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The word problem in certain groups is studied in algebraic
terms with a geometric background. A relator is made to
correspond to a plane complex so that generators are associated
with 1-cells and defining relators are associated with 2-cells of
the complex. In the case of less-than-one-sixth groups, the
results obtained are essentially those found by Greendlinger.

Let £ =% /_4+ where _+" is a normal subgroup of a free
group & with fixed free generators (understood to include inverses).
Let _4~ be the smallest normal subgroup containing a set <# of
cyclically reduced words (defining relators for ). Nonempty words in
" are relators for . Let <Z be closed under inverses and eyclic
permutations. Assume each free generator appears in at least one
defining relator.

In this paper we use complexes to study how relators depend upon
defining relators. A complex is determined by a finite set E of elements
(called edges), a partition of E into subsets (called boundaries), a par-
tition of E into pairs of edges, and a cyclic order for the edges in
each boundary; vertices and the property of connectedness can then be
defined. After a free generator is assigned to each edge (with inverse
free generators assigned to paired edges), the above-mentioned ecyclic
orders determine words (called values) for each boundary. More pre-
cisely, some word and all its cyclic permutations are the values of a
boundary.

It is shown that each relator is a value of one of the boundaries
of some spherical complex (a connected complex with Euler characteristic
2) whose other boundaries have defining relators for their values. The
converse is also proved: if defining relators are the values of all but
one of the boundaries of a spherical complex, then a value of the re-
maining boundary is a relator. Thus the question of recognizing the
relators in & —the word problem in & —can be viewed as the question
of determining the words which can correspond to one boundary of a
spherical complex whose other boundaries correspond to defining relators.

These results are essentially a reformulation of the first two lemmas
in a paper by Van Kampen who approached the problem geometrically.
The proofs given here are combinatorial in nature.

In passing from a relator to a complex, we use a system (called a
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structure) which characterizes one construction of the relator from a
collection of defining relators. Structures help to define certain basic
relators.

The problem of recognizing relators is reduced to finding basic
relators by showing that each freely reduced relator contains a sub-
word which is a basic relator. When W is a cyclically reduced basic
relator, some subword of W is a subword of a defining relator. The
number of such subwords, contained disjointly in the cyeclic word W,
is estimated via simple calculations using a spherical complex associated
with W. The calculations are given in § 8; they were suggested by
the proof of the Five Color Theorem in [1] Courant and Robbins.

This estimate is applied when W is in a group & which is a less-
than-one-sixth group or, briefly, a sixth group. A group ¥ is called
a sixth group if any subword common to 2 distinet defining relators
has a length which is less than one sixth of the length of both of the
defining relators. As a result, W is seen to contain a subword which
is more than one half of a defining relator.

Thus a nonempty cyclically reduced word is a relator in a sixth
group only if the word can be shortened by replacing one of its sub-
.words X by a shorter word Y—' where XY is a defining relator. This
solves the word problem for sixth groups. Other proofs have been
given by Tartakovskii and Greendlinger.

Our results are contained in the following

MAIN THEOREM. In a presented group, each freely reduced re-
lator contains a subword which is a certain kind of relator called a
basic relator.

If a cyclically reduced word W is a basic relator for a siwth
group, then either W is a defining relator or the cyclic word W con-
tains disjointly P, subwords which are greater than T-k/6 of a
defining relator (k=2, 8, 4) and the integers P, satisfy 3P,+2P;+ P,=6.
Thus W contains a subword which is more than 1/2 of a defining
relator.

2. Constructing relators. Let W= V, XV, and V= V,V, be words
in & . Here ‘“=” stands for ‘‘identically equal to”’. We write
W—V (delete X) and V— W (insert X). If also V— U (delete Y),
then W— U (delete X, Y). This leads to a definition of W— W’
(delete X, -+, X,) and W' — W (insert X,, -+, X,) for » = 1.

A word W splits into one or more words W,, ---, W, if the W,
can be put in a sequence W}, ---, W) so that 1 — W (insert Wi, --+, W)
where 1 denotes the empty word. An <Z-word of type t is any word
which splits into ¢ defining relators.

A product of a free generator and its inverse is a null word. If
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W, W’ are words such that either W= W’ or W— W’ (delete N, -+, N,)
where the N; are null words, then W partially reduces to W’ and W’
is a partially reduced form of W, If, in addition, no subword of W'
is a null word, then W’ is the freely reduced form of W. A relator
of type t is a partially reduced <#-word of type ¢ (i.e. a partially re-
duced form of an .<Z-word of type t).

The first lemma shows that each relator can be constructed from
the empty word by insertions of defining relators, possibly followed by
deletions of null words.

LEMMA 2.1. Each relator is a partially reduced Z-word. In
other words, each relator has at least one type.

Proof. The collection of <Z-words is closed under inverses and
products. If W is an <Z-word and x is a free generator, then it must
be shown that x Wx—! is a partially reduced form of some .Z-word W’.
Suppose 1 — W (insert R,, -+, R,) where the R, are defining relators.
Let = be the first letter in a defining relator R=2Y. Put W' =
WYY x~' so that W’ partially reduces to x Wz~ and 1 — W’ (insert
R,R,---,R,, R™"). This completes the proof.

It can be shown if W” is a cyclic permutation of a word W which
splits into W, -+, W,, then W” splits into some cyclic permutations
VYyees, W1 of W, ..., W,, respectively. Hence,

REMARK 2.1. The set of Z-words of type ¢ is closed under cyclic
permutations. The set of relators of type ¢ is closed under cyeclic
permutations.

3. Structures for relators. We need terminology for permutations
of a finite set in order to define a structure. In this section, all sets
are finite; 0 denotes the empty set.

Let 6 be a cyclic permutation, acting on a set E. If E+ 0, suppose
E={a, -+, a, and either m =1 with a0 = a, or m = 2 with a,0 =
a;+,(1=<7=m—1) and a,0 = a,. Then @ is represented by an array
H=aq,---a, and by the m cyclic permutations of H. Any subword
of H is said to partially represent 6. If E = 0, then 6 is the empty
permutation, represented by the empty array 1.

A set of words in & is associated with 6 by assigning a free
generator to each element in E. If x;, is assigned to a;, then V' =
T, e+ 2, (@ word in &) is called the walue of H or a value of 4.
The values of 6 are the cyclic permutations of V. If E = 0, the empty
word is the only value of 6.

