ON TOPOLOGICALLY INDUCED GENERALIZED PROXIMITY RELATIONS. II

MICHAEL LODATO
ON TOPOLOGICALLY INDUCED GENERALIZED PROXIMITY RELATIONS II

MICHAEL W. LODATO

In the theory of proximity spaces of Efremovic, (The geometry of proximity, Mat. Sbornic, N.S. 31 (73), (1952), 189-200,) the result:

A set X with a binary relation "A close to B" is a proximity space if and only if there exists a compact Hausdorff space Y in which X can be imbedded so that A is close to B in X if and only if \bar{A} meets \bar{B} in Y (\bar{A} denotes the closure of the set A) (Y.M. Smirnov, on proximity spaces, Mat. Sbornic, N.S. 31 (73), (1952), 543-574.)

Raises the question: Can we display a set of axioms for a binary relation δ on the power set of a set X so that the system (X, δ) satisfies these axioms if and only if there is a topological space Y in which X can be imbedded so that

\[(1.1)\] $A\delta B$ in X if and only if $\bar{A} \cap \bar{B} \neq \phi$ in Y.

In (M.W. Lodato, On topologically induced generalized proximity relations, Proc. Amer. Math. Soc. vol. 15, no. 3, June 1964, pp. 417-422), it is shown that an affirmative answer can be given if Y is T_1 and if X is regularly dense in Y. The clusters of S. Leader, On clusters in proximity spaces, Fund. Math. 47 (1959), 205-213, were used in (M.W. Lodato, On topologically induced generalized proximity relations, Proc. Amer. Math. Soc. vol. 15, no. 3, June 1964, pp. 417-422). The present paper generalized this notion and thus relaxes the condition that X be regularly dense in Y. We actually characterize every system (X, δ) for which there exists a mapping f (not necessarily one-to-one) of X into a Hausdorff space Y such that

\[(1.2)\] $A\delta B$ in X if and only if $\bar{A}f \cap \bar{fB} \neq \phi$ in Y.

2. P_τ-Spaces. Recall from [3] that a symmetric generalized proximity space or P_τ-space is a system (X, δ) where δ is a binary operation on the power set of X satisfying

(P. 1) $A\delta(B \cup C)$ implies that either $A\delta B$ or $A\delta C$

(P. 2) $A\delta B$ implies that $A \neq \phi$ and $B \neq \phi$

(P. 3) $A \cap B \neq \phi$ implies $A\delta B$

(P. 4) $A\delta B$ and $b\delta C$ for all points b in B imply that $A\delta C$

(P. 5) $A\delta B$ implies $B\delta A$

We read the symbols "$A\delta B$" as "A is close to B"; and we say that "A is remote from B"-in symbols, "$A\phi B$"-if A is not close to B.

Received September 26, 1963.
(2.1) The following facts are evident: (1) If \(A \delta B, A \subseteq C, \) and \(B \subseteq D \) then \(C \delta D. \) (2) Define

\[
A^a = \{ x \in X : x \delta A \}
\]

then in a \(P_\ast \)-space \((A^a) \delta (B^a)\) if and only if \(A \delta B.\)

3. Bunches. Let \(X \) be a \(P_\ast \)-space. A bunch over \(X \) is a class \(\sigma \) of subsets of \(X \) satisfying:

- (B.1) \(A \delta B \) for all \(A, B \in \sigma \)
- (B.2) \(A \cup B \in \sigma \) implies that \(A \in \sigma \) or \(B \in \sigma \)
- (B.3) \(X \in \sigma \)
- (B.4) If \(A \in \sigma \) and \(a \delta B \) for all \(a \) in \(A \) then \(B \in \sigma. \)

(3.1) The following facts are easily established:

