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E. C. JOHNSEN

A finite projective plane of order n ^ 2 can be considered
as a <i;, k, 2} design where v — n2 + n + 1, k = n + 1, and
λ = 1. As such, it can be characterized by its point-line 0, 1
incidence matrix A of order v satisfying the incidence equation

where J is the matrix of order v consisting entirely of Γs.
Thus, if a plane of order n exists then (*) has an integral
solution A. Ryser has shown that if A is a normal integral
solution to (*) or if A is merely an integral solution to (*)
where n is odd, then A can be made into an incidence matrix
for a plane of order n by suitably multiplying its columns by
— 1. Such an integral solution to (*) we shall call a type I
solution. When A is merely an integral solution to (*) where
n is even, then A may be a type / solution but may also be
not of this type. These latter integral solutions to (*) we shall
call type II solutions. Ryser has constructed type II solutions
for n = 2 and for all n = 0 (mod 4) for which there exists a
Hadamard matrix of order n, and Hall and Ryser have con-
structed a type // solution for n = 10. In this paper we
construct type II solutions for some infinite classes of values
of n = 2 (mod 4). Basic to these constructions is a special
class of (y, k, 2} designs called skew-Hadamard designs whose
incidence matrices form a part of the substructure of our
type II solutions. We exhibit examples for n = 26 and 50
and also derive examples for n — 10 and 18.

A ζvy k, \y design is an arrangement of v elements xu x2j , xυ

into v sets Su S2, , Sυ such that every set contains exactly k ele-

ments, every pair of sets has exactly λ elements in common, and to

avoid certain degenerate situations, 0 ^ λ < k ^ v — 1. A ζy, k, λ>

design can be characterized by its incidence matrix A — [α^ ] by writing

the elements xltx2, •••,#* in a row and the sets Slf S2, • *fSv in a

column and setting ai3 = 1 if x3- e St and ai3 — 0 if x3- £ Siβ This

matrix A, of order v, consists entirely of 0's and Γs and, by the

conditions given above, is easily seen to satisfy the incidence

equation:
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(1.1) AAT = (fc -

where Aτ is the transpose of A, I is the identity matrix of order v,
and / is the matrix of order v consisting entirely of Fs. Conversely,
iΐO^X<k^v — 1, a matrix A of order v consisting entirely of
O's and Γs and satisfying equation (1.1) is an incidence matrix for
some (v, k, λ> design. Ryser [13] showed for a (y, k, λ> design with
incidence matrix A that X(v — 1) = k(k — 1) and that A is normal, i.e.,
ATA — AAT = B, which means that every element is contained in
exactly k of the sets and every pair of elements are together in exactly
λ of the sets. When λ = 0 or k = v — 1 we have the ζy, 1, 0)> or
ζy, v — 1, v — 2)> designs, respectively. These designs exist for every
integer v ^ 2 and are quite trivial. Two classes of ζy, k, λ)> designs
will be of particular interest to us here. These are the finite projec-
tive planes of orders n ^ 2 where v = n2 + n + 1, k = n + 1, λ = 1, and
the Hadamard designs where v — 4m — 1, k — 2m — 1, X = m — 1,
m ^ l on integer.

We now let A be an integral solution to the incidence equation.
Although an integral solution to the incidence equation is more general
than a 0, 1 solution, Ryser [14] has shown that if A is normal or if
gcd(k, λ) is squarefree and k — λ is odd, then by suitable multiplication
of the columns of A by - 1 we can obtain a 0, 1 incidence matrix
for a (v, k, λ)> design. Hence, for odd n the existence of a finite
projective plane of order n is equivalent to the existence of an integral
solution to the corresponding incidence equation. For even n, however,
we do not have this equivalence. When n is even, more exotic integral
solutions may and do occur. We may, of course, have design type
integral solutions like those for odd n, which we shall call type /
solutions, or we may have integral solutions which are not of that
type, which we shall call type II solutions. Ryser [14] showed that
a type II solution exists for n — 2 and for n = 0 (mod 4) whenever n
is the order of a Hadamard matrix, and Hall and Ryser [11] exhibit
a type // solution for n — 10. Here we shall construct type II solutions
for some infinite classes of values of n = 2 (mod 4) which satisfy the
Bruck-Ryser criterion [4]. This criterion is equivalent to saying that
n — a2 + δ2 where a and b are odd integers. It rules out the existence
of integral solutions for all orders n = 6 (mod 8) along with some
orders n = 2 (mod 8). Basic to these constructions is a special class
of Hadamard designs called skew-Hadamard designs, whose incidence
matrices form part of the substructure of our integral solutions.

2» Skew-Hadamard matrices and designs* Let H — [hiό\ be a
matrix of order n where hi3 = 1, — 1; j = 1, , n. We call H a
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Hadamard matrix if HHT — nl. By an inequality of Hadamard [10],
H is a Hadamard matrix if and only if | det (H) | = nn'2. We
immediately see that a Hadamard matrix is normal. It is easy to
show that a Hadamard matrix can only exist when n = 1, 2 or n =
4m, m Ξ> 1 an integer, and that a direct product of two Hadamard
matrices is a Hadamard matrix, which means that from Hadamard
matrices of orders m and n we can construct one of order mn. In [19]
J. A. Todd showed that from a Hadamard matrix of order 4m we
can obtain a related Hadamard design incidence matrix of order 4m — 1,
and conversely, m ^ 1 an integer. Hadamard matrices and their
related Hadamard designs have been studied extensively [1], [2], [3], [5],
[7], [8], [9], [10], [12], [16], [17], [18], [19], [20], [21]. Hadamard
matrices exist for infinitely many orders 4m, m Ξ> 1 an integer, and
are conjectured to exist for all such orders. We call a Hadamard
matrix H skew-Hadamard if H + Hτ = 21. These also exist for in-
finitely many orders, as will be shown later. We also call a Hadamard
design and its corresponding incidence matrix A skew-Hadamard if
A + Aτ = J — I. This agreement in terminology will be justified by
the next theorem. Skew-Hadamard design incidence matrices are a
special type of round robin tournament matrix [15]. As such, they
occur in the statistical method of paired comparisons [6]. Correspond-
ing to Todd's result for Hadamard matrices and designs, we have the
following result for skew-Hadamard matrices and designs.