A cyclic permutation 6, corresponds to each subset B of E. If
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B = 0 and the elements of B form a subsequence b,, +++, b, of @y, *--,
a,, then 6, is represented by the array b, +--b,. If B=0, then 6,
is the empty permutation.

A permutation B, acting on a nonempty set E, determines a par-
tition of E into nonempty subsets E,, ---, E,, called B-orbits: two
elements a, b are in the same B-orbit if aB' = b for some integer 1.
The B-cycles are the restrictions of B to the sets E, .-+, E,. The
length of a B-cycle is the number of elements in the corresponding
B-orbit. B is a reflection (pure reflection) if the length of each B-cycle
is at most 2 (exactly 2).

A structure S = (E, B, p, 0) consists of a nonempty set E which
is‘acted on by a permutation A, a reflection p, and a cyclic permutation
6. S has carrier E, reduced carrier FF={a:a¢c E, ap = a}, map 6,
and reduced map 6. It is required that there exist arrays H, H,,
representing 0, 6,, respectively, such that

(I) There exist arrays H,, -+, H,, n =1, representing the p-
cycles, such that 1 — H (insert H,, ---, H,).

(II) Either p is the identity and H, = H or there exist arrays
IL,.--,I,, k=1, representing the p-cycles of length 2, such that
H— H, (delete I, -+, I,).

S is said to be of type ». The members of F are fixed elements;
the members of E — F are cancelled elements. :

If H, contains a subword I, of length 2, whose elements are a, b,
then S’ = (E, B, 0, 6) is -also a structure where aoc =b, boc =a and
o = p except on the set {a,b}. Indeed, if H, is defined by H,— H,
(delete I), then H, represents the reduced map of S’. We say that S
contracts to S’ in one step.

S is an F-structure (4 -structure) if a free generator is assigned
to each element in E in such a way that the values of the p-cycles
of length 2 are null words and the values of the S-cycles are words
in & (in _#7). When S is an Z-structure, of type », with map @
and reduced map 6., then the values of 6 are .Z-words of type n and
the values of 6, are relators of type .

THEOREM 3.1. Each relator is a value of the reduced map of some
FP-structure.

Proof. Use the definition of Z-structure and Lemma 2.1.

We now turn to some more definitions concerning a structure
S =(E, B,p,0). S is called noncancelled if there exist fixed elements
in E. S is cancelled if E contains only cancelled elements. In the
latter case, o is a pure reflection.

If A is a nonempty subset of E, then A is the carrier of a sub-
structure 7 whenever A is closed under 8 and p. In this case, T =
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(A, v, 0,0, where v, 0 are the restrictions of B, o, respectively, to the
set A. T is a proper substructure if A = E. S is mintmal if it has
no proper substructures; S is simple if it has no proper cancelled sub-
structure.

THEOREM 3.2. Each relator is a value of the reduced map of some
stmple Z-structure.

Proof. Use previous theorem and next lemma.

LemMA 3.1. FEach structure has the same reduced map as some
simple structure.

Proof. Consider a nonsimple structure S = (E, 8, o, /) determined
by the expressions 1— H (insert H,, ---, H,) and H— H, (delete
I, ---, I.) as in the definition of a structure. Suppose S, = (&, £, 01, 6,)
is the maximum cancelled proper substructure of S. Let H' denote
the array that results from deleting all the elements in E, from H.

A sequence Hj, ---, H!, remains after deleting from H,, ---, H, the
terms which represent the B,-cycles.

A sequence I}, ---, I! remains after deleting from I, ---, I, the
terms which represent the p-cycles. Then the expressions 1— H’
(insert Hj, ---, H,) and H' — H, (delete I}, ---, I}) determine a simple
structure having ‘the same reduced map as S.

4. Complexes. A complex C = (E, B, p) consists of a finite,
nonempty set E which is acted on by a permutation B and a pure re-
flection p. If « is the map B, followed by o (i.e. @ = Bp), then the
«-orbits, the elements in E, and the B-orbits are the wvertices, edges,
and boundaries, respectively, of C. Whenever a free generator is
assigned to each edge, the values of the B-cycles are called the values
of the boundaries of C.

C is a disjoint union of 2 complexes (E;, 8;, 0;) for ¢+ =1,2 if E
is a disjoint union of E,, E, and B, o; are the restrictions of B, p,
respectively, to the set E; (¢ = 1,2). If this is never the case, C is
said to be conmected.

Since E is a disjoint union of the p-orbits and each p-orbit contains
exactly 2 edges, the number of edges is always even. Whenever a is
an edge, ap is called the inverse of a. If v, 2¢, n denote the numbers
of vertices, edges and boundaries of C, then v — e + n is the Euler
characteristic. A spherical complex is a connected complex with Euler
characteristic 2.

Note that when S, = (£, 8, 0, 6,) is a cancelled structure, then
C, = (E, B, ) is a complex. Furthermore, S, is minimal if and only
if C, is connected.
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5. From structures to complexes. We now describe a transition
from a noncancelled structure S to a cancelled structure S,; with S,
there is associated a complex C,.

Suppose S = (E, B, p, ) is a noncancelled .ZZ-structure, of type
n=1, with H H, H,---,H, as in §3. A cancelled _s -structure
S, = (E,, By, 01, 0,), of type n + 1, is defined as follows.

Let H,=a,---a,. Since S is noncancelled, H, is nonempty and
m = 1. Choose m new elements b, +++, b,; put E, = E U {b,, +++, bn}.
0, is represented by HH,., where H,,, = b, +-+b,. Then HH,,, —1
(delete Jy, +++,J,) where J, = a;b; (1 <17 < m). The B,-cycles are re-
presented by H,, ---, H,, H,.,. The pB,-cycle represented by H,., is
called the distinguished B,-cycle of S..

If p is the identity, then the p,-cycles are represented by
Jy ooy Jn. If p is not the identity, then we have H — H, (delete
I, ---, I,) where the I, represent the p-cycles of length 2. In this
case, HH,,,— 1 (delete I, «--, I, J,, ++-,J,) and the I, J; represent
the p,-cycles.

A free generator is assigned to each b; so that the values of H,
and H,,, are inverse words. This insures that the values of the J;
are null words and the value of H,,, is a relator. The _# -structure
S, is now complete and C, = (E,, £,, 0.).

