Pacific Journal of

Mathematics

NILPOTENCE OF THE COMMUTATOR SUBGROUP IN
GROUPS ADMITTING FIXED POINT FREE OPERATOR

GROUPS

ERNEST EDWARD SHULT




PACIFIC JOURNAL OF MATHEMATICS
Vol. 17, No. 2, 1966

NILPOTENCE OF THE COMMUTATOR SUBGROUP
IN GROUPS ADMITTING FIXED POINT
FREE OPERATOR GROUPS

ERNEST E. SHULT

Let V be a group of operators acting in fixed point free
manner on a group (G and suppose V has order relatively prime
to |G|. Work of several authors has shown that if V is eyclic
of prime order or has order four, G’ is nilpotent. In this paper
it is proved that G’ is nilpotent if V is non-abelian of order
six, but that G’ need not be nilpotent for any further groups
other than those just mentioned. A side result is that G has
nilpotent length at moest 2 when V is non-abelian of order pgq,
p and ¢ primes (non-Fermat, if |G| is even),

A fundamental theorem of Thompson [7] states that if G is a
group admitting a fixed free automorphism of prime order, then G is
nilpotent. It appears to be well known that if, in this theorem, the
group of prime order is replaced by any group of automorphisms of
composite order acting in fixed point free manner on &, one can no
longer conclude that G is nilpotent. (For the sake of completeness,
this fact is proved at the end of §1.) However, one can frequently
draw weaker conclusions concerning G in these cases. For example,
D. Gorenstein and I. N, Herstein [4] proved that a group, G, which
admits a fixed point free automorphism of order four, has nilpotent
length at most two. S. Bauman [1] in 1961 obtained a similar result
for the case that the fixed point free operator group was the four-
group. Other more general results giving bounds for the nilpotent
length of a solvable group, G, admitting various fixed point free oper-
ator groups, V, of order prime to |G| can be found in Hoffman [5],
Thompson [8] and Shult [6]. In summarizing these results we remark
only that the bounds are best possible when V is abelian and subject
to a certain restriction on the prime divisors of its order (a restriction
which vanishes when |V| and |G| are both odd), but that the bounds
are very large otherwise.

In the case that V has order 4, something rather special obtains,
Not only does G have nilpotent length 2, but moreover G has a nilpotent
commutator subgroup. These findings raise the following question: Let
G admit a fixed point free group of operators, V, of order prime to | G |.
. For what groups, V, does this imply nilpotence of the commutator sub-
group? From the above-mentioned results of Thompson, Gorenstein
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and Herstein, and Bauman, this situation obtains whenever V is cyclic
of prime order, or has order four. In this paper, it is shown that G’
is also nilpotent when V is S,, the symmetric group of degree three,
but that this implication does nof hold for any further groups, V.

In order to address the general question concerning which fixed
point free operator groups, V, yield the nilpotence of G’, it would
seem imperative that one have available general information concern-
ing groups admitting fixed point free groups of operators, particularly
information concerning nilpotent length 2. Information of this type
can be obtained for the special case that V is abelian (Shult [6]), but
so far only bounds on nilpotent length which exceed 5 are available
when V is non-abelian (Thompson [8]). In the second section of this
paper we produce a special result for the case that V is non-abelian
of order pq,p and ¢ primes. Here, if G admits V as a fixed point
free operator group, G has nilpotent length at most 2, provided nei-
ther p nor ¢ are Fermat primes when G is even. Although this meagre
result barely scratches the surface for the case that V is non-abelian,
it turns out to be sufficient to answer the central question of this paper:
when is G’ necessarily nilpotent? In § 2, it is proved that G’ is nilpotent
when V ~ S,. Unlike proofs for the case V has order four, this proof
does not merely hinge on the fact that a group fixed point free under
an automorphism of order two is abelian. Rather, the proof asserts
that a group which admits a fixed point free automorphism of order
three in a very special way (a special case of condition (3) of (*) in
Theorem 1) is abelian. The final section merely consists in showing
the existence of groups G, fixed point free under V, for which G is
not nilpotent whenever V is not cyclic of prime order, not of order
four and not S..

