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Marcus and Newman have made the following conjecture:
Let A = (αt y) be a n X n nonnegative symmetric matrix. Then

S(A) S(A2) ^ n S(A3) ,

where

S(A) = Σ an .

After reducing the conjecture to a standard maximum problem
of linear programming we prove that it holds for n £ 3. A
counter example shows that for n ^ 4 the conjecture is wrong.

We also consider the following conjecture: Let A = (αtJ ) be
a n x n nonnegative symmetric matrix. Then

~ 2-1 S{ f Ύϊt — 1, Δ,

where

The validity of this conjecture is established in two cases:
(1) m up to 5 and any n, (2) n up to 3 and any m. The
general case remains open. We conclude this paper with two
generalizations of the second theorem.

NOTATION. Let A = (ai3) be a n x w real matrix. A is called
nonnegative if a t i ^ 0, ΐ, j = 1, , n. The quadratic form corre-
sponding to a symmetric A is denoted by A(x, x), that is

A(x, x) = (-Aa;, a?) = Σ a^x^i .

Here (A#, a?) denotes, as usually, the scalar product of the real vectors
x and Ax. Denote e = (1, , 1) and Ae = (s:, , sn) = s = s(A).
Si = Si(A) is thus the sum of the elements of the ith row of A.
s = s(A) is ί/ie row sums vector of A. 4̂ is generalized stochastic if
A is nonnegative and if s(A) = cβ, where c is a scalar. Further
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notations are:

S(A) =

S(x) =

Am =

si*1' =

n

n

S α

(air

h,

DAVID

A(e, β) ,

/y ίrjβ

«A') =

LONDON

V^ /y(m) m = 1, 2,

1* The conjecture of Marcus and Newman,

l l The conjecture and its connection with linear program-
ming* In [4, p. 634] the following conjecture is introduced: Let
A = (a{j) be a n x n nonnegative symmetric matrix. Then

(1.1) S(A) S(A2) ^ nS(Az) .

Using the notation introduced before, we have

(1.2) S(A*) = X sf» - A2(e, β) = (Ae, Ae) = X βj ,
1 l

= Σ β{8) = A3(e, β) = (ilβ, A'e) = Σ MΓ' .
i=l i=l

Hence, (1.1) can be written in the form

(1.3)
ΐ = l

If the sets s = (s19 , sn) and s(2) = (s[2), , s^) are similarly ordered,
that is if (s; — s^s^ — ŝ 2)) ^ 0 for every 1 ^ i, j g n, then according
to an inequality of Tchebychef [2, p. 43] the inequality (1.3) holds.
However, the following example shows that for nonnegative symmetric
matrices A, s(A) and s{2)(A) need not be similarly ordered. Let

'6

2

0

2

1

0

0'
0

4

Then s(A) = (8, 3, 4) and S(2)(^L) = (54,19, 16). s(A) and
therefore not similarly ordered.

Denote

are

X'
l
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We have

(1.4) au = s* - Σ ' α^ , i = It , n ,
j = l

(1.5) β?> = Σ o l i β i , i = l,'",n.
j = l

From (1.2), (1.4) and (1.5) follows

nS(A3) - S(A) S(A*) = n±spSi- Σ s, Σβ?'
<=1 i = l t = l

= n ± st\±' aijSj + βΛ - ±' ai3)] - ± s{ ± s?
ΐ=l L i = l V 3=1 /J i=l i=l

= n±sl- Σ«,Σ«J ~ n Σ β«(βi - sί)2

i=l i=l i = i l^i<i

= Σ (β« - β*)(βί - «J) - » Σ
l^i<i

Hence,

nS(A*) - S(A) S(Aι)

Σ
£ϊ<

(1.6)

Using (1.6) we obtain, a representation of the conjecture (1.1) by
concepts of linear programming (see e.g. Gale [1]). Consider the
following maximum problem: Let slf , sn be nonnegative numbers.
Find numbers αt y = aHi i Φ j;i,j = 1, , w, which satisfy the set of
linear inequalities

aid = aH ^ 0, ί Φ j i, j = 1, , n ,

(1.7) \f!a <s i = l

and which maximize the linear function

(1.8)

The problem (1.7), (1.8) is a maximum standard problem of linear
programming. A set of numbers ai5 which satisfies the inequalities
(1.7) is a feasible solution of the problem. A feasible solution which
maximizes (1.8) is an optimal solution. The dual of the problem (1.7),
(1.8) is the following minimum standard problem: Find numbers
Vu , Vn which satisfy the set of inequalities

[yi > 0, i = 1, , n,
(1.7') / x . - • • 1
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and which minimize the function

(1.80 ±BiVi.