With reference to the construction of S,, we have:

ReEMARK 5.1. If ab is a subword, of length 2, of some cyclic per-
mutation of H, and if ap, = ¢, bpo, = d, then dc¢ is a subword of some
cyclic permutation of H,.,. In other words, if @, b are distinct fixed
elements of S and af, = b where 6, is the reduced map of S, then
bo.B, = ap,.

LemMma 5.1. If S is simple or minimal, then S, is minimal.

Proof. Since minimal implies simple for structures, we assume S
is simple. Suppose a nonempty proper subset A, (of E,) is closed under
B, and p,. Then A, =E, — A, also has this property; A, A, are
carriers of substructures of S,. Thus all the elements b; are in the
same A;, say in A,. Therefore all the elements in A, are cancelled
elements in S. But then A, is the carrier of a proper cancelled sub-
structure of S, contary to the assumption that S is simple.

THEOREM 5.1. For each relator W there is a cancelled, minimal
AN7-structure S, = (E,, By, 0, 0,), of type t = 2 and a connected complex
C, = (E, B, p,) such that the B;-cycles can be represented by t arrays
whose values are W= and t — 1 defining relators.
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Proof. By Theorem 3.2 there is a simple .ZZ-structure S, of type
n = 1, where W is one of the values of the reduced map of S. Ear-
lier we constructed a cancelled _y -structure S, = (&, 8, 0., 0.), of
type » + 1, whose B,-cycles satisfy the desired condition. By Lemma
5.1 S, is minimal; hence, C, = (E,, 8, 0,) is connected.

6. Spherical complexes. The relationship between relators and
spherical complexes is given in Theorem 6.2 and in Theorem 6.4. Their
proofs depend on Theorem 6.1 and Theorem 6.3, which are converses.
Three preliminary lemmas are needed.

LemMMA 6.1. Let H, -+, H, be arrays with disjoint sets of elements
satisfying 1— H (insert H,, «-+, H,) where H 1s an array and n = 2.
Suppose H has a subword I, of length 2, whose letters a,b are in
H,, H;, respectively, for 1 <j. Then 1— H (insert H,, ---, H,_,, K,
H.,--- H; ,H;., -+, H,) for some array K, having subword I,
such that 1 — K (insert H;, H;).

Proof. Let H' be the array such that 1 — H’ (insert H,, ---, H,
.-+, H;) and H'— H (insert Hj,,, -+, H,). Then I is a subword of
H'. We also have 1 — H’ (insert H,, -+, H;,_,, H;,, H;, H;y,, *++, H;_)).
Let H; = A,aA, and H; = B,bB,.

If I = ab, then B, is the émpty array and we put K = A,abB,A,.
If I = ba, then B, is the empty array and we put K = A,B,baA,.

LeMMA 6.2. Let the array abe, -+- ¢, (r = 1) represent a S-cycle
p corresponding to a B-orbit B of a connected complex C = (E, B8, o).
Assume apo =b. Then C has the same Euler characteristic as some
connected complex C' = (E', 5, 0') having 2 fewer edges than C.

Proof. Put B'={c, +++,¢,} and E' = E — {a,b}. Let ¢’ be the
cyclic permutation represented by the array ¢, -«- ¢,. Define o’ to be
the restriction of p to the set E’. Define 8’ by putting 8’ = ¢/ on
B and 8 = 8 on E' — B’. The connectedness of C’ follows from the
connectedness of C. Thus, it suffices to show that C has one more
vertex than C'.

Since aBp = bp = a, {a} is a vertex of C. ¢, is the only edge in
E’ having different images under S0 and 5'0’. In fact, ¢80 =ap =b
and ¢,8'0 = ¢,0 = ¢,0. Furthermore b # ¢,0 since a # ¢, and ap = b.

Let d = ¢,0, @ = Bp, &’ = B'0’. There is an a-orbit V' whose a-
cycle is represented by an array of the form c¢,bdD and V is a disjoint
union of {b} and an a’-orbit V' whose a’-cycle is represented by c,dD.
Thus C, C’ have the same vertices, except that {a} and V in C are
replaced by V'’ in C’. This completes the proof.
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LeMMA 6.3. Let C = (E, B, p) be a connected complex with n = 2
boundaries. Let A= {a, -+, a,}, B={b, ++-,b} be B-orbits whose
B-cycles p, v are represented by arrays a,---a, and b, ---b,, 7re-
spectively. Assume b0 =a,. Then C has the same Euler characteristic
as some connected complex C' = (K, ', o) having n — 1 boundaries.

Proof. Let p be the cyclic permutation represented by the array
a,---ab, +-+b,. Define B’ by putting 8/ = ¢’ on the set AU B and
B = B otherwise. Then C has one more boundary than C’ since 2
B-orbits A, B are replaced by one S’-orbit A U B. We must show that
C’ has one more vertex than C (i.e. that &' p has one more orbit than Sp).

Only b, = b8~ and a, have different images under Sp than under
B'o. In fact b,80 = b,0 = a, and b,8'0 = a,0; a,80 = a,0 and a,5'0 =
b0 = a,. Furthermore a,0 # a, since a, # b, and b,0 = a,.

Let ¢ = a,0, @ = Bp, and &’ = B'p. There is an a-orbit V whose
B-cycle is represented by an array of the form b,a,cD and V is a dis-
joint union of 2 a’-orbits V', V" whose a'-cycles are represented by the
arrays a, and b,cD. Thus C, C’ have the same vertices, except that V'
is replaced by V' and V. Therefore C’ has one more vertex than C.

The connectedness of C’ follows from the connectedness of C.

THEOREM 6.1. Let S=(E,B,p,0) be a minimal, cancelled structure
of type n = 1. Then C = (E, B, p) is a spherical complex.

Proof. Use induction on the number 2¢ of edges of C. Suppose
2¢ = 2. Then E = {a, b} and ap = b, bo = a; hence C is connected.
If the B-orbits are {a} and {b} so that n = 2, then aBo = ap = b,
bBo =bp = a and {a, b} is the only vertex. Thusv—e+n=1—-1+2=2,
If {a, b} is the only S-orbit so that » = 1, then aBp = bp = a, bBpo =
ap =b and {a}, {b} are the only vertices. Thus, v—e+n=2—-1+1=2,

Now assume that 2¢ = 4 and that the theorem holds for complexes
with fewer than 2¢ edges. Let H, H, ---, H, represent 6 and the
B-cycles and let I, = ab, I,, - -+, I, represent the p-cycles. Assume that

1— H (insert H, ---, H,)
H—1 (delete I, --+, 1) .

