right uniformly continuous. Nevertheless it is easy to see that
every [bounded] continuous real-valued function on G is left uniformly
continuous if and only if every [bounded] continuous real-valued function
on G is right uniformly continuous. Hence the definitions of properties
U and BU are unambiguous.

Our topological vocabulary is that of the Gillman-Jerison text [5].
The following definition, which is useful in § 2, is in consonance with
4J of [5]: A topological space is a P-space provided that each of its

@Gs subsets is open.

1. Pseudocompact groups. The Weil completion of a topological
group plays a fundamental role in many of the arguments which follow.
Our first result shows that each pseudocompact group admits such a

completion.

THEOREM 1.1. Each pseudocompact group is totally bounded.

Proof. If the topological group G is not totally bounded, then
there is a neighborhood U of the identity e in G and a sequence {x,}
of points in G for which

. el e, U

n<k

for all k. We choose a symmetric neighborhood V of e for which
V*c U, and we select for each positive integer %k a nonnegative
continuous function f, on G such that

fk(xk) =k and fk =0 Oﬁ ka.

Using the local finiteness of the sequence {x,V}, it is easy to check
that the real-valued function f defined on G by the relation

@) = 3, £@)

is continuous. Since f is unbounded, the group G is not pseudocompact,
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Discussion. Although pseudocompact groups have not (so far as
we can determine) been in their own right an object of detailed study,
various authors have considered an example in one connection or another.
If {X.}sea is 2 set of separable metric spaces — which we here take
to be topological groups — then the set

Y={xellX,:x, is the identity in X, for all
but countably many a in A}

is an example of what Corson in [3] calls a X-space. Corson shows
in his Theorem 2 that each continuous real-valued function on Y admits
a continuous extension to I7X,. It follows that if each X, is compact,
then Y is pseudocompact and /71X, is the Stone-Cech compactification
of Y. This and other interesting results were obtained (also in the
product-space context) by Glicksberg in [6]. Kister examined in [8]
the case in which each X, is a compact topological group.

Like every pseudocompact space, the 3-space Y defined above meets
each nonempty G; subset of its Stone-Cech compactification. The
appropriate group-theoretic analogue of this topological characterization
of pseudocompactness is given in the following theorem. The reader
will notice instantly that this theorem yields information about the
Stone-Cech compactification of a pseudocompact group; we shall incorpo-
rate this observation into Theorem 4.1.

The Baire sets in a topological space X are those subsets of X
belonging to the smallest o-algebra containing all zero-sets in X.

THEOREM 1.2. Let G be a totally bounded group and let

" ={N:N is a closed, normal subgroup of G and
N is a Gs set in G} .

Then the following assertions are equivalent:

(a) G 1is pseudocompact;

(b) each translate of each element of _4~ meets G;

(e) each monempty Baire subset of G meets G;

(d) each nonempty Gs subset of G meets G;

(e) each continuous real-valued function on G admits a continuous
extension to G.

Proof. (a)= (b). If (b) fails, then ®x, NN G = @ for some z, in
G and some N in .#7 Since N is clearly not open, the quotient group
G/N is infinite. Like any compact, first countable group, G/N is
metrizable, Choosing an unbounded real-valued continuous funection f
on G/N\{z,N} and defining g on G\a,N by the relation

9(@) = f@N),
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we see that g is unbounded and continuous. The restriction of g to
G is unbounded, and hence (a) fails.

(b) = (¢). This implication follows trivially from the following fact,
a special case of Lemma 2.4 of [9]: If E is a Baire subset of G, then
E = EN for some N in _#7

(¢) = (d). Since G is completely regular, each nonempty G; subset
of G contains a nonempty zero-set of G.

(d) = (b). This is clear.

(b) = (e). Let f be a real-valued continuous function on G, and
let <Z be a countable base for the topology on the line. For each B

in &Z there is clearly an open subset U, of G for which
B =UsNG.

By 1.6 and 2.4 of [9], there is an element N, of _#~ for which
clgUy = NyclzUy .

Setting N = Nze.s N3z, we clearly have Ne _s~ and ¢lgU, = N-clzU,
for each B in <Z

We next prove:

*) If 2,€G, €@, and z'z, € N, then f(x,) = f(.).