THEOREM 2.1. From a skew-Hadamard matrix of order 4m we
can obtain a skew-Hadamard design incidence matrix of order Am — 1,
and conversely, m gr 1 an integer.

Proof. By multiplying the appropriate rows and the corresponding
columns of a skew-Hadamard matrix by — 1, we can bring this matrix
to the form

H =

, - 1

Without loss of generality, assume that our original skew-Hadamard
matrix is H. Here Hί consists of l's and — l's and satisfies

HJK? = 4ml - J

and

, + Hΐ = 21.
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Now let A = (J — i?i)/2. Then A consists of 0's and Γs and satisfies

AAT = — (J2 - JH? - Ή J + HJI?)
4

= _l((4m - 1)J - J - J + AmI-J)
4

= m/ + (m — 1) J

and

Δ

Hence A is a skew-Hadamard design incidence matrix of order 4m
By reversing the above argument, we have the converse.

We note that the matrices [1] of order 1 and

1

• 1

of order 2 are skew-Hadamard. Among the matrices of order 4m with
entries 1 and — 1, m ^ 1 an integer, we can characterize those that
are skew-Hadamard by the following theorem.

THEOREM 2.2. Let H — [hiά\, hi5 = 1, — 1 be a matrix of order
n — 4m, m Ξ> 1 an integer, and let G — H + Hτ — 21. Then the
following statements are equivalent:

(a) H is a skew-Hadamard matrix.
(b) H2 - 2H + nl = 0.
(c) The eigenvalues of H are 1 + iVn — 1 and 1 — iVn — 1 ,

each with multiplicity 2m.
(d) H is a Hadamard matrix and tr(G2) = 0.

Proof. We shall show that (a) implies (b) implies (c) implies (d) implies
(a). Let H be a skew-Hadamard matrix. Then HHT = nl and H+ Hτ =
21 imply(b). Now suppose that (b) holds. Since H cannot satisfy a first
degree polynomial, λ2 — 2λ + n must be its minimal polynomial, whence only
1 + iλ/n — 1 and 1 — iVn — 1 are its eigenvalues. Now the trace
of H is real; hence these two complex eigenvalues must occur with
the same multiplicity, namely, 2m. Now assume that (c) holds. Then

det(iϊ) = (1 + iVn - l) 2 m (1 - iVn - l) 2 m = nn'2

whence H is a Hadamard matrix. Since the eigenvalues of H2 are
2 — n + 2iλ/n — 1 and 2 — n — 2i~]/n — 1, each with multiplicity 2m,
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we have, moreover, that

tr(G2) = tr[H2 + {Hτf + 47 + HHT + HTH -AH- AHT]

= 2tr(H2) + 4 tr(I) + 2 tr(nl) - 8 tr(H)

= 2[2m(4 - 2n)] + 4n + 2n2 - 8[2m 2]

= 16m - Smn + An + 2w2 - 32m

= 0,

hence (d) is satisfied. Now suppose (d) holds. Since G is symmetric,
tr(G2) = 0 implies that the sum of the squares of the elements of G
is 0. Hence G = 0 and fZ" is a skew-Hadamard matrix.

We now inquire as to whether there is a direct product type of
construction for skew-Hadamard matrices as there is for Hadamard
matrices. Such a result can be obtained as a corollary to the follow-
ing lemma of Williamson [20] in which Ir denotes the identity matrix
of order r and x denotes the direct product.

LEMMA 2.3. Let C be a matrix of order n such that Cτ — εC,
ε — 1, —1 ? and CCT — (n — 1)I%, and let D and E be two matrices
of order m satisfying DDT = EET = mlm and DET = - εEDτ. Then
the matrix K — Dxln + ExC satisfies KKT — mnlmn.

The result of interest to us here for skew-Hadamard matrices is
the following corollary.

COROLLARY 2.4. Let C + / be a skew-Hadamard matrix of order
n, and let D be a skew-Hadamard and E a symmetric Hadamard
matrix of order m such that DET = EDT. Then the matrix K =
Όxln + ExC is a skew-Hadamard matrix of order mn.

Proof. Clearly K consists entirely of Γs and — Γs. Since C + I
is a skew-Hadamard matrix, Cτ — — C and CCT = (n — 1)J%, and since
D and E are both Hadamard matrices, DDT = EET = mlm. Now
ε = - 1 and we have DET = EDT. Thus, by Lemma 2.3, we have
KKT = mnlmn. Now since D is skew-Hadamard and E is symmetric,

K+ Kτ - Dxln + ExC + (Dxln + ExCf

= Dxln + ExC + Dτxln + EτxCτ

= (D + Dτ)xln + ExC - ExC

Hence K is a skew-Hadamard matrix of order mn.
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Williamson [20] obtained special cases of this corollary for m — 2
and m — pa + 1 = 0 (mod 4), p a prime, a ^ 1 an integer, by obtain-
ing the desired pair of matrices of order m. In a different vein,
Goldberg [8] constructed a skew-Hadamard design incidence matrix of
order (m — I)3 from one of order m — 1, in effect obtaining a skew-
Hadamard matrix of order (m — I)3 + 1 from one of order m. We
summarize these results in the following theorem.