Suppose a is in H;, b is in H;.

Case 1. (¢t =35) Then I, is a subword of H,. Let B, be the
B-cycle represented by H,;. It cannot happen that H; = I, since then
C, = (E, B, p,) is a subcomplex of C where E, = {a, b} and I, represents
the only p,-eyele. Also S is minimal so C is connected; hence C = C,.
This is contrary to 2¢ = 4. Therefore, some cyclic permutation of H;
is of the form abec, -+ ¢, (r = 1).
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A minimal, cancelled structure S’ = (E’, 8, 0/, 0') is determined as
follows. Let H', H, ---,H,_,, H,, H;.,, -+, H, represent 6’ and the
B’-cycles, and I, -+, I, represent the p’-cycles, where

H— H' (delete I))
H,— H! (delete I,)

1— H' (insert H,, ---, H,_,, H}, H;\.,, +++, H,)
H —1 (delete I, ---,1,).

The complexes C’ = (E’, 8, 0') and C have the same Euler charac-
teristic and C’ is connected by Lemma 6.2,

Case 2. (1 # 7) Suppose % < j (Treatment of j < ¢ is similar.) A
minimal, cancelled structure S’ = (E, &, p, 6) is determined as follows.
Let H,---,H, ,,K,H,,,--+,H; ,,H;,, -++, H,) represent the £'-cycles
where K has the subword I, and

1—-H (insert Hly ccy Hi—-ly K’ Hi+17 M} HJ'—-U H.'i-H; c Hn)
1— K (insert H,, H)) .

This is possible by Lemma 6.3.

The complexes C' = (E, 8, p) and C have the same Euler charac-
teristic and C’ is connected (by Lemma 6.1). In fact, some cyclic
permutation of K, H;, and H; are of the forms a,++- a,b, -+ b,,q,+- a,,
and b, --- b,, respectively, where I, = a,b,, Now S’ and C’ can be
treated as in Case 1, since I, is a subword of K.

Thus, in either one or two steps, we can always find a new minimal,
cancelled structure whaose associated connected complex has 2(¢ — 1)
edges such that the original and new complexes have the same Euler
characteristic. By the induction assumption, the new complex has
Euler characteristic 2; hence, so does the original complex. This com-
pletes the proof.

THEOREM 6.2. For each relator W there is some spherical com-
plex C with n = 2 boundaries such that a free generator is assigned
to each edge (with inverse free generators assigned to imverse edges),
W is a value of one of the boundaries, and defining relators are
the values of the remaining boundaries,

Proof. Use Theorem 5.1 and Theorem 6.1.

THEOREM 6.3. Let C = (E,B,p0) be a spherical complex with
n = 1 boundaries. Then there exists some minimal, cancelled structure

S = (& B, p,?0).
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Proof. Use induction on n. We first prove the case n = 1. Here
B itself is the only B-cycle. This case will be proved by induction on
the number 2e¢ of edges. When 2¢ = 2, we have 8 = p and we take
0 =pB.

Now assume n» = 1, 2¢ = 4 and the theorem holds for complexes
having one boundary and fewer than 2¢ edges. There must be a
vertex containing just one edge since, if not, we have 2¢ = 2v and
v —e+1=2 (where v is the number of vertices). But this implies
e=v and v =1 + e which is impossible. If {a} is a vertex, let b = ap.
Then af =b since aBp = a. Thus B is represented by some array
H = ILH' where I, = ab.

A connected complex C’' = (E’, 5, 0') with 2¢ — 2 edges and 1
boundary is defined by E’' = E — {ab} if we take o’ to be the restric-
tion of o to £’ and put 8’ = B8, with A = E’. Now apply the induction
assumption to C’. There exists a minimal, cancelled structure S’ =
(E', B, 0, 6"). There exist an array X representing 6’ = 58’ and arrays
I, - -+, I, representing the p’-cycles such that X — 1 (delete I, ---, I)).
But since H’ is a cyclic permutation of X, there exist arrays I, ---, I,
representing the p’-cycles such that H'— 1 (delete I,, «--, L,).

Since H — H’ (delete I,), we have that 6 = B is represented by an
array H satisfying H—1 (delete I,, L, --+, I,). Thus S = (%, B, p, 6)
is a cancelled structure which is minimal since C is connected.

Now suppose 7 = 2. Assume that the theorem holds for complexes
having fewer than » boundaries. We need only consider the case that
there exist two edges a, b, in different boundaries, such that ap = b.
For if an edge and its image under p are always in the same boundary,
then one boundary E, consists of the edges in some subcomplex which
must be the whole complex C, by the connectedness of C. But then
n =1

Thus, we can choose two B-cycles p, v represented by arrays
a,---a, and b, ---b,, respectively, such that a,0 =5, Form a con-
nected complex C’' = (E, A, 0), having » — 1 boundaries, as in Lemma
6.3. The induction assumption implies that there is a minimal, can-
celled structure S’ = (E, 8, 0,0). Here one of the A'-cycles p' is
represented by the array a,---a,b, -+ b,. There exist arrays H, H,,

-+, H, , representing 6 and the » — 1 pS’-cycles such that 1— H
(insert H,, -+, H,_,). Then a,---a,b, --+ b, is a cyclic permutation of
H;, for some ¢, Thus 1— H; (insert A4, B) or 1 — H; (insert B, A) for
some arrays A, B which are cyclic permutationsof @, -+ a, and b, -+ - b,,
respectively. In either case, H splits into H, ---, H;, , A, B, H,.,,

-+, H, , which represent the B-cycles. Thus S = (E, B, p,0) is a
cancelled structure which is minimal since C is connected.

THEOREM 6.4, Let C = (E, B, ) be a spherical complex with n = 2
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boundaries such that a free generator is assigned to each edge (with
inverse free generators assigned to inverse edges). If all but one of
the boundaries have values which are defining relators, then each
value of the remaining boundary is a relator.

Proof. A minimal, cancelled structure S = (E, 8, o, §) exists by
Theorem 6.3. Suppose an array H represents 4. Since H splits into
arrays representing the p-cycles, W splits into null words so that W
is a relator. Since H splits into arrays representing the B-cycles, W
splits into 7 — 1 defining relators and a word K (a value of the ‘‘re-
maining’’ B-cycle). Since W is a relator, K must be a relator.