- (1) Every cluster is a bunch.
- (2) For a point \(x \) in a \(P_\ast \)-space \(X, \) the class \(\sigma_x \) of all subsets \(A \) of \(X \) such that \(x \delta A \) is a bunch over \(X. \)
- (3) If a point \(x \) of \(X \) belongs to a bunch \(\sigma, \) then \(\sigma \) is identical to the class \(\sigma_x \) of all subsets \(A \) of \(X \) such that \(x \delta A. \)
- (4) Any bunch \(\sigma \) from a \(P_\ast \)-space \((X, \delta) \) is closed under the operation of supersets: If \(\sigma \) is a bunch from \(X, A \in \sigma \) and \(A \subseteq B, \) then \(B \in \sigma. \)

4. Extensions characterized by bunches.

(4.1) THEOREM. Given a set \(X \) and some binary relation \(\delta \) on the power set of \(X, \) the following are equivalent:

- (1) There exists a \(T_2 \) topological space \(Y \) and a mapping \(f \) of \(X \) into \(Y \) with \(f x = \overline{x} \) and such that (1.2) holds.
- (II) \(\delta \) is a \(P_\ast \)-relation satisfying the additional axiom:
 (P.7) There exists a family \(\Sigma \) of bunches from \(X \) such that

 (i) \(A \delta B \) implies that there exists a \(\sigma \in \Sigma \) such that \(A, B \in \sigma, \)
 and

 (ii) if \(\sigma \) and \(\sigma' \) are in \(\Sigma \) and either \(A \in \sigma \) or \(B \in \sigma' \) for all subsets \(A \) and \(B \) of \(X \) such that \(A \cup B = X, \) then \(\sigma = \sigma'. \)

Proof. Suppose that (I) holds and define \(\delta \) by (1.2). (P.1), (P.2), (P.3), and (P.5) are trivial consequences of the properties of closure. For (P.4) suppose that \(A \delta B \) and \(b \delta C \) for all \(b \) in \(B. \) Then \(fA \cap fB \neq \phi \) \(\overline{fB} \cap \overline{fC} \neq \phi \) for all \(b \) in \(B, \) which since \(Y \) is \(T_2, \) implies that \(fB \subseteq fC \) for all \(b \) in \(B. \) Thus \(fB \subseteq fC \) or \(fB \subseteq fC \) so that \(fA \cap fC \neq \phi \) showing that \(A \delta C. \) For (P.7), define \(\sigma_y = \{ A \subseteq X : y \in fA \} \) for each point \(y \in Y. \) Clearly, \(\sigma_y \) is a bunch.

Now let \(\Sigma = \{ \sigma_y : y \in Y \} \) and we will show that \(\Sigma \) satisfies (i) and (ii).
(i) If $A \delta B$, then fA meets fB in Y so we can take a point y in $fA \cap fB$ and σ_y will be a bunch containing both A and B.

(ii) Suppose $\sigma_x \neq \sigma_y$. Then $x \neq y$ in Y so that, using the T_2 property, there exist disjoint open sets U and V, containing x and y respectfully. Thus, $y \notin Y - V = \overline{Y} - \overline{V}$ and $x \in Y - U = \overline{Y} - \overline{U}$ so that $y \notin fX - \overline{V}$ and $x \in fX - \overline{U}$. Hence, $A = f^{-1}(fX - V) \in \sigma_y$ and $B = f^{-1}(fX - U) \in \sigma_x$ and

$$f(A \cup B) = (fX - V) \cup (fX - U) = fX - (V \cap U) = fX$$

so that $A \cup B = X$.

For the converse suppose that (II) holds. Given x in X the class $\sigma_x = \{A \subseteq X: x \delta A\}$ is a bunch from X, by (3.1), (2.). Thus for any subset A of X, let \mathcal{A} be the set of all bunches σ_a determined by the points a in A and let \mathcal{A} be the set of all bunches in Σ which have A as a number. Define the correspondence, $f(x) = \sigma_x$ between X and $\mathcal{A} = fX$ by identifying each x in X with the bunch σ_x determined by it. Let $Y = \Sigma$, the family of bunches satisfying (i) and (ii).