THEOREM 2.5. // there exists a skew-Hadamard matrix of order
n then there exists one of order

( i ) 2n.
(ii) n(pa + 1); pa + 1 ΞΞ 0 (mod 4), p a prime, a ^ 1 an integer.
(iii) (^-1)3 + 1.

TABLE 1.
The Existence of Skew-Hadamard Matrices for Orders 4 ^ n ^ 200

n

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

96

100

Form

22

23

11 + 1

24

19 + 1

2(11 + 1)

33 + l

25

2(19 + 1)

43 + 1

22(11 + 1)

2(33 + 1)

59 + 1

26

67 + 1

71 + 1

22(19 + 1)

83 + 1

2(43 + 1)

23(11 + 1)

Exists

SH

SH

SH

SH

SH

SH

SH

SH

h

SH

SH

SH

h

SH

SH

SH

SH

SH

h

SH

SH

SH

h

SH

h

n

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

172

176

180

184

188

192

196

200

Form

103 + 1

107 + 1

22(33 + 1)

2(59 + 1)

27

131 + 1

2(67 + 1)

139 + 1

2(71 + 1)

151 + 1

23(19 + 1)

163 + 1

2(83 + 1)

22(43 + 1)

179 + 1

24(11 + 1)

199 + 1

Exists

SH

SH

SH

SH

h

SH

SH

SH

SH

SH

h

SH

h

SH

SH

SH

h

SH

SH

h

SH

h

SH
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Since there exist skew-Hadamard matrices of orders 2 and
pa + 1 == 0 (mod 4), p a prime, a >̂ 1 an integer [12] [20], we can
apply Theorem 2.5 to obtain the following existence theorem.

THEOREM 2.6. There exists a skew-Hadamard matrix of order
n where n is of the form

( i ) 2C Π (p** + 1); o ^ 0, r ^ 0 are integers,
i=l

p0^ + 1 = 0 (mod A), Pi a prime, a{ ^ 1 an integer,
r

i — 1, , r, where Π (Pΐ* + 1) = 1 for r — 0.
t = l

(ii) JV, where N is derivable from (i) 6?/ Theorem 2.5.

Table 1 gives the existence of skew-Hadamard matrices for orders
4 ^ n ^200 according to Theorem 2.6. For comparison, this table
also gives the currently known existence of Hadamard matrices for
the same range of n, based on constructions in the references mentioned
earlier. The symbols SH indicate that a skew-Hadamard matrix exists,
while the symbol h indicates that only non-skew-Hadamard matrices
are known to exist.

3* Constructions* By § 4 of [11] we know that we can put
any type II solution A = [a^] of order v — n2 + n + 1 for the finite
protective plane case of order n into a form where an ~ 0, a{1 — 1 for
2 ^ i ^ v, au = 1 for j = 2 (mod n) and au = 0 for j Ξ£ 2 (mod n)
where 2 ^ j <* v, and where the remaining entries form a submatrix
C of order v — 1 = w(w + 1) which has n Γs and ^2 0's in each of
the n + 1 columns under a 1 in row 1 of A and which satisfies the
matrix equation CCT — CTC = nl. The constructions given in [11]
and [14] have C in the form C — An + An + + An, where this
direct sum contains An, of order n, n + 1 times and where An has
all entries in column 1 equal to 1 and satisfies the matrix equation
AnAζ, — nl. These conditions on An are sufficient for the construction
of a type II solution for order n. We shall confine ourselves here to
this form of type II solution. This restriction reduces the construc-
tion of a type // solution A of order n2 + n + 1 to that of an integral
matrix An of order n satisfying the above conditions. Type II solu-
tions need not, however, be of this direct sum form to within permu-
tations of rows and columns of A. This can be seen from the following
example for n — 4. Here the entries in the blank parts of A are 0's.
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1 0 0 01 0 0 01 0 0 01 0 0 01 0 0 01

1 1 1 - 1

1 1 - 1 1

1 - 1

1 - 1

1 11

- 1 - 1 1

1 - 1

- 1 1

1 - 1

1 - 1

1 11

- 1 - 1 1

1 - 1

- 1 1

1

1

1 - 1

1 - 1

1 11

- 1 - 1 1

1 - 1

- 1 1

1

1

1 - 1

1 - 1

1 - 1

- 1 1

11

-11

1 - 1 1 1

1 - 1 - 1 - 1

Let K be a skew-Hadamard design incidence matrix of order
q = 3 (mod 4). Here v = q = im — 1, k = 2m — 1, λ = m — 1, where
m 2; 1 is an integer,

(3.1)

and

(3.2)

KKT = KTK =ml+ (m - 1) J ,

K+ Kτ = J-

We obtain from K a matrix K(t, u, x) by substituting t for each of
the main diagonal 0's, u for each of the remaining 0's and x for
each of the Γs. From (3.1) and (3.2), any two rows of K(t, u, x) can
be schematically represented as

t , U , U , .- , U , U , > , U , X , ' " , X , X , ' " , X

X , t , X , ' ' , X , U, " , U , X , •• , X , U, ' •', U

m — 1 m — 1 m — 1 m
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where there are 4m — 1 entries in each row, 2m — 1 each of u's and
x's. The inner product of a row of K(t, u, x) with itself is thus

(3.3) t2 + (2m - l)(x2 + u2) = t2 + —(q - ΐ)(x2 + u2) .
Δ

Also, the inner product of two distinct rows of K(t, u, x) is

<3.4) t(x + u) + (m - l)(x2 + u2) + (2m - ΐ)xu

= t(x + u) + — (g - l)(x + ^) 2 - — (x2 + ^2) .
4 2

We now form Y = [yiό\ — K(tu ul9 xλ) and Z— [Zij] — K(t2, u2, x2) of order
q and then form

<3.5)

We then set

<3.6) w = ί! + t\ + \{q - l)(x\ + u\ + x\ +

LEMMA 3.1. The matrix equation

(3.7) NNT = wl

is satisfied if and only if

(3.8) w = \tx + — ( q — l ) ( x x + tti) + \t2 + — ( g —
I— £k -A \— £i

Proof. By (3.5) we have

(3.9)

Since, by (3.1), if is a normal matrix, the statements about inner
product values of K(t, u, x) are true when the word row(s) is replaced
by column(s); hence K(t, u, x) is normal whence Y and Zare normal or

(3.10) YTY = YYT and ZTZ =

Now

Y=tJ+ x,K + u,(J - K) - wj

= (ίx - Ui)I + (̂ i - uJK + ux

and similarly
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Z = (t2 — u2)I + (x2 — u2)K + u2J .