7. Sides of nontrivial complexes. In this section each complex
C = (E, B, p) is nontrivial (i.e. has n = 3 boundaries). When C is also
spherical, we show that each B-cycle can be represented by an array
which is broken up into a product X, .-+ X, (¢ = 1) where each X, has
certain properties. The X; will be called sides. In order to define
sides, we classify the edges of C. Let @ be an edge.

If either apB8 =a or apBoB # a, then a is initial. If. either
aBo = a or aBpBpe # a, then a is final. Thus, if a is initial, final, or
neither, then ap is final, initial, or neither, respectively. Also, if a
is initial, then a@~' is final; if a is final, then @B is initial.

An array X =a, - a, (r = 1), which partially represents a S-cycle,
is a side if a, is the only initial edge in X and a, is the only final
edge in X. If X=a,:---a, is a side, then the array Y = b, --- b,,
where a;0 =b; (1 =t =), is called the inverse of X.

Lemma 7.1, If X=a,---a, ts a side, 30 1S its tnverse Y =b,-++b,.

Proof. It suffices to check that Y partially represents a B-cycle
when r» = 2. ie.b,;,8=0,for1 <¢=<r—1, Indeed, b;;,8 = a;,,068 =
@808 = b,0808 = b;. The last equality holds since b; is not initial
forlsit=<r-—1.

LEMMA 7.2, Let C = (E, B, p) be a connected complex with n = 3
boundaries. Then each boundary contains at least one initial edge
and at least one final edge (possibly the same edge).

Proof. Suppose the array A =aq,--+-a,, r =1, represents a G-
cycle so that {a,, ---,a,} is a boundary. Let B=b,-.--b, be the
inverse of A. Suppose all the a; are not final. Then all the b; are not
initial,

When »r =2, b,,,8=">; for 1 <% <r —1 as in the proof of the
previous lemma. b8 = a,08 = a,808 = b,0808 =0>b,. When r =1,
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a,8 = a, and b,8 =b,0808 =b,. In either case, E, = {a,, +++,a,, b, +++,b,}
is closed under S and p. Hence C, = (E,, B,, p,) is a subcomplex where
B, 0, are the restrictions of B, o to E,. C, must be the whole complex
by the connectedness of C. But C, has just two boundaries: {a,, ---,
a.} and {b,, ---,b,}. This contradicts » = 3. Thus some a; is final and
then a8 is initial.

LemMmA 7.3. Let C = (E, 8, p) be a connected complex with n = 3
boundaries. Then each [B-cycle can be represented by a product
X, -+ X, t =1) where each X, is a side. This representation is
unique to within a cyclic permutation of these sides.

Proof. Let p be a B-cycle. Choose an array M, representing g,
so that the first letter of M is an initial edge. (Then the last letter
of M is a final edge.) Therefore M = X, --- X,, t = 1, where an edge
in M is initial (final) if and only if it is the first (last) letter in some
X;. The essential uniqueness of this representation follows from the
fact that each edge can be placed uniquely in one of four classes:
initial but not final, neither initial nor final, final but not initial and
both initial and final, This completes the proof.

Vertices containing exactly 2 edges are called nmomnessential; all
other vertices are essential. If the inverse arrays X =a,---a, and
Y=b,---b, (r=2) are sides, then {a;, b,.,} are nonessential vertices
for 1 ¢ =<r — 1 since a;,80 = @;+,0 = b;+, and ;1,80 = b;,0 = a;. The
next lemma shows that all nonessential vertices arise in this way.

LemMA 7.4, If {a, b} is a monessential vertex of a complex
C = (& B,p) and if a, = a,B, b, = b8, then a,a, and bb, are subwords
of sides.

Proof. a,0 = a,80 = b;; b0 =b,80 =a,. We must show that a,
is not final and @, is not initial. Indeed, a@,80 # a, since b, # a;;
a,8080 = a,08p0 = b,Sp = a,. Also, a,08 # a, since a,08 = b,8 = b, and
b0 = a, # b, = a,0. Similarly, b, is not final and b, is not initial. This
completes the proof.

The relationships between essential vertices, final edges, and sides
can now be given.

LEMMA 7.5. Let C = (E, 8, p) be a nontrival complex. An edge
18 wm an essential vertex if and only if the edge is final. Amn edge
18 final if and only if it is the last letter in some side.

Proof. Let a be an edge. Suppose a is in an essential vertex V.
If V={a}, then aBo=a and a is final. If V contains at least 3
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edges, then a,b = aBp and ¢ = bBp are distinct edges. Thus, aBoBp =
¢ # a; hence, a is final.

Now suppose a is final. If aBp = a, then {a} is a vertex. If
aBoBp # a, then b =aBp # a and ¢ = bBp # a. Also @ # b and the
fact that Bo is a one-to-one map imply that b = aBo # bBo = c¢. There-
fore there is an essential vertex containing a, b, ¢ among its edges.
The second statement of Lemma 7.5 follows from the proof of Lemma 7.3.

THEOREM 7.1. Let C = (E,B, ) be the connected complex associated
with a cancelled, minimal 1 -structure S = (E, 8, o, 0), of type n = 3.
Assume that the values of the S-cycles are cyclically reduced words.
Let 2s, w denote the number of sides and the number of essential
vertices of C. Then there is nmo wvertex containing just one edge,
2s = 3w, and w — s+ n = 2,

Proof. If {a} were a vertex, then aBo = a; hence a8 = ap. Let
b =aB. Then ab partially represents some S-cycle y. Since ap = b,
the value of ab is a null word which is a subword of a value of p.
This contradicts the assumption that the values of the S-cycles are
cyclically reduced words. Hence, there is no vertex {a}.

Therefore each essential vertex contains at least 3 edges. Using
Lemma 7.5 and' the resulting fact that there is a one-to-one corre-
spondence between final edges and sides, we get 2s = 3w.