If (*) fails, we can find neighborhoods B, and B, of f(x,) and f(z.)
respectively such that B,e <2 B,€ <Z, and ¢lB, N ¢lB, = @. Since fis
continuous on G, we have

clef(B) Nelef(B) =@,
i.e.,
clo(Us, N G) Nelo(Up,NG) = @ .
Now x,€ N-clo(Up, N G); hence
3,€ N-clo(Uy, N G) © N-clo(Us) = ela(Us) ,

so that @,€clo(Us N G). Of course x.€cly(Us, N G), and this contra-
diction completes the proof of (*).

With (*) and hypothesis (b) at our disposal, it is easy to define an
extension f of f: given x, in G, we choose any x in 2,NN G and set
F@) = f(=). _ _

To check the continuity of f at an arbitrary point z, in G, we
choose ¢ > 0. We will produce a neighborhood U of the identity in
G with the property that | f(x) — f(¥,) | < ¢ whenever y,€ z,U. Indeed,
choose x € 2, NN G and let V be a neighborhood of the identity in G

such that
|f(x) — f(y)| < ¢ whenever yezVNG.



UNIFORM CONTINUITY IN TOPOLOGICAL GROUPS 487

Now let U be any neighborhood of the identity in G for which U:c V.
It is easy to see (directly, or by 8.7 of [7]) that there isan M in s~
such that Mc Un N. Now for any point y, in «,U there is (again by
hypothesis (b)) a point z in (xa;'y,M) N G. Since z € zx;'y, N Ny,N =
¥,N, we have f(y,) = f(z). And since zeza;'yMCc UM 2U*C 2V,
it follows that |f(x,) — F(¥)| =|f(@) — f(z)| <e. Hence U is as
desired and f is continuous at z,.

(e) = (a). Since every continuous real-valued function with domain
G is bounded, this implication is obvious.

1.3. Discussion. If (G,, v ) is a compact group and _+~ denotes
the family of subgroups of G, defined as in the hypothesis of Theorem
1.2, then the collection of translates of elements of _4~ clearly consti-
tutes a base for a P-space topology & on G,. Since any G; set in G,
that contains the identity must contain a member of _#; &7 is the
smallest P-space topology containing &7, In fact,

? ={U: U is a countable intersection of . -open subsets of G,} .

Using these observations and 1.2, we have the following fact: A (dense)
subgroup G of G, is pseudocompact if and only if G is &”-dense in G,.

Gillman and Jerison present in 9.15 of [5] an example (due to
Novak-Terasaka) of a pseudocompact space X for which X x X is not
pseudocompact. In the positive direction, a number of authors (see
especially [6] and [4]) have given various conditions on a family of
pseudocompact spaces sufficient to ensure that the product be pseudo-
compact,

THEOREM 1.4. The product of any set of pseudocompact groups
18 pseudocompact.

Proof. Let the set A index the family {G,}.e. of pseudocompact
groups, and let
G=11 G..
a€4
The uniqueness aspect of Weil’s theorem assures us that the compact
group [l.c. G. is (homeomorphic with) G. According to_1.2, then, we
need only show that each nonempty G; subset of Il.c.G. hits G.
Let U be such a set, say U = (= U, where each U, is a basic
set of the form
U,=1I Uue

w€A

here each U,, is open in G,, and for each n we have U,,, = G, for
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all but finitely many « in A. Let

s

Va = Un,a .

1

n

Then V, is a nonempty G; set in G,, and thus by 1.2 there is a point
z, in V,N G,. Evidently the point of G whose a coordinate is z,
lies in UNG.

In what follows we will consider at length Kister’s question “Must
a nondiscrete group with property U be pseudocompact?’ We now
quickly handle the converse question.

THEOREM 1.5. FEwery pseudocompact group has property U.

Proof. If f is a continuous real-valued function on the pseudo-
compact group G, then by 1.1 and (a) = (e) of 1.2, f admits a continuous
extension f on G. Since f is uniformly continuous on G, it follows
that f is uniformly continuous on G. '

2. Property BU implies property U. This theorem is proved
in 2.8. Our key lemma is 2.2,

LEmMmA 2.1. If the topological group G is mot a P-space, then
some nonempty G; subset H of G has no interior. The set H may
be chosen to be a closed subgroup.

Proof. There is a sequence {V,} of neighborhoods of e for which
e¢int Ny, V.. Selecting a sequence {U,} of symmetric neighborhoods
of e such that Uz,c U,N V, and defining H = N, U,, we see
(directly, or from 5.6 of [7]) that the G; set H is a closed subgroup
of G. Being a subgroup that is not open, H has no interior.