It is obvious that the problem (1.7), (1.8) and its dual have optimal
solutions.

From (1.6) it follows that the conjecture (1.1) can be represented
in the following equivalent form: Let aij9 i Φ j ; i, j = 1, , n, be an
optimal solution of the maximum standard problem (1.7), (1.8). Then

(1.9) Σ aW*< ~ s;)2 ̂  — Σ

1*2 Proof for n ^ 3. In this section we establish the validity
of the conjecture for n ^ 3.

THEOREM 1. Let A be a n x n nonnegative symmetric matrix.
Then for n ^ 3 the inequality (1.1) holds. The equality sign holds
in (1.1) if and only if A or A2 is a generalized stochastic matrix.

Proof. For n = 1 the inequality (1.1) holds trivially. For n =
2, 3 we use the representation of (1.1) by (1.9).

For n = 2 it is sufficient to prove that if

(1.10) 0 ^ α12 ^ min (su s2) ,

then

(1.10) implies

(1.12) α1

and from (1.12) follows (1.11). Equality holds in (1.1) if and only if
it holds in (1.11), and there it holds if and only if sx = s2, that is if
A is a generalized stochastic matrix. As by (1.3) we clearly have
equality in (1.1) if A2 is generalized stochastic, it follows that there
are not nonnegative symmetric 2 x 2 matrices such that A2 but not
A is generalized stochastic. We remark that it is easily seen that for
n = 2, s and s{2) are similarly ordered sets. (1.1) thus follows also
from the inequality of Tchebychef.1

1 As the referee suggests, the proof for n = 2 can be done directly by the methods
in [4], Using the notations in [4], we have

2S(Aη - S(A)S(A*) = wiwzlλi - /2)
2Ui + λz) and λι + λ2 = tr(A) ^ 0 .

The author wishes to thank the referee for this remark.
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We prove now the theorem for n = 3. Without loss of generality

we may assume that

(1.13) 0 < 8, g So ̂  s3 .

The assumption 0 < sx does not restrict the generality. If s1 = 0 then

A is of the form

A =

Hence, using the validity of (1.1) for n = 2, we obtain

•o

0

_0

0

B

0"

At first we treat the case

(1.14) 0 < a, < *• < s3 .

Denote

α23 = α32 = x1 , α13 = α31 = x2 , α12 = α21 = a?8.

The corresponding maximum problem is: Maximize

(1.15) Af (a?lf xt, Xz) = «i(«2 - s3)
2 + ^ ( S i - S3)2 + α?β(β! - s2)2 ,

where ^ ^ 0 , ^ = 1 , 2 , 3 , satisfy the system of inequalities

(1.16) -(2) ^ + ^ ^ 5 ,

,() x, + x2 ^ s3.

The dual of the problem (1.15), (1.16) is the following problem: Minimize

(1.15') i/A + 1/2*2 + 2/3S3 ,

where ^ ^ 0, i = 1, 2, 3, satisfy the system of inequalities

(2/2 + 1/3 ̂  (*2 - 5 3 ) 2

(1.16') ji/! + y» ^ (*! - S3)2

Let ZIf x2f %3 be an optimal solution of (1.15), (1.16) and yu y2i y$

an optimal solution of the dual problem. Let (1.16), (1.16') denote

respectively the inequalities (1.16), (1.16') after substituting xlyx2fxz

and yu y2i yz respectively.
According to our assumption (1.14) we have
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(β« - j; ί, j = 1, 2, 3,

and it follows therefore from (1.16') that at most one of the numbers

Vu $2, Vz is equal to zero. From the equilibrium theorem [1, p. 19]

follows that in (1.16) equality holds at least in two of the inequalities.

In (1.160 at least one strict inequality holds. For if three equalities

hold then by solving the system of equations we get y2 < 0, and so

the solution is not feasible. Using again the equilibrium theorem we

obtain that at least one of the numbers is equal to zero. As (1.14)

holds, it follows that precisely one of those numbers is equal to zero.

Summing up: In (1.16) the sign of equality holds at least twice and
precisely one of the numbers xu X21 xz vanishes.

We now consider all the sets xl9 x2y xz for which the just obtained
conditions hold. For every such set we decide whether it is a feasible
solution (f.s) or whether it is not a feasible solution (n.f.s). For this
decision we have to distinguish between the two following cases

(1.17) s1 + s2 ^ sz ,

(1.18) s, + s2 ^ sz .