We know that ¥ — e + n = 2 where v, 2¢ are the numbers of
vertices and edges of C. We show that v — ¢ = w — s by letting each
pair of inverse sides (of length m = 2) replace 2m edges and m — 1
nonessential vertices., In fact, if X=a,+--a,, Y =0, --+ b, are in-
verse sides (m = 2), then the letters in X, Y are the discarded edges
and {a;, b;+,} for 1 <7 < m — 1 are the discarded vertices, Thus each
step reduces both » and ¢ by m — 1. Lemma 7.4 assures us that each
nonessential vertex (if any) will be discarded in this process. After a
finite number of steps, we have discarded all edges which are not sides
and all nonessential vertices, Thus v —e¢e=w — s and w — s + n = 2,

8. Calculations. Let S = (%, B, p, 6) be a noncancelled, minimal
A -structure, of type n = 2, with reduced map 6,. Assume that the
values of 0, are cyclically reduced words. Let S, = (&, 8, 0, 0,) be
a cancelled, minimal _ys-structure, of type n + 1, associated with S.
(Thus the values of the 8;-cycles are cyclically reduced words.) Suppose
that the distinguished B;-cycle has m sides in the complex C, = (E,, 8,, 0).

Consider a side X of a nondistinguished B,-cycle of C,. X will be
called a fixed side whenever the inverse of X is a side of the distin-

guished B,-cycle. In such a case, the letters in X are all fixed elements
in K.
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Let Bj denote the number of nondistinguished boundaries having
k sides, ¢ sides of which are fixed; put B, = > ; Bi. Then we have

(1) n:ilB,,; 2s:m-l—§"_,1kBk
k= =
m=73, S iBi.
k=115isk

From Theorem 7.1 applied to C, we get 6w — 6s + 6(n + 1) = 12
and 4s = 6w. Therefore

(2) 6n —2s=6.
From (1) and (2) we get

i(6—k)Bk;m+6+g(k—6)Bk

k=1

and
(3) kﬁ(G—k)B,,gm+6.
=1
Now expand the left hand side of (3):

(4)  S6-WB.=36-kBi+ 3B+ 36— kB
5k .
+ 3,516 — Bi.
Further,
k

k
(5) 5,33 (6— KB < 2B} + Bl + 3, 3, iB} .

This can be seen as follows:

When (%, k) is neither (2, 2) nor (2, 3), we have (6 — k) < 7.
When 1 =k =2, (6 — k)B, = 2B: + iBi.

When i =2, k=3, (6 — k)B. = B + iB..

Now use (3), (4), and (5) to get:

S (5 — k)BL + 3. (6 — k)B! +;53;, + 2B + B
k=1 k=1 =1
But

Therefore,
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4 5
(6) l‘Z,(E)—k)B,‘C—I—’;(G——k)B‘,’C+2B§—I—B§g6.
=1 =

9. Minimal relators. A minimal relator of type n is a value of
the reduced map of a minimal .&Z-structure of type » (i.e. a minimal
structure, of type n, which is also an ZZ-structure). Similarly a non-
minimal relator corresponds to a nonminimal ZZ-structure.

We aim to show that each relator splits into minimal relators. We
prove this by showing that an analogous situation holds for the reduced
map of a structure S and the reduced maps 4,, ---, 8, of the minimal
substructures of S. This requires the following.

DEFINITION. Let 6,40,, ---, 6, be cyclic permutations acting on sets
E, E, ---, E,, respectively, such that E=FE, U --- U E, is a disjoint
union (r = 1). @ splits into 6,, - -, 0, if the 4, can be put in a sequence
0;, -++, 0. and if arrays H, H, ---, H,, representing 4,6, «--, 8;, re-
spectively, can be chosen so that 1— H (insert H,, ---, H,).

THEOREM 9.1. The reduced map of any structure S splits into
the reduced maps of the minimal substructures of S.

The proof of Theorem 9.1 requires a lemma.

LeEMMA 9.1. Suppose the structure S = (&, 8, o, §) contracts to the

structure S' = (E, B, 0, 0) in one step. If S satisfies Theorem 9.1,
so does S'.

Proof. By assumption there exist arrays H,, H, representing the
reduced maps of S, S’, respectively, such that H,— H, (delete I) for
some array I, of length 2, whose elements are a,b. o = p except on
the set {a,b}; ac =b, bo = a. Let H,= XIY and H, = XY,

If S; = (&, B, 0;, 9;) are the minimal substructuresof S (1 <7 < 7),
then there exist arrays M,, ---, M, representing the reduced maps of
S,, ++-, S,, respectively, such that 1— H, (insert M,, ---, M,). Suppose
ac E;, be E,.

Case 1. (12 = j) Since E; is closed under S and o, E; is the carrier
of a substructure S! of S’. The fact that S; is minimal implies that
each nonempty proper subset A (of E;) is not closed under both 8 and
©; hence A is not closed under both B and ¢. Thus S} is a minimal
substructure of S’.

Let M; = PIQ. Then the possibly empty array M = PQ represents
the reduced map of S!. Finally, 1— H, (insert M,, ---, M,_,, M}, M,.,,
«ee, M),
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Case 2. (i < j) By Lemma 6.1, there is an array K such that
1— HP (insert M, ---, M-—la Ky M+ly Y Mj—l; MJ'—H’ ) M,), 1-K
(insert M,, M;), and K is of the form K = PIQ.

E,, E;, and hence E; U E; are closed under 8 and p. Then E; U E;
is closed under ¢ and is the carrier of a substructure S} of S’. Since
E,, E;, and each nonempty proper subset of either E; or E; are not
closed under both 8 and o, we have that S} is a minimal substructure
of S'.

The possibly empty array K' = PQ represents the reduced map of
Si; 1— H, (insert M,, -++, M,_,, K', M;,,, »++, M;_,, M;.,, --+, M,). This
completes the proof of Lemma 9.1.

Now Theorem 9.1 can be proved. Let S = (&, B, p, 6) be a struc-
ture with k& p-cycles of length 2. If k=0, then p is the identity,
the B-orbits are the carriers of the minimal substructures of S, and 4
is the reduced map of S. Theorem 9.1 holds in this case since 6 splits
into the B-cycles (by the definition of a structure).

If £ =1, then there exist structures T, = (&, B, 05, 8), +++, T, =
(E, B, or, 6) where p, is the identity and o, = p, T, = S such that T}
contracts to 7., in one step (0 <+ <k — 1). Use Lemma 9.1 and the
fact that T, satisfies Theorem 9.1 to get that T, = S satisfies Theorem
9.1. This completes the proof.

Since each relator is a value of the reduced map of some .-
structure, we have

COROLLARY 9.1, FEach relator splits into minimal relators.

The next 3 lemmas will be useful later.

