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INFINITE PRODUCTS OF SUBSTOCHASTIC MATRICES

N. J. PULLMAN

This paper is about two types of infinite products of sub-
stochastic matrices {4;} namely: the left product defined by
the sequence of left partial products A,, A, A, AsA4:A;, ---;
and the right product defined by the sequence of right partial
products A;, A A., A AA,, ..

The basic theorem is that if the 4, are each « by o then:

a. There is a nonempty set £ of substochastic sequences
each of which (except possibly the zero sequence, 0) is the
componentwise limit of a sequence of rows, one from each left
partial product;

b. Any sequence {o,} of rows, one from each left partial
product, can be approximated by a sequence of convex com-
binations {¢c,} of points of E (that is, {0, —c,} converges
componentwise to the zero sequence), and c. £ = {0} if and only
if every sequence of rows, one from each left partial product,
converges to 0.

Similar conclusions follow immediately for the right product
of o by oo doubly substochastic matrices.

The asymptotic behaviour of the right product of a special
class of {A4,} is also considered.

The finite case (that is, when all the A, are r by r) for stochastic
A, is treated independently for convenience, even though the result
in this case (Theorem 1) is actually a direct consequence of the basic
Theorem 1’. Its conclusion is that there is an m by r stochastic matrix
A with 1 £ m £ r and permutation matrices @, such that

a. if m < r then for some stochastic » — m by m matrices C,:

, A
lim A, Ayyeee Ay — Q"(C,,A)} =0

and b. if m = r then
lim{4,4,_, -+ A, — Q,A} =0

Some results on fixed points are obtained in the finite case which
carry over, in restricted form, to the infinite case.

A real matrix is said to be stochastic if none of its entries is
negative and each of its row sums is 1. Two types of infinite products
which arise naturally from a given sequence {4,} of stochastic matrices
are those whose nth partial products are R, = A,4,--- 4, and L, =
AA,_ --- A respectively. We’ll call the sequence {R,} the right
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product and the sequence {L,} the left product of the A,.

The right product is of interest in the theory of Markov chains
with possibly nonstationary transition probabilities because if A4, is the
matrix of probabilities a{? of transition from state ¢ at time n — 1 to
state j at time m» then the ijth entry »{? of R, is the probability of
transition to state j at time n from state ¢ at time 0.

The left product has a similar interpretation: I{} is the probability
of transition from state ¢ at time —m to state 5 at time 0.

We shall obtain theorems on the asymptotic behaviour of these
partial products and on their fixed points. For example if the A, are
o by o stochastic matrices we can show that there is a sequence of
rows, one from each L,, which converges componentwise.

The finite and infinite cases are treated separately for clarity.

DEFINITION. A permutation matrix is a matrix of zeroes and ones
which exactly one 1 in each row and each column.

THEOREM 1. If L,=A,A,_,+--+ A, and each A, is an r by r
stochastic matrix then there exists am m by r stochastic matriz A
with 1<m <r, r by r permutation mairices Q, and, 1f m<r,
stochastic r — m by m matrices C, such that:

A
L. - Q"(m)

lim||L, — Q,A]|=0 2f m=r.

lim

n—>oo

I:O if m<r and

Proof. Let S be the convex hull of the basis vectors
v, =(1,0,0,++-,0), v,=1(0,1,0,+++,0), ¢+, v,=(0,0,0, ---,1). Each
(S)L,, is a convex polytope (that is, the convex hull of p points), these
polytopes are nested (that is, (S)L.., & (S)L, for all ) and none of
them has more than r vertices (a point # of a polytope is a vertex if
it is on no open line segment contained in the polytope). It can be
shown that the intersection of such a family of convex polytopes is a
convex polytope of r or fewer vertices. Let K =[).z (S)L, and denote
its vertices by k,, -+, k,. Let A be the m by » matrix whose ¢th
row is k;,. Let »™ denote (v;)L,. For each » and each ¢ < m there
is a v such that k, = lim,...v’. We can assume that for each =
there are only m such v{? so chosen. If m < r extend the definition
of 4, so that {v{” :m < ¢t <7} is the set of v{® not already chosen.
Q, is the matrix (¢f?’) for which ¢{’ is 1 if ¢ = ¢, and is 0 otherwise.
If m <7 and t > m let k™ be the point of K closest to v’. Since K
is convex, k™ is a convex combination, 7., ¢i7k;, of the vertices K.
Therefore C, = (¢{7') is an » — m by m stochastic matrix and k™ =

A A
< A
(v,)(CnA) for each m <t <r. Consequently (v“)Q”(CnA) (vt)(c A)
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m < r and (v,)Q,4 = (v)A if m = r. Theorem 1 then follows from the
fact that lim, 2™ =k, ifl1 <¢=mandlim,_.v” — k™ =0if t > m,.