1. Technical preliminaries. The purpose of this section is to
standardize notation and to list a few preliminary results which are
used repeatedly in the arguments in the main sections of the paper.
Throughout all groups considered are finite and E denotes the identity
group. The symbol O.(G) denotes the maximal normal z-subgroup of
G, where 7 is a fixed collection of primes,

If V is a group of operators acting on a group, G, the following
subgroups are distinguished:

Gr=1{9:9¢G,v(g) =g for all ve V}
(V, G) = the subgroup generated by {v(g)g~:9geG,ve V}
V is said to act fixed point free on G if G, = E. If N is a normal

V-invariant subgroup of G, V will also be regarded as a group of oper-
ators acting on N and G/N. The following two lemmas are obvious.
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Lemma 1.1. (a) (V,G) is always normal in G.
(b) If W<V, Gy and (W, G) are both V-invariant.

LEMMA 1.2. If N is a normal V-invariant subgroup of G, then
(a) (G/N), = G/N if and only if (V,G) S N
(b) 4f V is fized point free on G/N, G, = N,
From part (b) it can be seen that if V is fixed point free on both
G/N and N, then V is fized point free on G.

The following lemma is essentially a special case of a result of
Glauberman [3].

LEMMA 1.3, Let V and G have relatively prime orders and let
N be normal and V-invariant. Then

(a) G=Gy(V,G)

(b) (G/N), = GyN/N.

Proof. If the coset xN is fixed by V, the theorem of Glauberman
asserts that N = yN for some y € G, whence (b). (a) follows from
(b) upon setting (V,G) = N, and using Lemma 1.1 (a) and Lemma
1.2 (a).

Theorem 1 of §2 requires a technical theorem which is a special
case of Theorem 4.1 proved in [6]:

THEOREM (A). Let U be cyclic of prime order, p, and suppose
U is a group of automorphisms acting on a solvable group G of order
relatively prime to p. Let H = GU be the semidirect product and
suppose A is a faithful indecomposable KH-module, where K is any
Jfield whose characteristic s not p. Then tf U acts in fixed point
free manner on the module A, U centralizes G provided (i) 0.(G) = E
when the characteristic of K is r, and (ii) p is not a Fermat prime
when |G| is even.

We say that a group theoretic property, P, is restdually complete
if for any group G and any collection of two or more normal sub-
groups N, ---, N, intersecting at E, the fact that G/N,; has property
P for 4 =1, -..,s implies G has property P. In short, P is residually
complete if the collection of finite P-groups is closed under taking
subdirect products. It is easy to show that (a) having nilpotent
commutator subgroup and (b) having nilpotent length < %k, are re-
sidually complete group theoretic properties, and these facts are assumed
throughout the remainder of the paper.

We now settle in the negative the question whether there are
groups, V, other than those which are cyclic of prime order, which



326 ERNEST E. SHULT

imply the nilpotence of groups, G, admitting V as a fixed point free
group of automorphisms.

THEOREM. Suppose V 1s a group of composite order. Then there
exists a mnon-nilpotent group, G, admitting V as a fixed point free
group of operators.

Proof. Let T be a proper subgroup of V and suppose |T'| is
composite. Then by induction there exists a nonnilpotent group, G,
which admits T as a fixed point free group of automorphisms. Set

V=uT+ 2T+ -+ + 2,1 with 2,7 =T

and let G be a sum of % isomorphic copies of G, so G = G, X --- X G,.
The action of V on G is defined by letting V permute the components,
(,, as wholes, with T being the subgroup leaving G, invariant, and
G = G,. T acts in fixed point free manner or G, and 7" acts in
fixed point free manner on G;. In effect, G may be regarded as a
normal subgroup of the semidirect product, VG, consisting of all k-
tuples (g,, £3'9.%,, * -+, 3'¢s%), ¢; € G, on which V acts by component-
wise eonjugation, Then if v = (u,, ---, u,) was a fixed point, t7'u;t = u;
for all te T®, As T= is fixed point free on G, each ;=1 so u =
leG. Thus G is a nonnilpotent group admitting V as a fixed point
free group of automorphisms. Thus we may suppose that all proper
subgroups of V are cyclic of order p. Then V is metacyclic of order
pq (p and g primes), and we may suppose that U, the ¢-subgroup of
V, is normal in V. Let R be cyclic of prime order » = 1 mod p and
let V aet on R in such manner that U acts trivially on B. Then in
the semidirect product, X = VR, U is normal and X/U is the non-
abelian group of order pr. Let s be a prime such that s = 1 mod
qr, and let M, be the faithful irreducible R-module of dimension 1
over GF(s), and convert M, into a UR-module by letting U act by
scalar multiplication on M,. Now let M be the induced GF(s)X-
module,