LeMMA 9.2. A nonminimal relator, of type n = 2, splits into re-
lators having types smaller than n.

Proof. Observe that a relator of type 1 is necessarily minimal.
Use Theorem 9.1 and the fact that a nonminimal structure, of type
% = 2, has minimal substructures whose types have sum =,

LeEMMA 9.3. Let S=(E, B,p,0) be a structure. If the array
H=ac, ---¢,bD, r =1, represents 0 and if the fized elements a,b
satisfy aB = b, then {c, -+, c,} 18 closed under B and p.

Proof. There exist arrays H,, ---, H, representing the B-cycles
M1, =+, M., respectively, such that 1— H (insert H,, ---, H,). Since
aB =b, ab is a subword of H; for some ¢, 1 < ¢ < n. Since ab is not
a subword of H, we have ¢ <n. The set {c, +++, c,} must be the
union of the B-orbits corresponding to some subsequence of g, «--,
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tt.. Hence, {c,, -+, ¢} is closed under B.
Since a, b are fixed elements, we have that {c, «-+, ¢} is closed
under p.

LEMMA 9.4. Let a,b be fixed elements of a minimal structure
S = (FE, B, p,0) with reduced map 0. If aB =D>, then ad =b and
al, = b.

Proof. If af # b, then there is an array ac, --- ¢,b, * = 1, which
partially represents §. Lemma 9.3 implies that {c,, -+, ¢,} is the carrier
of a proper substructure of S. This is impossible since S is minimal.
Thus, ad = b. But then af, = b since a, b are fixed elements.

10. Asymmetric relators. Let W be an <Z-word with 1—- W
(insert R,, -+, R,) where the R, are defining relators. We always
consider just one mode of performing the insertions (if there is more
than one). Since each letter of W originates from a letter of one of
the R;, there is a one-to-one correspondence between the letters in W
and the letters in R, ---, R,.

Let X = X2X, and Y = Y,yY, be any two of the R,. Suppose
that x, y correspond to the letters u, v in W; that u, v can cancel with
each other during free reduction of W; and that the words X,X,x and
4Y,Y, are inverses. Then we say that «, v can cancel symmetrically
or that W is a symmetric <#-word.

In this situation, either u, v are adjacent in W or u, v are separated
by a nonempty subword (of W) which freely reduces to 1. We indicate
this by saying that , v can cancel either immediately or eventually;
W is either immediately or eventually symmetric., If no two letters
of W can cancel symmetrically during free reduction of W, then W is
an asymmetric <@-word. Finally, an asymmetric (symmetric) relator
of type ¢t is a partially reduced asymmetric (symmetric) <Z-word of
type ¢.

LemMmA 10.1. If a word W splits into t = 2 defining relators,
two of which are X, Y, then W splits into two words U, V such that

U splits into p = 1 defining relators, one of which is X,

V splits into q = 1 defining relators, one of which is Y,

and p +q =t.

Proof. Use induction on ¢t. The lemma holds for ¢ =2 with
U=X, V=Y. Let t =3 and assume the lemma is true for smaller
t. Suppose 1— W (insert R, ---, R, and X = R;,, Y = R, for 7 < j.
Let W’ be the word such that 1— W’ (insert R, --+,R,_)) and W' — W
(insert R,).
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If j=t, choose U= W', V=R, If j<t, then by the induction
assumption W' splits into two words U’, V' which split into p’ defining
relators and ¢’ defining relators among which are X and Y, respectively,
where 9’ + ¢’ =t — 1. We can choose U, V so that either U = U’ and
V'— V (insert R,) or V=V’ and U’ — U (insert R,).

LEMMA 10.2. An eventually symmetric &Z-word W, of type t = 2,
18 freely equal to some immediately symmetric F-word W', of type t.

Proof. Suppose 1 — W (insert R,, --+, R,) where the R, are de-
fining relators. Let W contain the letters u, v which can eventually
cancel symmetrically during free reduction of W. Suppose that wu,v
correspond to the letters 2,y in R; = X.2X,, R; = Y,yY,. Apply the
previous lemma with X = R;,, Y = R, to find the words U, V. Then
U, V have cyclic permutations U’, V’, respectively, such that the
product U’, V' is a cyclic permutation of W.

Let U = MymM, and V' = N, = NN, where m, n correspond to
x, y, respectively. Sinece u, v can cancel in W, either N,M, or M,N,
freely reduces to 1. Thus W has a cyclic permutation mM,NnN,M,
which partially reduces to either M,N, or N,M,.

Put W = M,MmnN,N, which is an <Z-word of typet. In fact,
M,M,m is a cyclic permutation of U and is an <Z-word of the same
type as U by Remark 2.1. Similarly, nN,N, and V are <Z-words of
the same type. Thus W” is a product of <Z-words whose types have
sum ¢.

Either W partially reduces to M,M, or W” has a cyclic permu-
tation which partially reduces to N,M,. Thus W” has a eyclic permu-
tation W’ which is freely equal to W.

LEMMA 10.8. Let W be a word which splits into t = 2 defining
relators R,, -+, R,. If two letters u, v in W can immediately cancel
symmetrically, then W also splits into t — 2 defining relators and
one or more null words.

Proof. Let R, = X,2X, and R; = Y,yY, where «, y correspond to
u, v, respectively. By assumption, X,X,® and yY,Y, are inverses so
that X2y Y,Y,X, and X,Y,Y,yxX, freely reduce to 1.

The proof of Lemma 6.1 shows that W splits into ¢ — 2 defining
relators and a word U. Either U = XxyY X, (with Y,=1) or U=
X, YyxX, (with Y, = 1). In either case, U freely reduces to 1 so that
U splits into one or more null words. Thus, W splits into ¢ — 2 defining
relators and one or more null words.
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LEMMA 10.4. Suppose 1 — U (insert X, Y) where X, Y are re-
lators of types p,q = 0 with the understanding that a relator of type
0 is @ null word. Let U have a subword N whick is a nwll word
whose letters w, v correspond to a letter wn X and a letter in Y,
respectively. Let V be defined by U— V (delete N). Then V is a
relator of type p + q.