THEOREM 2.2. If the topological group G has property BU,
then G 1is totally bounded or G is a P-space.

Proof. Suppose the conclusion fails. Since G is not a P-space,
there is a sequence {U,} of neighborhoods of e for which int N, U, = @.
Since G is not totally bounded, there is, just as in the proof of 1.1,
a neighborhood V' of ¢ and a sequence {x,} of points in G such that
the sequence {x,V} is locally finite and pairwise disjoint.

For each integer k& there is a continuous function f, on G for
which fi(x,) =1, f, = 0 off 2 (VN U,), and 0 < f, = 1. The function
f =1/ is bounded and continuous on G, and hence is (left)
uniformly continuous. Thus there is a neighborhood W of e for which-
|f(x) — f(y)| <1 whenever 'y W. We may take Wc V. Since
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int W= @, we cannot have W< ;= Ui. Thus there is an integer
m and a point p for which pe W\U,. Now z.Yx,p)e W, so that
11— f@x.p) | =|f®,) — f@p)| <1 and we have f(x,p) # 0. Thus
z.pe U 2(V N U,). Since x,VNa, V= whenever k #+ m, we must
have z, pez. (VN U,). But then pe U,, a contradiction completing
the proof.

Our next result, used in the proof of 2.4, is given here in considerable
generality because of its application in connection with Example 3.2.

THEOREM 2.3. Let the topological group G be a P-space. Then
the following are equivalent:

(a) G has property U;

(b) G has property BU;

(e) the characteristic function of every open-and-closed subset
of G 1s uniformly continuous.

Proof. Only the implication (¢) = (a) requires proof. Given a
continuous real-valued function f on G, we note that for each rational
pair (a,d), with @ < b, the set f~'([a, b]) is closed; being a G; set in
G, this set is also open. Since the characteristic function +r;—1(, 4, is
left uniformly continuous, there is a neighborhood U,, of ¢ such that
vy e U, implies | v¥r-1 45.(%) — V102 (@) | < 1. That is, a7y € U,,
implies that ze€ f~([a,d]) if and only if yef(a,b]). Let U=
N{U,,:a,b rational and a < b}; then U is a neighborhood of ¢ since
G is a P-space, To establish the left uniform continuity of f it will
clearly suffice to show that f(x) = f(y) whenever x~'y ¢ U. Suppose then
that z='y e U and that f(z) = p. For appropriate sequences {a,} and
{b,} of rational numbers, we have {p} = N[, b:]. Then x e f~([a,, b.])
for all k. Since x7'ye U,,,, for all k, we have ye ./ '(a;, b)) =
7o) and f@) = p = f(a).

COROLLARY 2.4, If the topological group G has property BU
and is mot totally bounded, then G has property U.

Proof. By Theorem 2.2, G is a P-space. The result now follows
from 2.3.

Corollary 2.4 gives an affirmative answer to problem (a) of the
introduction for groups which are not totally bounded. The trick which
handles the totally bounded situation consists, roughly speaking, in
reducing to the metrizable case (where the proof is easy).

LemmA 2.5. If a topological group G 1is metrizable and has
property BU, then G is compact or discrete.
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Proof., This is immediate from Atsuji’s Theorem 1 in [1]. For
a direct proof (by contradiction), assume otherwise and note that by
Theorem 2.2, G must be totally bounded. Since G is not compact, G
is not complete. Hence there is a nonconvergent Cauchy sequence {x,}
in G. By Tietze’s theorem the function mapping x, to (—1)* can be
extended to a real-valued continuous function bounded on G, and this
bounded function is obviously not uniformly continuous.

LEMMA 2.6. If G is a topological group with property BU, and
if H is a closed normal subgroup of G, then G/H has property BU.

Proof. Let f be a bounded continuous real-valued function on
G/H, and let € > 0. Denoting by 7 the natural projection of G onto
G/H, we note that for is left uniformly continuous on G. Hence there
is a neighborhood V of e for which

| fom(x) — fom(y)| < ¢ whenever z~'ye V.

Of course n(V) is a neighborhood of H in G/H. Now suppose that
(xH) yH)e (V). Then a~'yH = vH for some v€ V, so that z~'yh =
v for some he H., Then 2~ (yh)e V and therefore

| f(zH) — f(yH) | = | for(x) — for(y)|
=|foa(x) — form(yh)| < e.

That is, f is left uniformly continuous.