We first show that $fX \subseteq \Sigma$. Consider any σ_x in fX. Then since by (P. 3) $x \delta x$, by (i) there exists a σ in Y such that $x \in \sigma$. But by (3.1), $\sigma_x = \sigma$, hence $\sigma_x \in Y$ and $fX \subseteq Y$.

By (P. 3), $A \in \sigma_x$ for each a in A and so $\mathcal{A} \subset \mathcal{A}$.

A subset A of X absorbs a subset Φ of Y if and only if A belongs to every bunch in Φ, i.e., if and only if \mathcal{A} contains Φ. For any subset Φ of Y we define the closure, $cl(\Phi)$, of Φ by

(4.2) $\sigma \in cl(\Phi)$ if and only if every subset E of X which absorbs Φ is in σ.

We next show that

(4.3) $cl(\mathcal{A}) = \mathcal{A}$.

For if $\sigma \in cl(\mathcal{A})$ then since A absorbs \mathcal{A}, $A \in \sigma$ so that $\sigma \in \mathcal{A}$. On the other hand, if $\sigma \in \mathcal{A}$ then $A \in \sigma$. Now let P be in every σ_a in \mathcal{A}, i.e., $P \delta a$ for every a in A and hence $A \subseteq P^\delta$. Thus, by (B.4), $P \in \sigma$ so that $\sigma \in cl(\mathcal{A})$.

We now show that the Kuratowski closure axioms are satisfied by the closure defined by (4.2).

(K. 1) $\Phi \subseteq cl(\Phi)$: This is trivial since if E absorbs Φ then $E \in \sigma$ for every $\sigma \in \Phi$.

(K. 2) $cl(\emptyset) = \emptyset$: Suppose $\sigma \in cl(\emptyset)$. Since it is vacuously true that every subset of X absorbs \emptyset, we then have that every subset of X is in σ. In particular, \emptyset and X are in σ. Thus, $\emptyset \delta X$, by (B.1), contradicting (P. 2).
(K. 3) \(cl(cl(\Phi)) \subseteq cl(\Phi) \): Suppose \(\sigma \in cl(cl(\Phi)) \) and that \(E \) absorbs \(\Phi \). By (4.2) \(E \) absorbing \(\Phi \) implies that \(E \) absorbs \(cl(\Phi) \). Hence \(E \in \sigma \) showing that \(\sigma \in cl(\Phi) \).

(K. 4) \(cl(\Phi \cup \Phi') = cl(\Phi) \cup cl(\Phi') \): Suppose that \(\sigma \in cl(\Phi \cup \Phi') \) and that \(A \) absorbs \(\Phi \) and \(A' \) absorbs \(\Phi' \). Then by (3.1), (4.1), \(A \cup A' \) absorbs \(\Phi \cup \Phi' \) so that \(A \cup A' \in \sigma \). But by (B. 2) this means that either \(A \in \sigma \) or \(A' \in \sigma \), i.e., \(\sigma \in cl(\Phi) \) or \(\sigma \in cl(\Phi') \). On the other hand, \(\sigma \in cl(\Phi) \cup cl(\Phi') \) implies that either \(\sigma \in cl(\Phi) \) or \(\sigma \in cl(\Phi') \). Now if \(E \) absorbs \(\Phi \cup \Phi' \), then \(E \) absorbs \(\Phi \) and also absorbs \(\Phi' \). Hence, \(E \in \sigma \) showing that \(\sigma \in cl(\Phi \cup \Phi') \) and (K. 4) holds.

Thus, (4.2) defines a topology on \(Y \).

To show that \(fX \) is dense in \(Y \), we just note that by (4.3), \(cl(\varnothing) = \varnothing = Y \).

To show that the topology is \(T_2 \) we must show that if \(\sigma \) and \(\sigma' \) are in \(Y \) such that \(\sigma \neq \sigma' \), then there exist subsets \(\Phi \) and \(\Phi' \) of \(Y \) such that \(\sigma \in cl(\Phi) \), \(\sigma' \in cl(\Phi') \) and \(cl(\Phi) \cup cl(\Phi') = Y \).