The result is given in the following table.

equality in (1.16)
in the equations

(1), (2)

(1), (2)

(1), (2)

(1), (3)

(1), (3)

(1), (3)

(2), (3)

(2), (3)

(2), (3)

Xi

0

Sz — Si

sz

0

S3

S3 — Si

0

S3

S2

Xz

Si ~ Sz

0

Si

S3

0

Si

S3

0

S3 — Sz

Xz

sz

Si

0

Si - S3

si

0

sz

Sz - S3

0

case
(1.17)

n.f.s

f.s

f.s

n.f.s

n.f.s

n.f.s

n.f.s

n.f.s

n.f.s

case
(1.18)

n.f.s

f.s

n.f.s

n.f.s

n.f.s

f.s

n.f.s

n.f.s

f.s

For any row of this table containing a f.s, the limit case sx + s2 = s3

is to be associated with this f.s.

When (1.17) holds, the optimal solution is one of the following

feasible solutions

(x19 x2, x3) = (s2 - slf 0, s,) ,

(xl9 x2, x3) = (s 2, 8lf 0) .
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As

M(s2 - 8l9 0, Sx) = (S« - 80(8* - S3)
2 + Si(Si - S2)

2

< S2(S2 - S3)2 + 8,(8, - S3)2 = M ( s 2 , 8,9 0) ,

it follows that

(1.19) (S,9 xi9 x3) = (s 2, 8l9 0) .

This optimal solution is unique.
When (1.18) holds, the optimal solution is one of the following

feasible solutions

(x,9 x2y xz) = (s 2 - slf 0, sx) ,

(Xl9 X2, X3) — (S 3 8l9 Sly 0 ) ,

(Xu X*, Xs) = (s2, s 3 - s2, 0) .

As

(1.20)
 M

(
S z
 ~~

 Sl
>
 8l
> °̂  ~

 M
^
 Sz
 ~~

 S2> 0) =
 ^

3
 ~

 Sl
""

 Ss)(S

+ (Si + S2 - SsXβi — S3)2 ^ 0

and

M(S3 - Su 819 0) = (S3 - S ^ - S3)2 + S^S, - S3)2

> («2 - *i)(*2 - 53)
2 + S^S, - Sx)

2 = M ( S 2 - Sί9 0,

it follows that

(1.21) (xl9 x29 x,) = (s3 - 8lf s,, 0) .

As equality in (1.20) holds only if sλ + s2 = s3, it follows that the
optimal solution (1.21) is unique. We remark that the optimal solution
can also be determined by the simplex method [1, ch. 4].

According to (1.9), (1.19) and (1.21) we have to prove that

(1.22) M(s2, sl9 0) = s2(s2 - szγ + 8,(8, - s3)
2 < i - Σ (*< + βi)(β* - s, )2

when (1.17) holds, and that

M(s3 - sx, β l f 0)

ί 1 - 2 3 ) = (S3 ^ β l)(S 8 - S3)2 + 8,(8, - S3)
2 < λ Σ (S, + βyXβ, ~ Sjf

when (1.18) holds.
Denote

(1.24) Si = a, s
2
 = a + β, s

3
 = a + β + 7 .
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The assumption (1.14) implies

(1.25) a,β,y>0.

Assuming the validity of (1.17), we prove now that (1.22) holds.
(1.17) gives

(1.26) a £ 7 .

Denote

ϋ = Σ (S; + «i)(«< - SJY - 3AΓ(82, βlf 0)

= («i - S2)
2(SX + S2) + (S2 - S3)

2(S3 - 2S2) + (S3 ~ βj^ββ ~ 28J .

By the notation of (1.24) £ takes the form

(1.27) Iλ = /32(2α + yS) + 72(7 - a - β) + (β + 7)2(/3 + 7 - a) .

From (1.25), (1.26) and (1.27) follows

yδ) + 72(27 - 2α) > 0 .

(1.22) is thus established.
Assuming the validity of (1.18), we prove that (1.23) holds. (1.18)

gives

(1.28) a ^ 7 .

Denote

Iχ = Σ (*i + s i )( s i ^ »i)2 ~ 3 Λ f (S3 - *i, Si, 0)

= («i - «*)*(*! + s2) + («t - s3)
:(3s1 + s2 - 2s3) + (βx - s3Y(s3 - 2s,) .

By the notation of (1.24) I% takes the form

(1.29) I2(a, β, 7) = β\2oc + β) + y\2a - β - 2y) + (β + yf(β + y - a) .

We distinguish between the following two cases

(1.30) β + 7 ^ a ,

(1.31) β + 7 < a .

At first assume that (1.30) holds. From (1.25), (1.28), (1.29) and (1.30)
we obtain

L ^ β°-(2a + β) + r(2a - β - 2γ) + 7*08 + 7 - α)

= /δ-(2α + /δ) + 72(α - 7) > 0 .