Since / commutes with both K and J and

KJ=JK= (2m - 1) J ,

i.e., K commutes with /, Y commutes with Z so that

(3.11) ZY - YZ = 0 .

Then by (3.10) and (3.11), (3.9) becomes

(3.12) NNT = (YYT + ZZT) + (YYT + ZZT) .

The diagonal entries of NNT are, by (3.3) and (3.12),

(3.13) t\ + tl + —(q- l)(xϊ + ul + x\ + ul) = w ,

and the nondiagonal entries of the direct summands in (3.12) are, by
(3.4),

(3.14) t^x, + uλ) + t2(x2 + u2) + \{q - l)[{xx + uxf + (x2 + u2)
2]

4
— — (xl + ul + x\ + uD = y .

Δ

We note that (3.7) is satisfied if and only if y = 0. Now solving
(3.14) for (xl + ul + xl + û )/2 and substituting the result into (3.13)
we obtain

(3.15) [ίx +

Hence by (3.13), (3.14), and (3.15), we see that (3.7) is true if and
only if (3.8) is.

We now define the matrices Er — (r + 2)7/2 — J of even order
r, Fr of size r x 2 consisting entirely of Γs, and Gr of size r x 2
whose first column consists entirely of Γs and whose second column
consists entirely of — Γs. In the constructions which follow we shall
be taking t1—(τ + 2)/2 and x± + uλ — 2. We then note that

(3.16) FrFξ + ErEr

τ = GrG? + ErE? = [j(r + 2)] I = t\I,

(3.17) FrF* + 2Er = GrG? + 2Er = (r + 2)1 - (a;, + wjt j ,

and
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(3.18) FrG? = GrFr

τ = 0 .

We substitute for the entries yu in Y and Yτ the matrix Er and for
all other entries yi3-, i Φ j , the matrix yiόl of order r to obtain the
matrices Y* and Yξ, respectively, of order rq, and substitute for the
entries zί3 in Z and Zτ the matrix zi3 I of order r to obtain the
matrices Z* and Z%, respectively, also of order rq. These matrices
will appear in the constructions which follow, bordered by the matrices
Frq and Grq.

We can now obtain two existence theorems for type II solutions
to the incidence equation for finite projective plane cases of orders
n = 2 (mod 4). After each one are theorems which cover the various
cases of the theorem.

THEOREM 3.2. Let (3.8) be satisfied in integers tlt tz, uu u2, xu

and x2 where q = 3 (mod 4) is the order of a skewΉadamard design
incidence matrix and w is defined in (3.6), and where xx + uλ = 2
and t1 — (r + 2)/2 and w — 2rq + 2 for the positive even integer r.
Then we can construct a type II solution to the incidence equation
for the finite projective plane case of order n = 2rq + 2.

Proof. We have

N = Y Z

- Zτ Y1
Y=[yid], Z=[zi3],

where

(3.19) yti = ί1 = — ( r + 2) ,

y%j + Vji — χi + ^i = 2 1 ^ i ^ g , l ^ i ^ g , i Φ j ,

and

(3.20) iViVΓ = (2rg + 2)1.

Since (3.8) is satisfied we have

(3.21) Γ l ( r + 2) + (g - 1)T + Γί2 + \{q - l)(x2 + u2)J = 2rg + 2 ,

or

Since q, r/2, ί2, (g — l)/2, α;2, and u2 are integers this means that
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(3.22) q - \τ = eu t2 + \{q - l)(x2 + u2) = ε2; εl9 e2 = 1, - 1 .

We form two matrices U and V of size 2 x rq according to the values
of Si and ε2 as follows:

U F

(3.23)
- 1

1

1

- 1

- 1

- 1

1

1

- 1

1

1

- 1

- 1

- 1

1

1

_ 1

- 1

1

1

1

- 1

- 1

1

if ε1 = ε2 = 1 .

if Sl = ε2 = - 1 .

if εt = - ε2 = 1 .

if e1 = - ε2 = - 1 .

Finally, we construct An of order n = 2rq + 2:

V

- 1

1
_L

1

1

1

- 1

- 1

1

(3.24) A =

< 1 1

1 - 1

By (3.23) the first two rows of An are orthogonal and have self inner
products equal to 2rq + 2 = n. Since the row and column sums of
Y* are q — r/2 and those of Z* are t2 + (q — l)(x2 + u2)/2, we have
by (3.22) and (3.23) that rows one and two are orthogonal to all the
other rows of An. We now look upon the submatrix of An below row
2 and to the right of Frq and Grq as a matrix with the matrix entries
Er9 uj, xj, t2l, u2l, and xj, all of order r. These matrices naturally
divide the entire submatrix of An below 2 into r-row blocks. Since
these matrices commute with one another they behave multiplicatively
among themselves as scalars. Thus (3.16), (3.19) and (3.20) imply that
the inner product of an r-row block with itself is (2rq + 2)1 — nl of
order r, (3.17), (3.19) and (3.20) imply that any two r-row blocks
intersecting either Frq or Grq are orthogonal, and (3.18) and (3.20)
imply that any r-row block intersecting Frq is orthogonal to any r-
row block intersecting Grq. Hence AnAζ = nl, and since the first
column of An consists entirely of l 's we see that we have a type II
solution to the incidence equation for the finite projective plane case
of order n = 2rq + 2.