So suppose \(\sigma \neq \sigma' \), then by (ii) there exist subsets \(A \) and \(B \) of \(X \) such that \(A \in \sigma \), \(B \in \sigma' \) and \(A \cup B = X \). Thus, \(\mathcal{A} \) and \(\mathcal{B} \) are subsets of \(Y \) such that \(\sigma \in \mathcal{A} \) and \(\sigma' \in \mathcal{B} \), (since for instance \(A \) absorbs \(\mathcal{A} \) but \(A \in \sigma \)) and \(\mathcal{A} \cup \mathcal{B} = \mathcal{A} \cup \mathcal{B} = \varnothing = Y \).

To finish the proof we need only show that (1.2) holds: \(A \delta B \) in \(X \) if and only if \(\mathcal{A} \) meets \(\mathcal{B} \) in \(Y \). If \(A \delta B \) there exists, by (i) a \(\sigma \in Y \) to which both \(A \) and \(B \) belong. Thus, by definition of \(\mathcal{A} \), we have \(\sigma \in \mathcal{A} \cap \mathcal{B} \). On the other hand, if \(\sigma \in \mathcal{A} \cap \mathcal{B} \) then \(A \) and \(B \) are in \(\sigma \) so that by (B. 1), \(A \delta B \).

The proof is now complete.

5. Symmetric \(P_\delta \)-Spaces. A \(P_\delta \)-Spaces \((X, \delta) \) in which \(\delta \) satisfies the additional axiom.

(5.1) \(x \delta y \) implies \(x = y \)
is called a symmetric \(P_\delta \)-space (see [4]). The following theorem follows directly from (B. 1) and (5.1).

(5.2) Theorem. Every bunch \(\sigma \) from a symmetric \(P_\delta \)-space \((X, \delta) \) possesses at most one point.

(5.3) Theorem. Given a set \(X \) and a binary relation, \(\delta \), on the power set of \(X \), the following are equivalent:

(I') There exists a \(T_2 \) topological space \(Y \) in which \(X \) can be imbedded so that (1.1) holds.

(II') \(\delta \) is a symmetric \(P_\delta \)-relation satisfying (P. 7).
Proof. The demonstration is very similar to that of theorem (4.1). To see that (I') implies (5.1), note that $\bar{x} \cap \bar{y} \neq \varnothing$ implies that $x \cap y \neq \varnothing$, or $x = y$.

Finally we note that, because of (5.2), the correspondence between X and \mathcal{R} induced by the identification of x with the bunch σ_x determined by it is one-to-one.

References

1. V. A. Efremovic, The geometry of proximity, Mat. Sbornik, N.S. 31 (73), (1952), 189-200.
Carlos Jorge Do Rego Borges, *On stratifiable spaces* 1
Felix Earl Browder, *Topological methods for non-linear elliptic equations of arbitrary order* ... 17
Gustave Choquet, Harry Corson and Victor Klee, *Exposed points of convex sets* ... 33
Phillip Emig, *Remarks on the defect sum for a function meromorphic on an open Riemann surface* ... 45
Ruth Goodman, *A certain class of polynomials* ... 57
Sidney (Denny) L. Gulick, *The bidual of a locally multiplicatively-convex algebra* ... 71
Eugene Carlyle Johnsen, *Integral solutions to the incidence equation for finite projective plane cases of orders n ≡ 2 (mod 4) ... 97
Charles N. Kellogg, *Centralizers and H*-algebras* ... 121
Michael Lodato, *On topologically induced generalized proximity relations. II* ... 131
P. H. Maserick, *Half rings in linear spaces* ... 137
Kathleen B O’Keefe, *On a problem of J. F. Ritt* ... 149
Galen Lathrop Seever, *Nonnegative projections on C₀(X)* ... 159
Lawrence A. Shepp, *Gaussian measures in function space* ... 167
Robert Charles Thompson, *Classes of definite group matrices* ... 175