(1.23) is thus established when (1.30) holds. Assume now that (1.31)
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holds. Write I2(a, β, 7) in the following form

(1.32) It(a, β, 7) = a(β - ΊY + β3 + (β + 7)3 - r(/3 + 2y) .

L(a, β, 7) is linear in a. Let β, 7 be any constant positive numbers.
As

I.(a, 7, 7) = 6T3 > 0 ,

we may assume that

(1.33) (β - 7)2 > 0 .

Using the validity of (1.23) when (1.30) holds, we obtain

(1.34) L(β + 7, β, 7) > 0 .

From (1.32) and (1.33) it follows that

(1.35) lim L(a, β, 7) = + ™ .
a-*+oo

As J2(α, β, 7) is linear in a, it follows from (1.34) and (1.35) that
72(α, β, 7) > 0 when (1.31) holds. (1.23) is thus established also when
(1.31) holds.

The proof of the theorem is completed in the case when (1.14)
holds. We proved that in this case (1.1) holds strictly. From continuity
considerations it follows that the theorem without the equality statement
holds also if only (1.13) is assumed. (We have already mentioned that
(1.13) can be considered as the general case). Hence, to complete our
proof in the general case (1.13), we have to assume that (1.14) is
invalidated and to check for possible cases of equality in (1.1). If
(1.14) does not hold, there are three possibilities:

(1)

(2)

(3)

«! = S2 = S3 ,

o1 <^ 5o — 5 3 ,

If (1) holds then the sign of equality in (1.1) holds for every A.
In this case A is a generalized stochastic matrix.

In cases (2) and (3) we consider the corresponding maximum problems.
The maximum problem corresponding to (2) is: Maximize

M(xu x2, xz) = (s, - szf(x2 + a?8) ,

where xi ^ 0, i = 1, 2, 3, satisfy the three inequalities

+ #3 ^ «1
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It is obvious that every feasible solution for which x2 + #3 = sλ is an
optimal solution. So there are infinitely many optimal solutions. If
in this case the sign of equality holds in (1.1), then

o
*i(*i ~ S3)

2 = — ( « ! - S3)
2(Si + S3) ,

o

and therefore

8, = 2s3 .

As the last equality contradicts (1.13), we conclude that in the case
(2) strict inequality holds in (1.1).

The maximum problem corresponding to (3) is: Maximize

M(x,, x2, xz) = (x, + x2)(sλ - S3)2 ,

where x{ ̂  0, i = 1, 2, 3, satisfy the three inequalities

!

%2 + #3 ^ §!

«1 + #3 ^ Si

»χ + #2 ^ S3

In order to determine optimal solutions of the problem, we have
to distinguish between the following two cases

(3), 2sλ ̂  s3,

(3)/7 2 s 1 > s 3 .

If (3)z holds then the only optimal solution is

(xu x2, xz) = (su su 0) .

If (3)JJ holds then every feasible solution for which xx + x2 — s3 is an
optimal solution. In this case there are infinitely many optimal solutions.
If the sign of equality in (1.1) holds in the case (3)Γ then

28,(8, - S3)
2 = -§-(*! + 89)(8± - S3)

2 ,
ό

and therefore

(1.36) 28, = s 3 .

If the sign of equality in (1.1) holds in the case (3)7/ then

and (1.36) is obtained again. As (1.36) contradicts (3)/7, it follows
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~0

0

0

0

S i

S i

S i

0

that in this case equality in (1.1) is excluded. Hence, in case (3)
equality in (1.1) holds if and only if

*i = Sz, S* = 2SU (Xu Xo, Xz) = (Su 8lf 0) ,

that is only for the matrix

(1.37)

A2 is a generalized stochastic matrix (while A is not stochastic). It
follows from (1.3) that if A or A2 is a generalized stochastic matrix
then equality in (1.1) holds. Hence, it follows that equality in (1.1)
holds if and only if A or A2 is a generalized stochastic matrix. This
completes the proof of the theorem.

REMARK 1. The following example proves that the assumption
of symmetry in Theorem 1 is essential. Let

1 2 1"

1 1 2

0 1 1

A is a positive nonsymmetric matrix. As

S(A) = 10, S(A2) = 32, S(AZ) = 100 ,

(1.1) does not hold.
It is obvious that (1.1) does not hold in general for real symmetric

matrices with (some) negative elements. However, going over to the
absolute values and denoting | A\ — ( |α o |), one may think that for all
n x n, n ^ 3, symmetric matrices

(1.10 S(\A\)S(\A2\)^nS(\A>\)

holds. The following counter example shows that this is wrong. Let

As

(1.10

S(\A

does not

1) = 12 ,

hold.

