Vol. 17, No. 1, 1966

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 325: 1  2
Vol. 324: 1  2
Vol. 323: 1  2
Vol. 322: 1  2
Vol. 321: 1  2
Vol. 320: 1  2
Vol. 319: 1  2
Vol. 318: 1  2
Online Archive
Volume:
Issue:
     
The Journal
Subscriptions
Editorial Board
Officers
Contacts
 
Submission Guidelines
Submission Form
Policies for Authors
 
ISSN: 1945-5844 (e-only)
ISSN: 0030-8730 (print)
Special Issues
Author Index
To Appear
 
Other MSP Journals
Classes of definite group matrices

Robert Charles Thompson

Vol. 17 (1966), No. 1, 175–190
Abstract

Two positive definite symmetric n × n matrices A, B with integer elements and determinant one are said to be congruent if there exists an integral C such that B = CACT (CT is the transpose of C). This is an equivalence relation. The number of equivalence classes, C-classes, is finite and is known for all n 16. Let G be a finite group of order n and let Y , Z be two positive definite symmetric group matrices for G with integral elements and determinant one. If an integral group matrix X for G exists such that Z = XY XT then Z, Y are said to be G-congruent. G congruence is an equivalence relation. In this paper the interlinking of the G-classes with the C-classes is determined for all groups of order n 13. The principal result is that the G-class number is two for certain groups of orders eight or twelve and is one for all other groups of order n 13.

Mathematical Subject Classification
Primary: 15.30
Milestones
Received: 9 November 1964
Published: 1 April 1966
Authors
Robert Charles Thompson