THEOREM 2.7. Let G be a totally bounded group with property
BU. Then G ts pseudocompact.

Proof. If G is not pseudocompact, then according to 1.2 there
is a point p in G and a closed normal subgroup N of G such that
GN pN = @ and G/N is metrizable. Since pN¢ GN/N and GN/N is
the continuous image of GN under the natural projection, GN/N is a
dense proper subgroup of G/N. Since a discrete subgroup of a topological
group is closed (see 5.10 of [7]), it follows that GN/N is a nondiscrete,
noncompact metrizable group.

It is clear that any group, one of whose dense subgroups has
property BU, must itself have property BU. In particular the group
GN, in which G is dense, has property BU. Hence GN/N has property

BU by 2.6, and GN/N does not have property BU by 2.5. This
contradiction completes the proof.

THEOREM 2.8. A topological group has property BU if and
only if it has property U.
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Proof. Use 2.4 and 2.7.

3. Kister’s question. We first give a partial affirmative answer
to the question posed by Kister in [8].

THEOREM 3.1. If the topological group G has property BU and
ts mot a P-space, then G is pseudocompact.

Proof. The group G is totally bounded by 2.2, and hence is
pseudocompact by 2.7.

ExAMPLE 3.2. We now give an example of a nondiscrete topo-
logical Abelian group that is a P-space and has property U. Such a
group is clearly not pseudocompact: every pseudocompact P-space is
finite. Hence this example shows that Kister’s question mentioned in
the summary has a negative answer.

Let A be an index set of cardinality ¥, and let G consist of all
elements ¢ in [[.e4 {1, —1}. such that x, = 1 for all but finitely many
coordinates . Let 2 be the first uncountable ordinal and well-order A
according to the order—type 2: 4 = {a:a < 2}. For ac A, let

H,={xeG:a,=1 for all < a}.

We decree that the subgroups H, and each of their translates be open
and thereby obtain a basis for a topology under which G is a topological
group. Clearly G is a P-space and G is not discrete.

We shall show that G has property U. By Theorem 2.3 we need
show only that the characteristic function +, of an open-and-closed
set W is uniformly continuous. For ac A4, let W, = U {«H,:2H,c W}.
Evidently {W.,},<, is a nondecreasing family of open-and-closed sets,
and Uaco Wo= W. Since oy (2) = vy (y) whenever 2~'ye H,, the
characteristic function of each W, is uniformly continuous. Hence it
suffices to show that W = W, for some «.

Assume that W= W, for all «, and let

Ve=U{&H,:2H, N W+ @ and «H, N (GQ\W) = @} .

It is easy to see that each V, is nonvoid and that V, > V, whenever
a < v < 2. It suffices now to prove that N,., V, is nonvoid, since
any element in this intersection belongs to the closures of both W and
G\ W, contrary to the supposition that W is open-and-closed.

We prove that N ,., V., is nonvoid. For z in G and & in 4, we define
N(x, o) to be the number of elements in the finite set {fecd:B <«
and zz = —1}. For ac A, we define

n, = inf N(x, ) and J, = {x € V,: Nx, o) = n,} .

ZE€V 4
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Clearly @ = J,c V, for all @. The integer-valued transfinite sequence
{N4}e<o is nondecreasing because for o << v we have
n, = inf N(z, @) = inf N(z,v) = inf N(z,v) =n, .
TE€V o TEV €V,

It follows that the sequence {n,}.,<, is eventually constant. There is,
then, an integer #n, and an a, in A for which n, = n, whenever a = «,.
We next show that {J.}..., is a nonincreasing family of sets. Suppose
that o, < @ < v and zeJ,. Then zeJ,c V,c V,. Since also

n, = N(z,a) = N(z,7) = ny = 1, = N, ,

we see that zeJ,. Now let Y consist of all elements y of G such
that yg =1 for all 8= a,. Then Y is a countable set. Assume now
that Na<o V. = &, so that NasaJo = @. Then for each y in Y there
is an a, = a, such that y¢J,,. Selecting 7, in A larger than each a,,
we find that Y NJ, = @J. Now choose z in J,. Then z also belongs
to J.,, so that N(z,7v,) = N(z,a,) = n,. Hence 2z =1 fora, = 8 < 7,
Define w so that ws = 2z for 8 < v, and ws =1 for 8= v,. Clearly
w belongs to Y. Since zeJ, c V,, we have wezH, c V,. Also
N(w, v) = N(z, 7)) = m, so that weJ,. That is, w belongs to Y N J,,
contrary to the relation Y NJ, = @. Thus N., V. # @, and we
conclude that G has property U.