Letting c — x2 + u2 and combining (3.22) with (3.6), noting that
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t ί = (r + 2)/2 = q — εt + 1, we have

(3.25) fe-£l + l ] 2 +

+ - ί ( ? - l)[x2 + (2 - x,)2 + x\ + (e- z2)
2]

= 2g 2(g - s J + 2 ,

or

- ε 2 φ - 1) + •icfy - I)2

4

- ye)' + -ίc2 + 2]

= 2>q2 - 2ε,q + 2ε1-2q-l

= [3g - (2ε, -

or

- ε2c + i-c2(g - 1) + (Xl - If

whence

(3.26) (12 - c2)q + 4ε2c - 8εx = (2^x - 2)2 + (2x2 - c)2 .

By (3.26)

(12 - c2)q + 4ε2c - 8ε, ̂  0 ,

and since q Ξ> 3 ,

(3.27) c 2-i^c + i-^ 12 -85i + A ^ i 3 i .

q q2 q q2 9

Since c is an integer we can readily conclude that

(3.28) I c I g 4 .

We let α = 2 ^ — 2 and 6 = 2x2 — c. Since q = 4m — 1, where m > 0
is an integer, we have from (3.26) that

(3.29) (12 -c2)(4m - 1) + 4ε2c - 8ε, = α2 + b2 .

Now suppose for given values of ε± — 1, — 1, ε2 = 1, — 1, and c that
(3.29) has a solution in integers a and b. If c is even the left side
of (3.29) is divisible by 4 whence a and b must both be even, while
if c is odd the left side of (3.29) is odd whence one of these integers,
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say α, is even while the other, δ, is odd. So in either case we can
solve the equations a — 2x1 — 2 and δ = 2x2 — c for integral values of
x1 and x2. Thus we have a solution to (3.26) in integers xu x2y and c.
These values then determine the values ut — 2 — xx and u2 — c — x2.
Then taking tt = q — ε1 + 1, £2 = ε2 — (# — l)c/2, and r = 2(g — ε^ and
noting that (3.25) is equivalent to (3.26) we have by (3.25) that

tl + t\ +(q- l)[xl + u\ + x\ + u*]/2 = 2r<? + 2 = w .

Then since (3.21) is equivalent to (3.22) and (3.22) holds we have by
(3.21) that

fo + (q - 1)(^ + O/2]2 + [*2 + (? - 1)(»2 + ^)/2]2 = 2r<? + 2 = w

where tλ = (r + 2)/2. So if g = 4m — 1 is the order of a skew-
Hadamard design incidence matrix, the conditions of Theorem 3.2 are
satisfied and we can construct a type II solution according to this
theorem. Now in deciding whether or not (3.29) has a solution in
integers a and b we have, by (3.28), nine values of ε2c to consider
for each of the values sx = 1, — 1. We take the nine cases for ε1 = 1.

Case 1. ε2c = 4: — 16m + 12 = α2 + δ2, impossible since
- 16m + 12 < 0 for m > 0.

Case 2. ε2e — 3: 12m + 1 = α2 + δ2, possible since, e.g.,
12(1) + 1 - 13 = 32 + 22. Here 3q + 4 = a2 + 62.

Case 3. ε2c = 2: 8(4m — 1) = a2 + δ2 or 4m — 1 = a{ + bl, au bx

integers, impossible since 4m — 1 = 3 (mod 4).
Case 4. e2c = 1: 44m — 15 = a2 + δ2, possible since, e.g.,

44(1) - 15 = 29 = 52 + 22. Here 11? - 4 = a2 + δ2.
Case 5. ε2c = 0: 48m - 20 = a2 + b2 or 12m - 5 = a\ + b\, au b,

integers, impossible since 12m — 5 ΞΞ 3 (mod 4).
Case 6. ε2c = — 1: 44m — 23 = a2 + δ2, possible since, e.g.,

44(2) - 23 = 65 = 82 + I 2. Here 11? - 12 = a2 + δ2.
Case 7. ε2c = — 2: 32m - 24 = a2 + δ2 or 4m - 3 = a\ + bl, au b,

integers, possible since, e.g.,
4(2) - 3 = 5 = 22 + Γ. Here 8g - 16 = a2 + δ2 or
q - 2 = at + δ2.

Case 8. ε2c = — 3: 12m — 23 = a2 + δ2, possible since, e.g.,
12(3) - 23 = 13 = 32 + 22. Here 3g - 20 = a2 + b2.

Case 9. ε2c = — 4: —16m — 20 = a2 + δ2, impossible since
- 16m - 20 < 0 for m > 0.

Now when e1 = 1 we have r = 2(q — 1), hence n = 4g2 — 4q + 2 =
(2q — I)2 + 1. So by Theorem 3.2 we have the following result.

THEOREM 3.3. There exists a type II solution to the incidence
equation for the finite projective plane case of order n — (2q — I)2 + 1
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whenever q is the order of a skew-Hadamard design incidence matrix
and any of the following expressions is the sum of two integral
squares: Zq + 4, llq - 4, llq - 1 2 , q - 2, Sq - 20.