M=M Qirin.GF(s)X,

affording the representation, o, of X. Then G = MR, is a subgroup
of the semidirect product XM, and V can then be regarded as a
group of automorphisms acting on G. Then V is fixed point free on
G/M ~ R since VG/UM ~ X/U is non-abelian of order pr. Also U is
fixed point free on M since M is a sum of conjugate 1-dimensional
faithful U-modules., Thus V is fixed point free on G. Also M is a
sum of conjugate faithful R-modules and # is prime to s; hence [R, M ] =
M and so G is not nilpotent.
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2. Groups with metacyclic fixed point free operator groups
of order pg. Throughout this section, V denotes a non-abelian meta-
cyelic group of order pg where p divides ¢ — 1. We suppose v and w
are elements in V such that v* = w’ = 1, v~'wv = w", where a” = 1 mod q.
We set W = {w}, the subgroup of order ¢ in V.

THEOREM 1. Let G be a group admitting V as a fized point free
group of operators, where | V| and |G| are coprime and, if |G| is
even, p and q are not Fermat Primes. Form the semidirect product
H=GV and let A be a faithful KH-module where K is a splitting field
Sfor H chosen so that vf char K=, r does not dvvide pg and 0,(G) = E.
G is assumed to be solvable. Then if the representation, «, afforded
by A is such that V acts in fized point free manner on the mon-
trivial elements of A, then G has the following properties
(*) (1) G =G, x G, where G; ts V-invariant (7 = 1, 2).

(2) G, s fixed elementwise by W.

(3) G, contains a set of mnormal subgroups, N(G), .-, NJ(G),
such that

(i) the N,(G) have trivial meet

(i1)  w(N,(G)) = Niiimoaan(G)

(iil) of v = v, v,, -+, v, are the successive conjugates of v under
Wt (B8, WM = Vipymoaa), then v; leaves N(G) invariant and fizes
GINAG) elementwise.

Before proceeding to the proof of Theorem 1, we first establish a
number of lemmas. The first few of these concern several aspects of
the property (*).

LEMMA 2.1. Let G be a group odmitting V as a fized point
free operator group. Then if G enjoys property (3) in (*), G is
Sixed point free under w.

Proof. Since W <]V, by Lemma 1.1 (b), Gy is a V-invariant sub-
group of G. Since V is fixed point free on G, v is fixed point free on
Gy, whence, by Lemma 1.3 (a) Gy = (v, Gy,). But since »; fixes G/N,(G)
elementwise, (v;, G) & N,;(G), by Lemma 1.2 (a). Now wv;,, = wvw™,
and we may write every element in G which is of the form v,,,(x)z™! =
wivw Hx)r™t as wi(v(y)y™?) by setting y = w(x). Thus

Wiry, G) = (v, G)*", 1=0,1,2,---,g—1.
We now have

Gy = (v, Gy) S (v, G)wi~l = (v, G) € N(&), 1=1,.+,q.
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Since the N,;(G) have trivial meet, Gy = E.

LEMMA 2.2. If a group, G, satisfies condition (*), then G 1is
nilpotent.

Proof. From (*), G =G, x G,. By Lemma 2.1, G, is fixed point
free under an automorphism, w, of order ¢ and so, by the theorem of
Thompson, is nilpotent. Also, G, is fixed point free under an auto-
morphism, v, of order p, whence G is also nilpotent.

LEMMA 2.3, The condition (*) is inherited by V-invariant sub-
groups.

Proof. Let H be a V-invariant subgroup of G. Then by Lem-
ma 1.3 (a), H= Hy(W, H). From Lemma 1.1 (a), we always have
(W, H) <{H. Since Gy = G, is normal in G, Hy, = H N Gy <| H. Finally
H, N (W, H) S Gy N (W, G) = E. Under these circumstances, H =
Hy, < (W, H). Since W<V, by Lemma 1.1 (b), each of these direct
factors are V-invariant. Setting H, = H, and H, = (W, H), H satisfies
(1) and (2) of (*).

Now set N;(H) = HN N,(G). Then, because of the v;-isomorphism
H/N(H) =~ HN/(G)/N«(G), v; fixes H,/N/(H) elementwise, proving (iii).
Now

w(N{(H)) = w(H N N,(G))
= H"N Nz(G)w
= HN N, .(&)
= N;.(H)

where the subsecripts are taken mod ¢q. This proves (ii). Finally the
intersection of the N;(H) is necessarily trivial, so (i) holds.