REMARK, It may be interesting to note that the group discussed
above is Lindelof (and hence normal). To see this, assume that % is
a cover of G by basic open sets, and that % admits no countable
subcover. For aec A, let %/, consist of all elements of % which are
translates of some Hy; where 8 < a. Since each 7/, is countable, no
7/, 1s a cover for G. Let U, = U %,. Then {U,}.., is 2 nondecreasing
sequence of proper subsets of G, and each U, is a union of cosets of
H,. Let V,=G\U,. As in Example 3.2 above, we have N, V, #
@: hence 7 does not cover G. "

One may wonder whether Example 3.2 is typical of topological
groups that are P-spaces: Do all topological groups that are P-spaces
satisfy property U? The next theorem and the examples following it
make Example 3.2 appear atypical.

THEOREM 3.3. Let G be a nondiscrete topological group. If G
admits a base 57 at the identity consisting of open subgroups such
that card (G/K) = card o7 for some K in 57, then G does mot have

property U.

Proof. We may clearly suppose that H < K for all H in 2, By
the cardinality hypothesis, there exists a subset {*y}zez of G, indexed
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by &7, such that {#;K},e» is a family of distinet cosets of K. Let
W = UHG% xgH. Clearly W is open, and W is closed because

W =(G\ U 2,K)U U (eaK\wgH) .
HeH He g

Therefore +r, is continuous; we next show that +r, is not left uniformly
continuous. Indeed, suppose that there exists an H,< 5% such that
x~'y € Hyimplies x € W if and only if y € W. Since G is nondiscrete, there
exists an H in 97 such that Hc H, and H = H,. If y is chosen so that
yewgH\vgH, then yec v, K\e,H C G\W. Since xz'y € H,, we also have
xgz€ G\W. This contradicts the fact that x,cxz,Hc W.

EXAMPLES 3.4. Let ¢ be a cardinal number less than the first
strongly inaccessible cardinal'. Let G be the algebraic group {1, —1}* =
Tl«es {1, —1}., where the index set A is ordered according to the least
ordinal having cardinality y¢. Let the subgroups

H,={&xeG:z3=1 for all B < a}

and all their translates be a basis for a topology on G.

If v denotes the smallest cardinal number which is the cardinal
number of some cofinal subset of A, then evidently v is the minimal
cardinality of a base at the identity of G. If g is chosen so that
v > W,, then the nondiscrete topology imposed upon G is clearly a
P-space topology, and under the condition v > W, we can show that
G does not have property U.

To do this, suppose first that 2 < v whenever £ < v. Then (from
12.4-12.6 of [5]) there is a set {v,}.e,; of cardinal numbers such that
card A4 < v, v, < v for each \ in 4, and supy, = v. Since there is then
a cofinal set {a,: v € 4} in A indexed by 4, contrary to the minimality
of v, we conclude that 2« = v for some £ < v. Now let 57 be a basis
of open subgroups at the identity for which card % = v, and choose
Be A so that Hye 97 and card{ec A:a < 8} = . Then

card(G/HYy =z 2= v,

so that G does not have property U by 3.3.

4. Related concepts. Much of our earlier work is summarized
in the following theorem. The symbol BG denotes the Stone-Cech
compactification of the (completely regular) space G; it is, to within
a homeomorphism leaving G fixed pointwise, the only compactification

1 A cardinal number is said to be strongly inaccessible if it is an uncountable
cardinal whose set of predecessors is closed under the standard operations of cardinal
arithmetic. Itis not known whether any strongly inaccessible cardinal number exists.
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of G to which each bounded continuous real-valued function on G admits
a continuous extension. The amusing suggestion that G might induce
a topological group structure on SG is not original with us: The
appearance of this phenomenon was explicitly pointed out in [6] by
Glicksberg in connection with the Corson f-space mentioned earlier.

The implication (b)= (g) of 4.1 below was given in [6], and
Glicksberg asked whether or not the implication (a) = (g) is valid. Our
proof of its validity does not depend upon the results of [6].

If the identity in a topological group G admits a neighborhood U
which is bounded (in the sense that for each nonempty open subset V'
of G there is a finite set F such that Uc F'V), then G is said to be
locally bounded.