1 ‘t
k.
1

Notice that lim L, =

n—-r00

| if m = 1 because K then consists of the
k.
one vertex k..

DEFINITION. A sequence {P,} of r by » matrices is descending if
and only if (S)P,,, & (S)P, for all n sufficiently large. (S is as in the

proof of Theorem 1). As a first corollary to Theorem 1 we have:

A
m,Q,, A and C, (if m < r) such that lim,_.|| P, — Q"<C A) =0 if
m < r and lim, .|| P, — Q,A4]| =0 if m =r, for all des"cending se-

quences because each such sequence (with the first N terms omitted)
is the left product of some sequence of stochastic matrices. (All left
products of stochastic matrices are, of course, descending sequences.)
Another immediate corollary concerns doubly stochastic matrices (that
is, stochastic matrices whose transposes are also stochastic). We shall
state the corollary emphasizing the matrix entries for variety’s sake.

COROLLARY 2. If {A,} is a sequence of doubly stochastic r by r
matrices and R, = A/A, --- A, then there exists an m by r stochastic
matriz A with 1 < m < r and permutations q, of the r indices such
that for each 1 <5 < 7r:

(a) if 1=q.00) =m, lim, o (ry —a, ) =0and if m < r there
exist r — m by m stochastic matrices C, such that

(b) if m < q,(i) < r then: '

lim (r§ — :z ™ g ()kk;) = 0 .

Some examples of {4,} with descending right products are provided
by all those sequences of stochastic matrices {4,} which ecommute pair-
wise within a row permutation (i.e. 4,4, = Q,. 4, A4, for some per-
mutation matrix @,..). Because of their connection with Markov chains
we shall investigate descending right products further., We’ll impose
further conditions on the A, which are not too stringent but which
give additional information about the C, of Theorem 1. While doing
so we acquire some information on the fixed points of 4, and R,.

DEFINITION. B occurs frequently among the A, if and only if
B = A, for infinitely many #.

LemmA. If {A,} is a sequence of r by r stochastic matrices whose
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right partial products R, = A,A, -+ A, are a descending sequence and
B occurs frequently among the A, then, in the notation of Theorem
1 there is an m by m permutation matrix D such that AB = DA.

Proof. For some N, {Ry.,} is the left product of some sequence
of stochastic matrices A,. Let K be as in the proof of Theorem 1
applied to the A,. Then K= N,-» (S)R,. (K)BZ K because K =
N{S)R,_.,: B= A, and n > N}. Suppose € K. Then, for infinitely
many 7, there are «, € (S)R,_, for which » = (v,)B. A subsequence {z,_}
converges to some point y € S. Therefore (x, )B converges to (y)B and
hence z = (y)B. But y € K and hence K < (K)B. Thus K = (K)B and
hence B permutes the vertices of K (rows of A). Let D be the m by m
permutation matrix representing this row permutation then AB = DA.

B permutes all the vertices of K and fixes the barycentre, 1/m’ >/, k;,,
of each subset {k, k., ---, k; )} of m’ vertices of K (rows of A) which
it permutes. Therefore (x)B = x for all = in the convex hull of these
barycentres. There may be (left) fixed points of B outside the convex
hull of the barycentres.

Let us enumerate all the matrices occurring frequently among the
A, sothat 4, is the first such matrix and A4, is the pth such matrix
distinet from A e Let D, be the m by m permutation matrix
corresponding to A, (as in the lemma) and let D, =D, if 4, =4,
Applying the lemma to the first corollary to Theorem 1 we obtain:

THEOREM 2. If {A,} is a sequence of r by r stochastic matrices
each of which (except for finitely many n) occur frequently among
the A, and the n-th partial products R, = A,A, -+ A, are descending
then there exists an m by r stochastic matrix A (with 1 = m < 7),
permutation matrices @, and, if m <r, r —m by m stochastic matrices
C, such that given € > 0 there is an N for which:

DA .
) <e (fm<nr),

(a) an—QN(CND;A
(b) IR, —QsD:All<e (ifm=r),

for all » > N. D, is the permutation matriz which is the product
Dy, Dyiy -+ D, of D, defined tn the previous paragraph. Moreover
the barycentres of those sets of rows of A which are permuted by all
the D, s a (left) fized point for all A, (except perhaps the finitely
many n for which A, does mot occur frequently). In particular the
barycentre b = 1/m 3\ (@, +++, @;,) of the rows of A is such a (left)
Sized wvector.