LEMMA 2.4. The property (*) is preserved under taking direct
products.

Proof. Let G and H be two groups admitting V as a fixed point
free group of automorphisms and suppose (*) holds for each group.
Set L =G x H. Then L admits V in a natural way and is fixed
point free under V. Set L,=G, X H; (1 =1,2) so L = L, X L,, each
L; is V-invariant, and L, = L,, (W, L) = L,. Thus (1) and (2) hold
for L. Now define N,(L) = N;(G) x N,(H). Then N,(L) is v;-invariant
and normal in L,, and the N,(L) have trivial meet.
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Consider any left coset of N(L) in L, say (z, y)N,(L) where
xeG, and yec H,. Since v, fixes G/N(G) and H/N,(H) elementwise,
v(x) = an, v,(y) = yn’ where ne N,(G) and »' € N,(H). Then

vi(@, Y)NJ(L) = (x, y)(n, W)N(L) = (x, y) N(L)

since (n, n') € Ny(L). Thus v, fixes L,/N,(L) elementwise. Clearly, the
N(L) have trivial meet, and w(N;(L)) = N,;.(L). Thus (i), (ii), and
(iii), and hence (3), hold for L. Thus L satisfies the condition (*).

Proof of Theorem 1. Suppose A is decomposable as a KH-module
(H=GV): Then A=A, + A, + -+ + A, where each A, is indecom-
posable.

Case I. Either s > 1 or at least one A; is reductble.

Let B, be a proper maximal submodule of A, and consider the
module A4, defined by the external direct product

(1) A0:A1/31+A2/B2+ “.+A3/Bsy

and let a; and g be the representations afforded by A,/B; and A4,
respectively, ¢+ =1,2,---;s. We now set out to show that p is
faithful, If char K = 0, each A, is irreducible, whence B; = 0 so 4,
coincides with A. Then g is faithful, since, by hypothesis, A is a
faithful KH-module,

On the other hand, if char K = », 0,(G) = E. Since G is solvable,
we must have, in this case, C; = O, (kera; N G) = E. Then C, fixes
A,;/B; elementwise. Now as an additive group, A; is a finite ele-
mentary abelian r-group, acted on by a group of operators, C; of
order prime to ». Then, since C; centralizes A,/B;, by Lemma 1.3(b),
we must have A; = (4;),B:;, so (A4, + E. Since C; is V-invariant
and normal in G, C; < H. Then by Lemma 1.1 (b) (4;),, and (C;, A))
are KH-submodules of A,. Moreover, by Maschke’s theorem, A; =
(A);, D (C;, A)). Then, because of the indecomposibility of A; and
the fact that (4;),, # F, (C;, A;) = E, whence C; centralizes all of A,.

Now suppose ker ¢ N G #= E. Then, since G is solvable and 0,(G) =
E, O, (ker £t N G) # E. Also, O,(ker £ N G) is a normal 7’-subgroup of
kera; NG and so O, (ker yNG) S C;, 2 =1, --+,s. Then O,(ker £ N G)
centralizes each A, and hence all of A. Since A is faithful

O.(kerpNG)=FE,

contrary to our assumption that ker £ NG # E. Thus p |, is a faithful
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representation of G.

Now each A,/B; is an irreducible KH-module and G/(ker o, N G)
has no normal r-groups (since any normal r-subgroup of G necessarily
acts trivially on A,/B;). Further, both A,/B;, and G/(ker «; N G) are
fixed point free under the action of V. Now if s > 1, or s =1 and
B, # E (which will be the case if A, is not irreducible), dim, (4,/B;) <
dim, A4,¢ =1, .-+, s. Thus, by induction, G/{ker «t; N G) satisfies (*).
Then by Lemma 2.3,

s

L= 11 (G/{ker &, N G))

=

satisfies (*). But because of the decomposition (1), ;¢(G) is isomorphic
to a subgroup of L and hence, by Lemma 2.1, alsc enjoys (*}. Since
o is faithful, G itself satisfies (*).

Case II. s =1, 4, = A is an irreducible KH-module.

Here we may apply Clifford’s theory {2, Since G <| H, A decom-
poses into homogeneous KG-components, D,, ---, D,, which are permuted
transitively by V. Thus ¢ divides pg.