A =

S(\

1

- 2

1

A*\)

-2

0

2

= 36

1
2

- 1
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REMARK 2. Let A be a 3 x 3 nonnegative symmetric matrix.
Let r l f r2, r3 be an orthonormal system of characteristic vectors of A
corresponding respectively to the characteristic values au a2y cc3. Let
R be the orthogonal matrix with the columns ru r2, r3. As A = RDRT,
where D is the diagonal matrix {au au as} and Rτ is the transposed
of JR, we have

3

O\Jx ) — \Jx &, &) — \LJ JΛ> tJ JX V) — J>_, iX{ \&\ι %)\
t = l

Hence, (1.1) for n — 3 is transformed to

(1.38)

(1.38) is a necessary condition for a system of 3 orthonormal vectors
*Ί» r2, β̂ a n d three real numbers al9 a*, a3 to be respectively a system
of characteristic vectors and values of a 3 x 3 nonnegative symmetric
matrix. It would be interesting to find similar necessary (or sufficient)
conditions concerning n x n nonnegative symmetric matrices.

REMARK 3. From the considerations concerning the equality sign
in the proof of Theorem 1 we conclude: Let A be a 3 x 3 nonnegative
symmetric matrix satisfying (1.13). A is not generalized stochastic
while A2 is generalized stochastic if and only if A is of the form
(1.37). In a recent paper [3] we characterize the matrices of this
type for every n.

1*3 Counter example for n ^ 4. In this section we bring a
counter example which shows that for n ^ 4 the conjecture of Marcus
and Newman does not hold. Let

(1.39)

a 0

0 0

- - 0"

0 1

] i

] I

I I

1 I

1 1 ! 1 1

i 0 - 0 1

0 1 - 1 0

a 0

0

0

0

,n ^ 4 .

An(a) is a n x n symmetric matrix depending on the real parameter α.
For a ^ 0 AJa) is nonnegative. Bn^ is a (n — 1) x (n — 1) nonnegative
symmetric matrix. J5*_i is generalized stochastic (while Bn_x is not
generalized stochastic). As
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U) = (n - 2)e , S(^_x) - (n - l)(n - 2) ,

- 2) , S(Bί_i) = 2(n - 2)2 ,

we obtain

n S(Al) - S(An) S(Al) = *ι[2(n - 2)2 + α3]

-[2(w - 2) + α][(ra - l)(n - 2) + α2]

- [α2 - (n - 2)][(π - l)α - 2(w - 2)] - fn(a) .

The zeros of the polynomial fn(a) are

a, = n — 1

and therefore fn{a) < 0 for

(1.40) 2(n ~ 2 ) < a <V^Γ^~2 .
n — 1

Hence, for every a satisfying (1.40) the inequality (1.1) does not hold.

REMARK. Consider the following generalization of conjecture (1.1):
Let A be a n x n nonnegatίve symmetric matrix. Then

(1.41) S(A) S(Am) ^ n S(Am+1) , m = 1, 2, .

For odd m (1.41) holds for every symmetric A [4, Th. 4]. For even
m and n ^ 4 a straightforward computation proves that (1.41) does
not hold for the matrices (1.39), for a satisfying (1.40). For m — 2
and n ^ 3 the validity of (1.41) is established in Theorem 1. For even
m > 2 and n = 3 the problem remains open.

2* Upper bound for the sum of the elements of a power of
a matrix*

2Λ. A conjecture. In this section we state a conjecture which
yields an upper bound for the sum of the elements of a power of a
nonnegative symmetric matrix.

We first define a class of matrices: Let s = (sl9 , sn) be a vector
for which the condition

(2.1) 0 < s1 < s2 < < sn

holds. Denote by SzζXs) the class of all n x n nonnegative symmetric
matrices for which s(A) = s.

By a straightforward computation, using (1.2), (1.4) and (1.5), we
obtain
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(2.2) S(A3) = ±s\- ± aiS(Si - Sjγ .

From (2.2) it follows that for every A e Stf%(s) the inequality

(2.3) ±

holds. Equality in (2.3) holds if and only if A is the diagonal matrix
in JK(s).

The following conjecture generalizes (2.3): For every AG Sfn{s)
the inequality

(2.4) S(Am) =g Σ sT , m = 3, 4,

holds. Equality in (2.4) holds if and only if A is the diagonal matrix
in JK(s).

REMARK 1. For m = 1, 2 (2.4) holds with equality sign for every
A e J^ζ(s). This is the reason why we did not include m = 1, 2 in
our formulation of the conjecture.