Let F be the convex hull of the barycentres mentioned in Theorem
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2. F'is fixed (pointwise) by each of those A, which occur frequently.
If all the A, occur frequently then (z)R, = = for all » and all x ¢ F.

The fundamental theorems on the convergence of the powers of the
transition matrix and the ‘‘classification of states’’ of a finite Markov
chain with stationary transition probabilities (see for example [4] pp.
170-184) can be obtained from Theorem 1 by examination of the
position of K in S. In the interest of brevity we shall not do so here
but shall instead discuss two notions from the stationary case by way
of sample applications of Theorems 1 and 2.

In the notation of the proof of Theorem 1 let T be the set of all
% for which v, is not in the set of basis vectors spanning K. Following
the custom (see e.g. [2]) for the stationary case we’ll say that ¢ leads
to j (written 7 ~*j) if and only if »{ > 0 for some n. If the right
" product of the A, is descending then for each 3, lim,_. ¥ = 0 for all
j€ T and; each ¢ ¢ T leads to some j ¢ T by the first corollary to Theorem
1. In the stationary case (i.e. when A, = A, for all n):

T= La,ll{i:i~’j and 7 +"} .
2
This is precisely the definition of the set of tramsient (sometimes
called imessential) states in the stationary case.

The notion of regular chain (in the terminology used in [6]) can
be extended to the nonstationary case so as to obtain the same kind
of basic result. Suppose the right product of the A, is descending and
that there is a product P =4, A4, --- 4,, of frequently occuring A,
(in the notation of Theorem 2) which is positive (i.e. p;; > 0, all 1, j).
(The 7,, are not necessarily distinet nor in increasing order). Call such
{4,} regular sequences. It then follows that the right products R, of
regular sequences {A,} converge to a matrix all of whose rows are the
vector k. No component of %k is zero, (k)R, = k for all sufficiently
large n (for all n, if (S)R,., = (S)R, for all ») and k is the only vector
in S with this property. Although this is equivalent to the correspond-
ing result for the stationary case it is easy enough to obtain using
the first corollary to Theorem 1 and the lemma preceding Theorem 2:
All we need do is show that m = 1. To this end observe that according
to the lemma, P permutes the vertices of K so that, for some u:
(x)P™ = x for all xe K. If K had more than one vertex the line joining
two of them would meet the boundary of S in a point & which is fixed
by P*. (x)P* can have no zero components because P is positive but
2 has zero components because it’s in the boundary of S. This second
application may also be found in a slightly less general form as
Theorem 3 of [5].

DEFINITION. A real matrix is substochastic if and only if none of
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its entries is negative and 1 is an upper bound for its row sums.

Most of the foregoing results including Theorem 1 and its corollaries
can be extended to infinite as well as finite substochastic matrices. To
do so, consider the set S, of all substochastic sequences (i.e. the set
of all real sequences of nonnegative terms whose sum is at most 1).
S, is a compact, convex subset of the space of all real sequences under
the product topology. The « by «~ substochastic matrices are associative
and closed under matrix multiplication so that left and right product
is defined for every sequence of such matrices.

THEOREM 1'. If {L,} is the left product of a sequence of o by
substochastic matrices then there is a nonempty set, E, of substochastic
sequences with the following properties:

(a) For each ke E (except possibly the zero sequence) and each
n there is an integer 1,,, such that for all j:

lm Y ; =Fk;.

(b) For each sequence {1,} there is a comvex combination x*™

of elements of E such that for all j:

lim (7 — «f™) = 0.
n-—oo

(e) The zero sequence is the only element of E if and only if
for all sequences {¢,} and all j:

liml{"; =0.