Subecase (a). t = pq.

Here, the permutation representation of V afforded by the permu-
tations V effects upon the D,, is the regular represertation. Con-
sequently, D, = u,D, for some unique %, € V. Thus, selecting d,¢ D,
d, # 0, u,{d)eD,, and so

d= 2> uld)
weyU
is a nonzero element of A, fixed by V. This contradicts our assump-
tion that V is fixed point free on A and so subecase (2) cannot occur,

Subcase (b). t = q.

Here, the permutation representation is isomorphie to that induced
by multiplication in V on left cosets of a subgroup of index ¢. Since
all such subgroups are conjugate in V, without loss of generality we
may take this subgroup to be {v}. The upshot of this is that w
permutes the D, in a cycle of length ¢, while v fixes one component,
say D,, and permutes the remaining ¢ — 1 components in cycles of
length p. If D, contained a point d, fixed by v, then

d =

1

wH(do)

-,
"
-
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would be a nonzero point of A fixed by all of V. Thus v acts in fixed
point free manner on D,. Let &, be the representation of G afforded
by D;. Now 9, can be extended to a representation of K(G/ker o,){v},
and, by another result of Clifford’s is indecomposable since G{v} is the
stability group in H for the submodule D,. Set H,; = 0,(G/kerd,).
Since D; is a sum of equivalent irreducible KG-modules, each D, is
also a sum of conjugate irreducible KH,-modules, But each of these
is trivial sinece H, is an r-group and char K= ». Thus H, = E and
so none of the groups G/ker d; have normal r-subgroups. If [G;kerd,]
is even so is |G|, and in that case our hypotheses guarantee that p
is not a Fermat prime. The groups {v}, G/ker ¢, and module, D,, now
satisfy the conditions of Theorem (A). Thus v fixes G/ker ¢, element-
wise. Then also, v, = wi~vw="" leaves D, invariant and fixes G/ker d;
elementwise. Finally, since A is faithful, the groups kerd;,2=1,--+,2,
have trivial meet. Thus G satisfies condition (3) of (*), and so (for the
case G, = E) also satisfies (*).

Subease (¢). t = p.

Here, the D; are permuted in a cycle of length p, by v (or any
v;), and w leaves each D, invariant. Under these circumstances, w
must be fixed point free on each D, since otherwise it would be a
simple matter to construct a nonzero point in A fixed by V. Then
since ¢ is not a Fermat prime, by Theorem (A), w fixes G/ker d; ele-
mentwise, ¢ =1, ---, p. Thus (w,G) = N:kerd; = E, whence G is
fixed elementwise by w. Thus G satisfies condition (*) for the special
case that G, = F,

Subcase (d). ¢ =1.

Here G is homogeneous as a KG-module. At this point we can
apply Clifford’s theorem relative to any normal subgroup of H lying
in G, i.e. any V-invariant normal subgroup of G. Let M be a maximal
V-invariant normal subgroup of G. Since G is solvable, G/M is an
elementary abelian 7,-group which, as a veetor space over the field of
r, elements, is an irreducible GV-module. Since A is an irreducible
KG-module, we may decompose A into its homogeneous KM-components,
E, ..., E,, and, these are permuted transitively by the elements of G
alone. Let N denote the subgroup of G which leaves each component
invariant, Then if ze N, o(E,) = E, and v(2)E; = v(x)v(E;) = v(x E;) =
v(E;) = E;. Thus v(x)e N whence N is V-invariant. Clearly, N2 M.
If Mc N, N =G because of the maximality of M and the fact that
N < H. Sinece G/N is abelian, the permutation of the F, under the
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action of G is permutation isomorphic to the regular representation of
G/N. If G+ N,[G:N]=1{G:M]=r%=m, the number of homo-
genecous KM-components. On the other hand, if N = G, there is only
one component, so A is a homogeneous KA/ -module. Let us consider

the two cases separately.
Subsubcase (). N = G; A is a homogeneous KM-module,

Since M is a proper subgroup of G admitting V and A is a KM-
module fixed point free (along with M) under the action of V, by in-
duction, M is a subgroup with property (*). By Lemma 2.2, M is
nilpotent and so has a nontrivial center, Z(#). Sinee the hypotheses
of the case under investigation demand that A be a homogeneous KM-
module, all the irreducible KZ(M)-submodules of A are conjugate by
an element of M, Since Z(M) is the center, these submodules are
even equivalent, Since Z(M) is abelian, A is a homogeneous KZ(M)-
module and K, being a splitting field for all subgroups of H is cer-
tainly a splitting field for Z(M), Z(}M) must be represented on A by
scalar multiplication by elements of K. Under these circumstances,
aside from the fact that Z(M) is cyclic, the matrices representing V
commute with those representing Z(M). Since A is a faithful KH-
module, this means that the elements of V centralize those of Z(M),
contrary to our hypothesis that V acts in fixed point free manner