When ε1 — ~ 1 we have r — 2(q + 1) hence n — 4q2 + 4q + 2 =
(2g + I)2 + 1. Analyzing this case as was done above for e1 — 1, we
have by Theorem 3.2 the corresponding result:

THEOREM 3.4. There exists a type II solution to the incidence
equation for the finite projective plane case of order n — (2q + I)2 + 1
whenever q is the order of a skew-Hadamard design incidence matrix
and any of the following expressions is the sum of two integral
squares: 2q - 4, llq + 4, l l g + 12, q + 2, Sq + 20.

Both of these theorems yield infinitely many type II solutions.
There exist skew-Hadamard design incidence matrices of orders

q1 = 22rf-2(ll + 1) - 1 = 3 2U - 1

and

q2 = 22*-2(43 + 1) - 1 = 11. 2U - 1

for each integer d ^ 1. Then 3gx + 4 = (3 2d)2 + I2, and llq2 + 12 =
(11 2d)2 + I2. The first five orders for which each of these theorems
yields a type II solution correspond to q ~ 3, 7, 11, 15, and 19 and are
n = 26, 170, 442, 842, and 1370, respectively, by Theorem 3.3, and
n = 50, 226, 530, 962, and 1522, respectively, by Theorem 3.4. As an
example we construct A26. For n = 26 we have q — 3 and Si = 1
hence r = 4 whence tx — 3. Now by case 2 above, ε2c = 3 and

Sq + 4 = 13 = 22 + 32 = (2a?! - 2)2 + (2x2 - cf .

We take 2x± — 2 = 2 or x1 = 2 and 2#2 — c = 3. Letting ε2 = 1, we
have c — 3 whence $2 = 3 and t2 — — 2. Then ut = u2= 0. Now
i£4 == 3J — J of order 4 and since εx = ε2 = 1,

- l... - r and P = : _ } ^ _ J

of size 2 x 12. The matrices F4 and GA are of size 4 x 2 and a skew-
Hadamard design incidence matrix of order 3 is

0

0

1

1

0

0

0
1

0

Hence we have
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A
•"•26

1

1

1

1

1

1

1

-1

1

•

1

- 1
•

- 1

- 1

1

37-J

0

27

27

-37

0

. . .

27

37-

0

0

27

-37

—

J
37

1

1

0

27

- J

-37

0

27

-1

-i

... —

• —

-27 37

0

37

37-

27

0

-27

0

J 0

37-J

27 37

1

1

0

37

-27

27

0

- J

The second existence theorem for type II solutions is the follow-
ing one.

Theorem 3.5. Let (3.8) be satisfied in integers tu t2, u19 u2, xu

and x2 where q = 3 (mod 4) is the order of a skew-Hadamard design
incidence matrix and w is defined in (3.6), and where x1 + ux = 2
and tλ = (r + 2)/2 and w — 2rq + 1 for the positive even integer r.
Then we can construct a type II solution to the incidence equation
for the finite protective plane case of order n — irq + 2.

Proof. We have

Y
Y=[yts\, Z=[z(i\,

where

Vu = *i = ήr(r + 2) ,
Δ

(3.30)

vu + VK = * i + « i = 2 i ^ * ̂  q > i ^ i ^Q » » ^ i »

a n d

( 3 . 3 1 ) NNT = (2rq + 1)7 .

Since (3.8) is satisfied we have

(3.32) P - ( r + 2) + (q - 1)T + Γί2 + i-(g - l)(x2 + u2)J = 2rq + 1

or

[q - γ~J + [ί2 + i-(<? - l)(x2 +

Since q, r/2, ί2, (^ — l)/2, x2, and M2 are integers this means that
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(3.33) g - ±r = e, , t2 + ±-(q - l)(a2 + u2) = ε2

Z Δ

el + el = 1 elf ε2 = 1, 0, - 1 .

We form two matrices U and V of size 2 x rq according to the values
of εx and ε2 as follows:

(3.34)

U
- 2 ••• - 2

0 0.

' 2 2
0

0

2

0

We set

and

- 2 ••• - 2

/ = *i + 4(« ~

V

o
_ 2 •••

0 •••

2 •••

- 2 - 2

O 0
2 . . .

O

if e1=l,et=0.

if 6X = - 1, ε, = 0 .

if δi = 0, ε2 = 1 .

if s, - 0, ε2 — - 1 .

g = tt + —(q - l)(xt + «2) = 6
2

Then / and g are integers and by (3.8)

(3.35) p + 02 = w = 2rg + 1 .

Finally, we construct An of order % = Arq + 2:

(3.36) A w =

ί l
1 -

Frq

Fr,

Grq

1

1

Y*
Y*

-zι
-Zξ

V

z*
z*

~γτ

0

fir,

-fir,

-gin

0

glrq

— glrq

-fir,

flr^

By (3.34) the first two rows of An are orthogonal and have self inner
products equal to irq + 2 = n. Since the row and column sums of
Y* are q — r/2 and those of Z* are t2 + (q — ΐ)(x2 + u2)/2, we have
by (3.33) and (3.34) that rows one and two are orthogonal to all
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the other rows of An. We now look upon the submatrix of An below
row 2 and to the right of the Frq's and Grq's as a matrix with the
matrix entries Er, uj, xj, t2l, u2l, and x2l, all of order r. These
matrices naturally divide the entire submatrix of An below row 2 into
r-row blocks. Since these matrices commute with one another they
behave multiplicatively among themselves as scalars. Thus (3.16),
(3.17), (3.30), (3.31), and (3.35) imply that the inner product of an r-
row block with itself is (4rq + 2)1 — nl of order r and that any two
r-row blocks both intersecting Frq'a or both intersecting Grq's are
orthogonal, and (3.18) and (3.31) imply that any r-row block intersecting
an Frq is orthogonal to any r-row block intersecting a Grq. Hence
AnA

τ

n = nl, and since the first column of An consists entirely of Γs
we see that we have a type II solution to the incidence equation for
the finite protective plane case of order n = irq + 2.