We remark finally that additional conditions equivalent to those
listed below may be obtained by replacing the expression “G has property
U” when it appears by the expression “G has property BU.”

THEOREM 4.1. For a topological group G, conditions (a) through
(g) are equivalent, and each implies (h). If in addition G 1is
nondiscrete, then all eight conditions are equivalent.

(a) G 1is pseudocompact;

(b) G x G is pseudocompact;

(¢) G s pseudocompact and has property U;

(d) @G s totally bounded and has property U;

(e) G is totally bounded and BG = G;

) BG admits a topological group structure relative to which
the inclusion mapping of G into BG s a topological isomorphism;

(g) every continuous real-valued function on G is almost periodic;

(h) G s locally bounded and has property U.

Proof. Theorem 1.4 gives the implication (a) = (b), and the converse
follows from the fact that the continuous image of a pseudocompact
space is pseudocompact. The implications (a) = (¢), (¢) = (d), and (d) =
(a) are 1.5, 1.1, and 2.7 respectively, while the implication (a) = (e)
follows from 1.1 and the implication (a) = (e) of 1.2. That (e)= (f)
is obvious, and the implication (f) = (d) follows from 2.8.

We have shown so far that the first six conditions listed are
equivalent.

To deduce (g), suppose that (a) and (e) hold and let f be any
continuous real-valued function on G. Being bounded, f admits a
continuous real-valued extension to BG. A routine computation, based
on the fact that every continuous real-valued function on the compact
group SBG is almost periodic on BG, shows that f is almost periodie
on G.

To see that (g) implies (a), let f be any continuous real-valued
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function on G and let F be a finite subset of G with the property
that for each ¢ in G there exists y in F such that | f{zz) — flyz)i < 1
whenever ze G. Then for each z in G we have

| flx)| = | flwe) | < Iﬁ‘fpxlf(y” +1.

Since the implication (d) = (h) is obvious, we may complete the
proof by supposing that G is nondiserete and deducing (d) from (h).
If (h) holds but (d) fails, then G is a P-space by 2.2. Let U be a
bounded neighborhood of ¢ and let {x,} be an infinite set of distinect
points in U. For each pair (m, n) of distinct positive integers there
is a neighborhood V,,, of the identity such that z,¢2,V.,,.. Choosing
a symmetric neighborhood V of the identity such that

& c(n) Vorn s
we see easily that no set of the form x V can contain more than one of the
points x,. Thus there exists no finite subset F of G for which Uc FV.

In the discussion and example which follow we will say that a
uniform space on which each real-valued uniformly continuous function
is bounded has property UB. Clearly any totally bounded uniform
space has property UB, and Atsuji gives in [1] an example of a connected
metric space that is not totally bounded but which has property UB.
Further metric examples are given in exercises 15.D and 15.L of [5].
Although Atsuji in Theorem 7 of [2] characterizes uniform spaces with
property UB by means of a chainability condition, the following question
has not so far as we can determine been treated in the literature:
Must a topological group with property UB be totally bounded? We
now answer this question in the negative.

ExXAMPLE 4.2. Let T denote the circle group and let G be the
algebraic group T™ = [[7., T.. Defining

d(z,y) = sgplxk — Yil

for each pair of points z, % in G, we obtain a metric topology on G
under which G is a topological group. To see that G has property
UB, let f be a uniformly continuous real-valued function on G and
find 6 > 0 such that | f(®) — f(y)| < 1 whenever d(z,y) < . Choose
an integer m so that, given any point ¢ in 7T, there is a sequence 1 =
¢, «ee,t™=1¢ in T such that [t/ —¢/| < 06/2 for 0=j7=<m — 1.
We will show that | f(x)| < |f(e)| + m for all x in G. For a fixed «
in G, select for each integer k > 0 a sequence 1 = 2%, 3}, ---, 27" = 2,
in T such that |zi** — x{| < 6/2. The finite sequence z°, &%, ---, 2™ in
G has the property that



496 W. W. COMFORT AND KENNETH A. ROSS

d(@*, 2f) < 6/2< 8 for 0<j=m—1.

Hence | f(xi*") — f(x?)| <1 for 0 < 5 < m — 1, so that | f(x) — fle)| =
m. Thus G has property UB.

To see that G is not totally bounded, let W be the open set
{xeG:d(x,e) < 1/2}. Regarding G as the usual compact topological
group T with its Haar measure, we see that the G; set W has Haar
measure 0. It follows that no finite number of translates of W can
cover G.
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