Proof. If p=g =0, then X, Y and hence V are null words. If
p>0 ¢g=0, then V=X, If p=0, ¢ >0, then either V=Y or V
is a eyclic permutation of Y,

Finally, if p >0, ¢ > 0, then X, Y are partially reduced forms of
#Z-words P, Q of types », ¢, respectively. Then U is a partially re-
duced form of an <#-word M, of type p + g, such that 1 — M (insert
P,Q). Thus U is a relator of type p + ¢; hence so is V,

LeMMA 10.5. If a word W splits into null words and/or relators
having types whose sum is t = 1, then this is also true for each word
W' which is freely equal to W,

Proof. It suffices to check the cases when W’ is obtained from
W by a single insertion or deletion of a null word N, If W— W’
(insert N), then W’ satisfies the lemma.

Now suppose W— W' (delete N). By assumption 1— W- (insert
w,, --+, W,) where W, ..., W, are null words and/or relators having
types whose sum is t. Let W, have type ¢, with ¢, =0 if W, is a
null word. The lemma holds when each W, is a null word since then
W' also splits into null words. Therefore, assume some W, is not a
null word so that ¢, + «-+ + ¢, = &.

One possibility is that the letters in N correspond to letters in the
same W, so that W, — W (delete N) for some word W}, If ¢, =0,
W' is the empty word. If ¢, = 1, W} is either empty or a relator of
type ¢;. In any case, 1 — W' (insert W,, -+, W,_,, Wi, Wiy, +--, W.).

The other possibility is that the letters in N correspond to letters
in two words W, W; so that » = 2. Lemma 6.1 implies that W splits
into r — 2 W,’s, having types whose sum is ¢ — ¢; — ¢;, and a word U
which splits into W, W;. Then W’ splits into the same » — 2 W,’s
and a word V such that U — V (delete N). By the previous lemma,
V is a relator of type t; + t;,. This completes the proof.

LEMMA 10.6. A symmetric relator W, of type t = 2, splits into
null words andfor relators having types smaller than t.
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Proof. Let W be a partially reduced form of a symmetric .Z-word
V of type t. By Lemma 10.2 V is freely equal to an immediately
symmetric <Z-word V' of type ¢. By Lemma 10.3 either ¢ = 2 and
V' splits into null words or ¢ = 3 and V'’ splits into null words and
relators having types whose sum is ¢ — 2, (since a defining relator is
a relator of type 1). By Lemma 10.5, W splits into null words and/or
relators having types whose sum is ¢t — 2. This implies Lemma 10.6,

THEOREM 10.1. FEach relator splits imto null words and/or
asymmetric relators.

Proof. Let W be a relator of type t =1. Whent=1, W is a
defining relator which is an asymmetric relator. Use induction on t.
Let ¢ = 2 and assume the theorem for relators of type smaller than
t. Theorem 10.1 then follows from Lemma 10.6.

11. Proof of Main Theorem. In order to solve the word problem
in the presented group %, it suffices to be able to recognize the
asymmetric, minimal relators which we call basic relators.

THEOREM 11.1. Each relator splits into null words and/or basic
relators.

Proof. Use Lemma 9.2, Lemma 10.6 and the fact that a relator
of type 1 (a defining relator) is a basic relator. This completes proof.

We now consider a basic relator in a sixth group. More specifically,
consider a cyeclically reduced relator W which is a value of the reduced
map of a minimal, noncancelled .Z7-structure S = (E, B, p, 6), of type
n = 2. Then some cyclic permutation of W is the freely reduced form
of an #-word V of type m, where V is a value of 4. We assume
that V is an asymmetric &Z-ward so that W is an asymmetric relator.
The structure S characterizes one method of freely reducing V to a
word which is a eyclic permutation of W, As usual, let S, = (&, 8,, 0,,0,)
be the cancelled _#~-structure associated with S; C, = (E,, B,, o). Note
that C, has no vertex containing just one edge (by Theorem 7.1).

In this situation, consider the B of §8. The following lemma
implies that B} = B = B = 0.

LEMMA 11.1. Let S = (E, B, p,0) be a moncancelled, minimal
structure with associated cancelled structure S, = (&, B, 01, 0,). Let
C, = (E,, B, p,) and assume that C, has mo vertex containing just one
edge. Suppose the product XY of momempty arrays partially re-
presents a nondistinguished B-cycle and X, Y are both sides in C..
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Then X, Y are not both fixed sides. Also, there is no nondistinguished
Bi-cycle which 1s represented by one fixed side.

Proof. Suppose X, Y are fixed sides. This assumption together
with the fact that XY partially represents a nondistinguished B,-cycle
imply that XY partially represents 6, the reduced map of S. Let a be
the last letter in X let b be the first letter in Y. Since Y is a side of
C,, b is an initial edge. Also, since {b} cannot be a vertex of C,, we
have bp,5, # b.

Since a,b are fixed elements of S and aB = aB, =b, we have
afy = b by Lemma 9.4, By Remark 5.1 0,8, = ap,. Hence b0,8,0.8, =
ap,0,68, = aB, = b, This contradicts the fact that b is an initial edge
of C,. Thus, both X and Y cannot be fixed sides.

Now let Z be a fixed side, representing a nondistinguished 3,-cycle.
If Z is of length = 2, let a, b be the last and first letters of Z, re-
spectively, so that @ # b. We get a contradiction as before.

If Z is of length 1 and Z = a, then aB =aB, =a and ao = a.
Hence, {a} is the carrier of a proper substructure of S, which is again
a contradiction. This completes the proof.

Let the arrays MX and YN represent nondistinguished B,-cycles
M, v. respectively. Assume that the values of MX, YN are the defining
relators R, R., respectively, and that X, Y are inverse sides.

If p¢ # v, then R,, R, are not inverses since V is asymmetric. Hence,
R, and R;' are distinct defining relators with a common subword (the
value of X). The less-than-one-sixth property implies that

() l(X)<—€1;,-l(MX) and l(Y)<%l(YN).

It is also possible that ¢ =v. In this case R,, R, are cyclic per-
mutations of one another. Once again (*) will hold provided that R,, R,
are not inverses. But this proviso holds.

Lemma 11.2. If T is a nonempty cyclically reduced word, then
no cyclic permutation of T s the word T,

Proof. Let U= T,T, be a cyclic permutation of T = T,T,. If
U=T" then T,= T T,= T;*; hence T, T, are empty words,
contradiction.

Thus, for C,, we also have B, =0 for 1<k <6. From (6) in
§ 8, we get 3B; + 2B! + B. = 6. This implies the Main Theorem with
P, =B, k=2,3,4.
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