Letting c = x2 + u2 and combining (3.33) with (3.6), noting that
tλ = (r + 2)/2 = q — εx + 1, we have

(3.37) [q-e1 + I]2 + [ε2 - λ(q -

+ ±-(q - l)[xl + (2 - x,f + χl + (c- x2γ]

= 2 5 . 2 ( 5 - 6 0 + 1 ,

which, because of (3.33), again yields (3.26). Since the argument from
(3.26) to (3.28) depends only on | et |, | ε21 ^ 1 and q ^ 3, and since this
is true here too, we obtain (3.28). Again, letting a = 2x± — 2, b —
2x2 — c, and q = 4m — 1, m > 0 an integer, we obtain as before

(3.38) (12 - c2)(4m - 1) + 4ε2c - 8ε, = α2 + b\

where

(3.39) I c I g 4 .

Now suppose for given values of e1 — l, — 1, ε2 = 0 or e± — 0, ε2 = 1,
— 1 and c that (3.38) has a solution in integers a and 5. We can
then show, as we did before, that if q = 4m — 1 is the order of a
skew-Hadamard design incidence matrix, then the conditions of Theorem
3.5 are satisfied and we can construct a type II solution according to
that theorem.

Now in deciding whether or not (3.38) has a solution in integers
a and b we have, by (3.39), five values of \c\ to consider for each of
the two sets of values εx = 1, ε2 = 0 and εt = — 1, ε2 = 0 and nine
values of ε2c to consider for the value ε1 = 0. We take the five cases
for εt = 1, ε2 = 0.
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Case 1. I c \ = 4: — 16m — 4 = a2 + 62, impossible since
- 16m - 4 < 0 for m > 0.

Case 2. | c | = 3: 12m — 11 = α2 + b\ possible since, e.g.,
12(2) - 11 = 13 = 32 + 22. Here 3g - 8 = α2 + b\

Case 3. | c | = 2: 32m - 16 = a2 + b2 or 2m - 1 = a\ + 62, α,, 6,
integers, possible since, e.g., 2(3) — 1 = 5 = 22 + I 2.
Here 8q — 8 = a2 + b2 or q — 1 = a\ + &2, α2, 62 integers.

Case 4. I c I = 1: 44m — 19 = a2 + b2, possible since, e.g.,
44(1) - 19 = 25 = 52 + 02. Here l lg - 8 - a2 + b2.

Case 5. | c \ = 0: 48m - 20 = a2 + δ2 or 12m - 5 = at + b\, au bx

integers, impossible since 12m — 5 = 3 (mod 4).

Now when εx = 1 we have r = 2(q — 1), hence n — 8q2 — 8q + 2 =
2(2q — I) 2. So by Theorem 3.5 we have the following result.

THEOREM 3.6. There exists a type II solution to the incidence
equation for the finite protective plane case of order n = 2(2q — I)2

whenever q is the order of a skew-Hadamard design incidence matrix
and any of the following expressions is the sum of two integral
squares: Sq — 8, q — 1, llq — 8.

When ε1 — — 1 we have r — 2{q + 1), hence n = 8q2 + 8g + 2 =
2(2q + I)2. Analyzing this case as was done above for ε: = 1, we
have by Theorem 3.5 the corresponding result:

THEOREM 3.7. There exists a type II solution to the incidence
equation for the finite protective plane case of order n — 2(2q + I)2

whenever q is the order of a skew-Hadamard design incidence
matrix and any of the following expressions is the sum of two
integral squares: 3g + 8, q + 1, llg + 8.

When ex = 0 we have r = 2q, hence n = 8<f + 2 = (2q - I)2 +
(2q + I)2. Analyzing this case as was done for Theorem 3.3 we have
by Theorem 3.5 the following result.

THEOREM 3.8. There exists a type II solution to the incidence
equation for the finite protective plane case of order n — (2q — I)2 +
(2q + I)2 whenever q is the order of a skew-Hadamard design inci-
dence matrix and any of the following expressions is the sum of
two integral squares: Zq + 12, q + 1, llq + 4, 3g, llg — 4, q — 1,
Sq - 12.

All three theorems yield infinitely many type II solutions. There
exist skew-Hadamard design incidence matrices of orders
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q1 = 4(32d~1 + 1) - 1 = 4 δ 2 ^ 1 + 3 and q2 = 2M - 1 for each integer
d^l. Then 3ft - 8 = (2 3d)2 + I2, and g2 + 1 = 2m + 02. The first
four orders for which each of these theorems yields a type II solution
correspond to q = 3, 7, 11, and 15 and are n = 50, 338, 882, and 1682,
respectively, by Theorem 3.6, n = 98, 450, 1058, and 1922, respectively,
by Theorem 3.7, and n = 74, 394, 970, and 1802, respectively, by
Theorem 3.8. As an example we construct Aδ0. For n = 50 we have
g = 3, εt — 1, and ε2 = 0 hence r = 4 whence ίx — 3. Now by case 4
above, | c | = 1 and

Uq - 8 = 25 = 02 + 52 = (2x, - 2)2 + (2#2 - c)2 .