on G.
Subsubease (ii), N = M,

Here there are [G : M| distinet homogeneous KM-components. By
applying induction on M and using Lemma 2.2, we have already seen
that M is nilpotent, whence Z(M) + E. The components F; are permuted
by H = GV, the resulting permutation representation having kernel, N.
Thus the transformation of the K, can be associated with a faithful transi-
tive permutation representation, 7, of the semidirect product, V(G/N) =
VG/N = H/N, of degree r{. But this is permutation isomorphic to the
permutation representation induced by multiplication of the left cosets
of some subgroup of index =, in V(G/N). Such a subgroup neces-
sarily has index #f, and so, since V(G/N) is solvable, is an 7,-com-
plement and is conjugate to V. Thus the representation, m, is per-
mutation isomorphic to that induced by multiplication of left cosets
of Vin V(G/N) by elements of G/N. In such a representation, V is
the subgroup fixing some letter elementwise. Thus, because of the
permutation isomorphism, we learn that V leaves some KJM-component,
say FE,, invariant. Then, by a theorem of Clifford’s, since VM is the
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stability group of E, (a consequence of our case division), K, is a VM-
module. Moreover, V is fixed point free on E,. Since F, is a homo-
geneous KM-module, Z(M) is represented by scalar multiplication on
E,. Then the matrices representing elements of ¥V commute with the
scalar matrices representing Z(M) on E,. Let 5, be the representation
of VM afforded by E,. Then if Z(M) £ ker B,, V' would centralize
Z(M) ker B,/ker B, + E. Since V has order prime to M, by Lemma
1.3 (b), this would imply C,(V) = E contrary to our hypothesis. Thus
Z(M) < ker £8,. But the E; are conjugate EM-modules, i.e. E; = a(x,)E,
for some x;M e G/M. Under these circumstances, if ker 5; is the kernel
in M of the KM-representation afforded by E;,

ker 8; = (ker B)% ",
whence, since Z(M) is normal in G,
Z(M) = Z(M)“" < (ker B,)% = ker g, , P=1, 0,1k,

Since 4 is faithful (even when restricted to M) the ker 8; have trivial
meet. Thus

k

Z(M) S Nker ;= B .

But this is impossible since M is nilpotent. The subsubcase (ii) doesn’t
arise. This completes the proof.

COROLLARY 1.1, Theorem 1 still holds when the condition that
K be a splitting field for all subgroups of H= GV s dropped.

Proof. Let G and V satisfy the conditions of Theorem 1. Let
K be a field chosen so that if char K = r, G has no normal r-groups
and 7 is prime to pg. Let A be a faithful KH-module whose non-
zero elements are fixed point free under the action of V. Let L be
a splitting field for all subgroups of H, where [L: K] is finite, and
form the module A @x L = A’. Then char L is char K. The re-
mainder of the proof simply consists of the observation that A’ is
faithful and fixed point free under V. An application of Theorem 1
then shows that G satisfies (*).

COROLLARY 1.2, Let G be a solvable group admitting V as a
Jixed point free group of operators, where |V | = pq is prime to |G|.
Then for every prime r dividing |G|, G/O,(G) s nilpotent.

Proof. Let F, be the Frattini factor group of the r-group,
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0,,(6)/0G). Then F, is a V(G/O, . (G))-module, faithful when re-
stricted to G/0,.,(G). Moreover, from Lemma 1.3 (b), F, and G/O,.(G)
are both fixed point free under the action of V. By Corollary 1.1,
G/0,.(G) satisfies (*) and so, by Lemma 2.2 is nilpotent.