REMARK 2. In the definition of the class Stfn{s) we assumed that
s(A) satisfies (2.1). If we ommit this assumption only the equality
statement of the conjecture is to be changed.

2*2* Proof for particular cases* In this section we prove some
particular cases of the conjecture. The general case remains open.

THEOREM 2. In the following two cases
(1) m = 3, 4, 5 and n = 1, 2,
(2) m = 3, 4, and n = 1, 2, 3

the inequality

(2.4') S(A ) ^ ± sT

holds for every Ae J^n{s). The equality sign in these two cases holds
only for the diagonal matrix in

Proof. Let A = (α^ ) e J^i(β). Assume that there exists an ί,
<Ξ i < n, for which ani > 0. Define
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(2.5)

Here ε is a

dS[A«
dε

Hence,

(o a\ d S[A
a

I \

1
I

!
1

I
1

N like
\

\

- - dni

nonnegative parameter.

ι(s)] - S
ε=o

Γ dAm

L dί
m - 1

fc = 0

Γ(ε)]
ε ε=o jί

t-2

V IV771

(ε) "1
Jε=o

0 JA 0 I
) *JL t / l •

- sn

I
1

! \
7 \1 \
II
1
— e •

For

"it
m-1

) s

Uln

!

!

1
1

I
1

\ !

- - ann + ε_

small ε^l(ε) € JK(

] S[AkA'(0) Am~k~
1

(A'(0)β ( 1 —'-^(A),

[8i { ) - Sn ( )

s). We have

s{λ)(A))

1

W(A)i

n \ )\

Let us first bring the proof for the case (1). Let Ά = A(m) = (α i 3),
m = 3, 4, 5, be an optimal matrix of the maximum problem

Max S(Am) .

For a fixed m, m = 3, 4, 5, we use induction on w. For n = 1 the
theorem holds trivially. Suppose that the theorem holds for n — 1
(and the same fixed m). We prove shortly that the optimal n x n
matrix A has the following structure

0

(2-7) A = I(m) =
i

0

0

J5 is a (w — 1) x (n — 1) nonnegative symmetric matrix and s(B) =
(*i, •• ,su_1). Suppose that we have already proved that A has the
structure (2.7). By the induction assumption

s(Bm) ^



530 DAVID LONDON

and equality holds only if B is diagonal. Hence,

(2.8) S(Άm) = S(B™) +sΐ ^±sf .

Equality in (2.8) holds if and only if A is a diagonal matrix.
It remains to prove that A has the structure (2.7). Assume that

A has not the above structure. There exists at least one i, 1 ̂  i ^ n — 1,
for which ani > 0. For this i the matrix Ά(ε) is defined according to
(2.5). As A is an optimal matrix of the above defined maximum
problem, and as for a small enough ε > 0 Ά(ε) e Sfn{s), the inequality

(2.9)
dε

ε=o

must hold. From (2.6) and (2.9) we obtain

w-2
(2.10) g [sϊk)(Ά) - s^iA)]^-"-1^!) - βί—*-1}(iϊ)] S 0 .

We now consider separately the cases m = 3, 4, 5. By a suitable
choice of i we obtain a contradiction to (2.10).

m = 3. For this case the theorem has already been proved by
the representation (2.2). We give here an independent proof. Choose
any i, 1 g i ^ n — 1, for which αΛί > 0. According to our assumption
there exists such an i. By (2.10) we obtain for this i

(2.11) [Si(Ά) - sn(A)Y = (Si - sj S 0 .

(2.11) contradicts (2.1).

m = 4. Let ΐ, l ^ ΐ ^ n — 1, be the smallest index for which
ani > 0. According to our assumption there exists such an i. By
(2.10) we obtain for this i

(2.12) (βm - sάWWλ) - *?>(!)] g 0 .

We have

I s = s(2)(Λ) .

By (2.1) and by our choice of i we obtain

(2.13) s

(2.14)

Hence,
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(2.15) s

Equality in (2.15) implies equality in (2.13) and (2.14). Equality in
(2.13) holds if and only if

fin = = ff»,»-i = 0, ain = Si .

Equality in (2.14) holds if and only if

2«,<+i = * = finn = 0, ani = sn .

Hence,

(2.16) ain = αwί = 8̂  = 8,.