We take 2xλ — 2 = 0 or x1 — 1 and 2#2 — c = 5. Letting c = 1 we
have x2 = 3 and ί2 = — 1. Then ux = 1 and w2 = — 2, / = 5 and # - 0.
Now E4 = 3/ — J of order 4 and since ^ = 1 and ε2 = 0,

2 . . . — 2

O 0
and F =

0

2

of size 2 x 12. The matrices F± and G4 are of size 4 x 2 , and a skew-
Hadamard design incidence matrix of order 3 is

0 1 0

0 0 1

- 1 0 0

Hence we have

1

1

1

1

1

1

1

1

1

1

1

-1

1

1

1

1

-1

-1

-1

-1

37-J

I
I

37-J

7

7

7

-37

27

7

-37

27

2 . -

0

7

37-J

7

7

37-J

7

27

7

-37

27

7

-37

-2

0

7

7

37-J

7

7

37-J

-37

27

7

-37

27

7

X

-7

-27

37

-7

-27

37

O

2 -

37

-7

-27

37

-7

-27

37-J 7

7

7

37-J

7

37-J 7

7

7

37-J

7

0

2

-27

37

-7

-27

37

-7

7

7

37-J

7

7

37-J

57

0

0

-57

0

0

0

0

57

0

0

-57

0

0

0

0

0

57

0

0

-57

-57

0

0

57

0

0

0

0

0

0

-57

0

0

57

0

0

0

-57

0

0

57

The above constructions are all based on the existence of a skew-
Hadamard design incidence matrix of a certain order g = 3 (mod 4).
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However, let us examine these constructions to see whether other
constructions like these are possible. As a very simple possibility, let
us consider replacing the skew-Hadamard design incidence matrix by
the matrix [0] of order 1. Here corresponding to (3.5) we have

N =

and setting

(3.40)

we automatically have

w = t\ + t\

NNr = wl.

Let us consider the form of construction in Theorem 3.2. We let
(3.40) be satisfied in integers tx — (r + 2)/2, t2, and w = 2r + 2, for
the positive even integer r. Then

— (r + 2)2 + ί* = 2r + 2 ,
4

or

hence

f(r - 2) = 2 ,

1 - — r = ε1 , ί2 = ε2
Δ

εlf ε2 = 1, - 1

For Sj. = 1 we have r — 0, hence we get no nontrivial construction.
For ε2 = — 1 we obtain r = 4 whence n = ^ = 10. We have £74 =
37 — J" of order 4 and F 4 and (?4, as defined previously, of size 4 x 2 .
Then corresponding to ε2 = 1, — 1 we obtain by the form of construc-
tion in Theorem 3.2.

•"10 —

1 1
1 - 1

1 1
1 1
1 1
1 1

1 - 1
1 - 1
1 - 1

U - i

1111
1111

3/-J

- /

- 1 - 1 - 1 -I
1 1 1 1

I

31-J

1 1
1 - 1

1 1
1 1
1 1
1 1

1 - 1
1 - 1
1 - 1

U -1

1 1 1 1
1 1 1 1
X JL " J- J-

31-J

J

1111
1111

3/-J
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respectively, each of which satisfy A10A[0 = 101. These are essentially
the same as the A10 constructed by Hall and Ryser [11]. Now let us
consider the form of construction in Theorem 3.5. We let (3.40) be
satisfied in integers t1 = (r + 2)/2, ί2, and w = 2r + 1, for the posi-
tive even integer r. Then

or

hence

~o~^ —
2 — eϊ + el = 1 e1? ε2 = 1, 0, - 1

For e1 — 1 we again get no nontrivial construction. For ε2 = 0 we
obtain r = 2 whence n = 2w = 10. We have E2 = 21 — J oί order 2
and F 2 and (?2, as defined previously, of size 2 x 2 . Then correspond-
ing to ε2 = 1, — 1 we have / = 2 and 0 = 1, — 1, respectively, and
we obtain by the form of construction in Theorem 3.5

•"•10 —

1
1

1
1
1
1

1
1
1
1

1
1

1
1
1
1

1
1
1
1

1
- 1

1
1
1
1

_ 1
- 1
- 1
- 1

1
- 1

1
1
1
1

_ i
— 1
— 1
- 1

0
2

1
- 1

1
- 1

- 1
0

_ 1
0

0
2

1
— 1

1
— 1

1
0
1
0

0
2

_ i
1

— 1
1

0
- 1

0

- 1

0
- 2

- 1
1

- 1
1

0
1
0
1

2

0

1
0
1
0

1
- 1

1

- 1

2
0

- 1
0

- 1
0

1
- 1

1
- 1

2

0

0
1
0
1

- 1
1

- 1
1

2
0

0
_ 1

0
- 1

- 1
1

— 1
1

2
0

- 2
0

1
0

- 1
0

2
0

- 2
0

- 1
0
1
0

0

0
2
0
2

0
1
0

- 1

0

0
2
0
2

0
— 1

0
1

1
0

— 1
0

- 2
0
2
0

- 1
0
1
0

2
0
2
0

0
1
0

- 1

0
2
0
2

0
_1

0
1

0
- 2

0
2
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respectively, each of which satisfy A10Aι0 — 107. These, however, are
essentially different from the A10's previously exhibited. This shows
that type II solutions of the direct sum type are not necessarily unique
to within permutations of the rows and columns of An and the multipli-
cation of the columns of An by — 1 . Finally, for εx = — 1, ε2 = 0, we
obtain r = 4 whence n = 2w = 18. We have E4 = SI — J of order 4
and F4 and 6r4, as previously defined, of size 4 x 2 . Here / = 3 and
g— 0. We obtain by the form of construction in Theorem 3.5

^J-18

ί 1
1

1

1

1

1

1

- 1

1

1

- 1

•

2 . .

0

3 7 -

3 7 -

0

0

• 2

• 0

J

J

0

2

0

0

3 7 -

3 7 -

• 0

• 2

J

J

0

37

Of
ox

0

0

0

0

0

- 3 7

37

which satisfies A1BA1B — 187. Hence, summarizing, we have the follow-
ing result.

THEOREM 3.9. There exists a type II solution to the incidence
equation for the finite protective plane case orders n = 10, 18.

The author wishes to express his gratitude to Professor H. J. Ryser
for his inspiration and his valuable suggestions concerning this work.
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