COROLLARY 1.3. Let G be a solvable group admitting V as a
fized point free operator group and suppose |G| is prime to pg =
(V. Then G has nilpotent length at most two,

Proof. Let G 2 M{G) 2 M*G) =2 -+, F(G) and n(G) denote the
lower nilpotent series, Fitting subgroup, and nilpotent length of G,
respectively. By Cerollary 1.2, G/O,. (G) is nilpotent for every » divid-
ing G. Thus M(G) £ 0,.(G) and in general

MG = N 0..G) = F(G),

(where the intersection is taken over all primes, », dividing |G |) whence
M(G) is nilpotent. Thus M*G) = E and so n(G) = 2.

COROLLARY 1.4, Let G be a solvable group admitting V as a
JSized potnt free group of operators, where |V | = pq s prime to
|G|. Then G haes w-length ot most one, where m ts any collection
of primes dividing |G|,

Proof. 8Since F(G) = O(F(G)) X O.(F(G)), F(G)0.(G)/0.(G) is a
normal w-subgroup of G/O.(G) whence F(G) < 0..(G). Since, by
Corollary 1.3, #(G) < 2, G/F(G) is nilpotent and thus its factor group
G/0.(G) is also nilpotent. But in this case, G/O. .(G), being a nil-
potent group with no normal m-groups, is itself a n’-group. Thus
0...{(G) = G and so G has zm-length at most one,

3. Nilpotence of the commutator subgroup in groups ad-
mitting S, as a fixed point free group of operators. Let G be a
group of operators, V, isomorphic to S, the symmetric group of
degree three. Then V is a metacyeclic group of the type disscussed
in the previous section, with p = 2 and ¢ = 3. Our object is to show
that if V aects in fixed point free manner on G and G is solvable of
order prime to 6, then G’ is nilpotent. This property is almost entirely
the consequence of

THEOREM 2. Let G be a group of order prime to six admitting
V =2_8, as a fixed point free group of operators. Let V be generated
by elements w and v such that v* = w®= 1, vw* = wv. Set v, = v,
v, = vw and v, = vw® (all conjugates in V). Suppose G contains
three normal subgroups, N,, N,, and N, such that



NILPOTENCE OF THE COMMUTATOR SUBGROUP 335

(1) Nme2ﬂN3:E

(ii) N; is vitnvartont, © =1, 2,3,

(i) w'(Ny) = Nipsmorsn ¢ =1, 2,3,

(iv) G/N; s fixed elementwise by v, % =1, 2, 3.
Then G s abelian,

Proof. The reader will recognize that (i)—(iv) is the condition
(8) in (*) imposed on the subgroup G, in Theorem 1, for the case
that p =2 and ¢ =38. Then by Lemma 2.2, G is nilpotent, since it
is fixed point free under the automorphism, w, of order three. Then,
by a theorem of B. H. Neumann G has nilpotent class 2, i.e. G’ < Z(G).

Now let H be an arbitrary V-invariant subgroup of G. Then V
is fixed point free on H. We now show that the hypotheses (i)—(iv)
inherit to H. Set N =HNN;,+=1,2,3. Then N/NN;N N/ =
HN (N, NN,NN,) = E, proving (i). Clearly N, is v-invariant, being
the intersection of two v;-invariant subgroups of G. Also, w*V)) =
w(H N N;) = w(H) N w*(N;) = HN Ny, = N/, (indices taken mod 3).
Thus (ii) and (iii) hold. Finally, H/N/ is w;-isomorphic to HN,/N;,, a
subgroup of G/N,. Since the latter is fixed elementwise by wv;, so is
the former, proving (iv).

Since G is nilpotent, each of its Sylow subgroups admit V and
satisfy (i)—(iv). If G is not a p-group, each of these is proper and,
by induction, is abelian. Then their direct product, G, is also abelian.
Thus, without loss of generality, we may assume that G is a p-group.

Let F' denote the Frattini factor group, G/@(G). Then F is a
V-module, and since pt|V|, by Maschke’s theorem, F' is a direct
sum of irreducible V-modules: F = F, P F,P--- P F,. Let G, be
chosen so that G,/@(G) = F,. If ¢t > 1, each G, is a proper V-invariant
subgroup of G and hence is abelian. In that case G 2 Cx(@(G)) 2
{G,, ---,G,} = G whence ©(G) & Z(G), the center of G. If, moreover,
t > 2, each of the subgroups G,G; is a proper V-invariant subgroup
of G and hence is also abelian., In that case,

GQCG(GJQ {Gly "'yGi’ "')Gt}: G

so each G, lies in the center of G, whence G, which is generated by
the G;, is itself abelian, and we are done. Thus without loss of
generality we may assume ¢ < 2,

Let us take a closer look at the irreducible V-modules, F;. These
are modules over the field of p elements., The kernel of the repre-
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sentation of V' which each affords, is a normal subgroup of V and so
is either the identity (in which case each module is faithful) or con-
tains W, the normal subgroup of order 3. In the latter case, F
contains points fixed by W. Then by Lemma 1.3 (b), G» # E, a
contradiction. Thus each F; is faithful. In this case, we can show
that each F'; is, indeed, 2-dimensional,

First, we observe that if »p = 2 mod 3.