(2.16) contradicts (2.1) and therefore (2.15) holds strictly. (2.1) and
the strict inequality in (2.15) contradict (2.12).

m = 5. From the set of all the indices i, 1 ^ i ^ n, for which
αΛi > 0 choose that ί for which s{^(A) attains its minimum value.
According to our assumption there exists an i, 1 S i < n, for which
ani > 0. As we saw in the proof for m = 4, there exists an i, 1 ^
i <Uj which satisfies ani > 0 and for which strict inequality holds in
(2.15). It follows that the i chosen now satisfies i < n. By (2.10)
we obtain for this i

(2.17) 2(βm - β<)W8)(I) - β?>(2)] + K2>(i) - β?>(I)Γ ^ 0

We have

By (2.1) and by our choice of i we obtain

(2.18) s

(2.19) «

As αΛi ^ 0, it follows that 3$ =£ 0. As 3g} ^ 0 and as i < n, it follows
that the strict inequality sign in (2.19) is justified. (2.18) and (2.19)
imply

(2.20) 8?>(A) < s{:\A) .

(2.1) and (2.20) contradict (2.17). The proof of the case (1) is thus
completed.

We bring now the proof for the case (2). We give first the proof
for n = 3. Let Ά = Ά(m), m = 3, 4, , be an optimal matrix of the
problem
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Max S(Am) .

Assume that A(m), for a fixed m from m = 3,4, •••, has not the
structure (2.7). There are then two possibilities:

(2.21) α31 Φ 0 ,

(2.22) α31 = 0, α32 Φ 0 .

If (2.21) holds then, according to (2.10), it is sufficient to prove that

for every natural k the inequality

(2.23) sίk)(Ά) < s

holds, while if (2.22) holds it is sufficient to prove that

(2.24) s{

2

k)(Ά) < s{

3

k)(Ά) .

Assume that (2.21) holds. As

(2.25) s^(Ά) = Σ 3*iβJ*-1}(A) = Σ «»"%, i = 1, 2, 3 Λ = 2, 3,
i=i j=i

it follows that

(2.26) sίk)(Ά) ̂  min Us^iΆ), s, max βJ*

(2.27) sik)(Ά) ^ max k s ^ - 1 ^ ! ) , s3 min βJ*

We prove (2.23) by induction on k. For k = 1 (2.23) holds by (2.1).

Assume that

From this induction assumption follows that at least one of the two
following equations holds:

(2.28) βί*-l)(A) = minsf-^Ά) ,

(2.29) s^iΆ) = max8{f-l)(Ά) .

The minimum and the maximum are strict. As (2.28) or (2.29) holds,

it follows from (2.26) and (2.27) that

(2.23') s[k)(Ά) ^ sik)(Ά) .

To obtain (2.23) we have to show that equality cannot hold in (2.23').
Assume that (2.28) holds. Equality in (2.23') implies
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From the last equation, using (2.25) and the fact that the minimum
in (2.28) is strict, we obtain

(2.30) α32 = α33 = 0, α31 = s3 = α13 S *i .

(2.30) contradicts (2.1). Assume that (2.29) holds. Similar to our last
conclusion it follows now that equality in (2.23') implies

(2.31) α n = α12 = 0, α13 = su S£-ι> = ait1' = 0 .

As from α33 Φ 0 follows αjf-1* Φ 0, we obtain

(2.32) α33 = 0 .

If α32 Φ 0, using (2.31) and (2.32), we obtain

<*-u φ 0 , A - 1 even,
33)

* ' ( α ^ ^ 0 Λ - l odd.

(2.33) follows easily, e.g. from the directed graph corresponding to A.
(2.33) contradicts (2.31) and therefore α32 = 0. We obtained

(2.34) α32 = α33 = 0, α13 = α31 = sx = sz.

(2.34) contradicts (2.1). So (2.23) holds and the proof for this case is
completed.

Assume that (2.22) holds. We prove (2.24) by induction on k.
Assume that

(2.35) βί*

From (2.22), (2.25) and (2.35) follows

(2.36) 8lk)(Ά) ^

Hence,

(2.24') 8Ά

To obtain (2.24) we have to show that equality cannot hold in (2.24'),
Equality in (2.24') implies equality in (2.36) and this implies α33 = 0.
So we have

(2.37) α31 = α33 = 0, α32 = s3 = α23 ^ s2 .

(2.37) contradicts (2.1). So (2.24) holds and the proof for n = 3 is
completed.

For n = 2 it is sufficient to prove that for every natural k

s[k)(Ά) < s{

2

k)(Ά).
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This inequality can be easily proved by induction. Theorem 2 is thus
established.

REMARK. It is easy to prove that if A is a nonnegative matrix
with row sums su , sn; st ^ s2 ^ ^ sni then

s?~lS(A) ^ S(Am) ^ sΐ-'SiA), m = 1, 2, ,

where the two bounds are sharp. As for A e

and as the bound s^SiA) is sharp, it follows that the assumption of
symmetry in Theorem 2 is essential.