Proof. For each subset F' of S, let co(F') be the set of convex
combinations of elements of F' and co(F) be the intersection of all
closed convex sets containing F. Let W, be the set consisting of 0
and all the rows of L,, let L, = ¢co(W,) and K = (,>: L.. K is convex
and compact and 0e K. Let E be the set of extremals of K (that is,
ke E if and only if ke K and k is an interior point of no line segment
in K) then K = co(F) by the Krein-Milman theorem. Part (a) of
Theorem 1’ is proven by contradiction. Suppose ke E and a neigh-
bourhood of % excludes 0 and all rows of L, for all » in an infinite
set 2. Then, for a finite set 4 and some ¢ > 0, W, is in the com-
plement of Z = Nje.{x€ S,:|2; — k;| < € for each ne Q.

Let T;={xeS,;:x;=2k;+¢, T;={&eS;:x;=k;—e¢ and
T;=T; U T;. Then

KeL =m(YTnw)

= ¢o ([%ch_o(T,- N W,,)) (see [3] V 2.5)
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= ¢o (H,IE((T? N W) U(T; N Wn)))

= ¢co <LejAco(c_o(Tj N W) uee(T; N Wn))>
(again by [3] V 2.5)

< eo (U col(T5 1 L) U (T5 1 L))

je4

S co <U co(T; N E,,,)) .
J€A

If U,=T;nL, is empty for some je 4, ne2 then U;, = ¢ for all
sufficiently large m because the U;, are nested for fixed j. Rather
than change notation, we can assume that U,, # ¢ for all ne 2 and
~all je 4. Thus k is a convex combination, 3;esNja%;,, Of elements
%, of co(U;,). Uj, is the unionof U, = Ty N L, and U;, = T; N L,.
Assuming first that U}, and Uj;, are nonempty for all ne 2 we have
0 < p;, < 1such that w;, = p;uf, + (1 — p;,)u;z, for some u}, € U}, and
some u;, € Uj,. By successive extraction of subsequences we obtain u],
uy, ¢; and \; such that

limuf, =uf, lim w7, =47, lim g5, = 5,

Mm—sco m-rco m—soo

limhjnm:)\.,-, 1%1&]%0, 127\,,20 and %)\:jzl.
m-—soo J

Therefore k = s Ns(ptuf + (1 — p;)uy)), and for all je 4: uf, uje K
and 4}, u; € T;. The extremality of k implies that & = w} or u; for
some 7 and hence that k€ T;. Consequently k¢ Z, a contradiction. If,
however, U;, or Uj, is ¢ for some (and hence all subsequent) n we
can use a similar argument using the w;, instead of the %}, and wj,.

If =0 we can therefore assert that each sufficiently small
neighbourhood of %k excludes 0 but contains an element of W, for all
sufficiently large n. These elements must be rows of the L,. There-
fore & is the componentwise limit of a sequence of rows, one from
each L,.

To prove part (b) let d be the metric on S, which induces the
product topology (see [1] II prop. 6, p.97). Let y,€ L, and z, be a
point of K closest to y, in the metrie. d(z,, v,) is a null sequence be-
cause the L, are nested. A sequence {x,} in co(E) can be found for
which d(zx,, v,) is a null sequence because co(E) is dense in co(E) (see
[3]1 V 2.4). Part (b) then follows if the ¢,th row of L, is used for y,.
Part (c) follows directly from parts (a) and (b). This completes the
proof of Theorem 1'.

The conclusion of Theorem 1’ is valid if {L,} is replaced by any
descending sequence {P,} of « by < substochastic matrices using the
previous definition of ‘‘descending’’ with S replaced by S,. Such se-
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quences too are, except for finitely many terms, the left product of
some sequence of substochastic matrices.

The statements about commutivity also carry over to the infinite
case,

Corollary 2 extends to:

CoROLLARY 2. If {R,} is the right product of o« by oo doubly
stochastic matrices then there is a nonempty set, E, of substochastic
sequences with the following properties:

(a) For each mon-zero ke E and each n there is an integer i,,;
such that for all j:

limr®  =k; and

(b) For each sequence {i,} there is a convex combination x‘“™

of elements of E such that for all j:

limr® —zf™” =0,
(¢) The zero sequence is the only element of E if and only if
Sor all {z,} and for all j:

lim r{7 =
A substochastic matrix is continuous on S, if and only if all of
its columns are null sequences. If a continuous B occurs frequently
among the A, and their right product is descending then (K)B = K.
Theorem 2 and the remarks following it concerning fixed points
also hold for « by c substochastic matrices A, provided each A4, is
continuous and K has only finitely many extremals.
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