2*3* Generalizations* Theorem 2 can be generalized to a larger
class of matrices and also to a statement on minors of matrices.

Let A = (au) be a n x n matrix, perhaps with complex elements.
Denote | i i | = (|α4y|). The row sums vector of |A|,β( |A|), is denoted
by [s] = [s](A). The ith component of [s] is denoted by [s4] = [^(A).

We bring now the first generalization of Theorem 2: In the
following two cases

(1) m = 3, 4, 5 and n = 1, 2,
(2) m = 3, 4, and n = 1, 2, 3

£Λ>e inequality

(2.38) SflA D S i

/or every complex A such that \ A \ 6 J^ζ([s]). Γ/̂ e equality
sign in these two cases holds if and only if A is diagonal.

(2.39)

Proof. We have

n n

S j ^ J Σ I α α i <V2 α λ _ w I = S(\ A | ) .

As IA I 6 JK([s]) it follows from Theorem 2 that

(2.40) S(\ A |m) ^ Σ [β*l"

(2.39) and (2.40) imply (2.38). The equality statement follows from
the equality statement in Theorem 2.
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REMARK 1. For Aes*?n(s) (2.38) reduces to (2.4'). For m = 1
(2.38) holds with equality sign for every A. For m = 2 (2.38) holds,
but the equality statement stated above does not fit this case.

REMARK 2. The only essential assumption about A is that | A | is
symmetric. | A \ e J^([s]) includes the additional assumption that the
components of [s] are positive and distinct. This assumption is needed
only to obtain the equality statement.

The second generalization deals with minors of matrices. We
introduce now several concepts and notations.

Let p and n be natural numbers, 1 ^ p ^ n. Denote

Qvn = {(iu # # ' > ip) 11 = i\ < i* < * ' ' < ip Sn}

(iu % $ip a r e natural numbers).
Let i = (ily , ip) and j = (jίf , jp) be elements of Qpn, and

let A be a n x w matrix. The minor of A formed from the rows
(iu » ip) a n d the columns (j\, , iP) is denoted by

AΓ'*"'

The p£& compound matrix of A is denoted by CP(A). CP(A) is a

x ( J matrix with elements Aί J

Let us now define the class of matrices | JK(M)I A matrix A
belongs to the class \ S^n([s]) \ if and only if A is symmetric and | A |
belongs to JK([s]). Note that the definition includes the demand that
all the components of [s](A), Ae JK(W) l» are positive and distinct.
Note also that a matrix belonging to | JK([s]) | can be complex.

In [6, formula 12] Schneider obtained the following result: Let
A be a n x n matrix and p a natural member, 1 ^ p ^ n. Then

(2.41) ^Ki-

ln [5] Ostrowski obtained the following equality statement: //
[sti] [sip] Φ 0 then the equality sign in (2.41) holds if and only
if in every column of the submatrix of A formed from the p rows
iu i ipy there exists at most one nonzero element. From this
statement follows: If Ae\ JK(M) | and if p ^ 2 then the equality
sign in (2.41) holds for every i e QPn if and only if A is a diagonal
matrix.

We bring now the second generalization of Theorem 2: Let p and
n be natural numbers, 1 ^ p ^ n. In the following two cases

(1) m = 3, 4, 5 and n = 1, 2,
(2) m = 3, 4, and n = 1, 2, 3
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the inequality

(2.42)
,jβQpn

/or ever?/ A belonging to | JKfls]) |. The equality sign in these
two cases holds if and only if A is diagonal.

Proof. As A is symmetric, the compound matrix CP(A) is also
symmetric. Applying (2.38) to CP(A) (see Remark 2 after (2.38)), we
obtain

(2.43)
S{\ [C,(A))U 1} = S[\ CP(Am) I] = i Σp I A ( j ) I

^ Σ ( . Σ A(jj|):.
(2.42) follows from (2.41) and (2.43). For p = 1 the equality statement
follows from the equality statement corresponding to (2.38). Equality
in (2.42) for p ^ 2 implies equality in (2.41) for every i e QPn. As
Ae |JK([s]) I, it follows from the equality statement corresponding to
(2.41) that A is diagonal. It is obvious that if A is diagonal then
equality holds in (2.42).

REMARK 1. For p = 1 and A e Jtfn{s) (2.42) reduces to (2.4').
(2.42), including the equality statement, holds for p ^ 2 also for
m = 1, 2.

REMARK 2. If the conjecture (2.4) stated at the beginning of
this chapter holds true, then the two generalizations given in this
section hold also for all m and n.

The author wishes to thank Professor B. Schwarz for his guidance
and help in the preparation of this paper.
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