01 0 1
(4) ””‘(1 o)’ “’”’(—1 ~1)

is a faithful irreducible representation of V. Second, if » = 1mod 3,
there exists an integer ¢ = 1 mod p such that ¢®* = 1 mod p. Then

T

10 0 a
(where a < 8 is taken as an element of GF(p) = Z/(p) is also a faithful
irreducible representation of ¥V of dimension two. Now each F; is
isomorphic, as a GF'(p)V-module, to a minimal left ideal of the semi-
simple group algebra GF(p)V of dimension 6. But the modules cor-
responding to the trivial representation, and to the representation
having W as its kernel are both 1-dimensional and thus account for
two one-dimensional minimal left ideals in the direct decomposition of
GF(p)V. This leaves a four-dimensional complement which must con-
tain a two-dimensional minimal left ideal affording one or the other
of the representations (A) and (B) given above. Since there are only
three conjugate classes in V, these exhaust the nonisomorphic GF'(p) V-
modules. Thus each of the F; afford representations equivalent to one
of the two matrix representations (A) and (B) given above.

Since ¢’ € Z(G), commutators in G obey the following laws:

(x, yz) = (x, y)(2, ?)

(xy, 2) = (z, 2)(y, ?)

(@', y7) = (2, y)"*

(@, y)=(@ " =@y =~y .

(1)

Now suppose t = 1. We can no longer assert that @(G) lies in the
center of G, although @(G) is certainly abelian. Here G/@(G) = F' is
two-dimensional, and so G is generated by two elements, say 2, and wx,.
Thus if ¢ and & are arbitrary elements in G, each can be expressed as
“words” in x, and z,, i.e.,

g = xi‘lx;lx‘px;’? cee xi‘nxgn
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h = x‘i'lxgl eoe ximxgm .
Then from (1)
(9, k) = (y, h)*i(,, h)™

J— (2di)(Taz)—~(Teq)(Zbg)
= (1, @) TV

whence G’ is cyeclic. But in that case G'/@(G’) is a one-dimensional
GF (p) V-module, and hence is fixed by w. Since w is fixed point free
on G, it is also on G’/ (G') whence G'/@(G') = E, i.e. G' = @(G') = E.
Thus G is abelian,

We are left with the case that ¢ =2. Here F = F. & F,, and
@(G) lies in the center of G. Then the commutators (x,%) all have
order p, for (x,%)” = (x,y") =1 since y" ¢ @(G) & Z(G). Thus G’ is
elementary abelian and can also be regarded as a V-module. Com-
mutation now defines a V-homomorphism: F' X F — G’, which, being
bilinear in each component, can be factored through F @, F. Thus
if 2 and y belong to the same left coset of @(G) in G, x = yz for
some 2z in the center. Then (%, 9) = (y¥2,9) = (¥, 9) and similarly,
(g9, %) = (g, ¥2) = (g, y), so the map is well defined in the sense that
F x F can be regarded as its domain. Since, for any w e V, u(x, y) =
(w(x), u(y)), the map is a V-homomorphism. For convenience we write
the elements of the modules, F' and G’, additively so that (x,y + z) =
(%,y) + (x,2) and (z + y, 2) = (2, 2) + (¥, ?).

Now suppose p = 2mod 3, Then both of the modules F, and F,
afford representations equivalent to (A). Thus we may select a basis
{,, z,, 25, 2} for F such that

(@) = @, v(@s) = X,
w(x,) = x, w(xs) = @,
w(X,) = —2, — 2, W@E)= —2; — @, .

Let %, and Z, be elements of G such that under the homomorphism
f1G—=G/o(G), (&) =, f(x) =&. Then f(w(2)) =, and f(w(®,)) =
%, Then G is itself generated by Z,, w(%,), Z; and w(%;). The groups
G;, chosen so that f(G;) = F;, 4 = 1, 2, are abelian, whence (Z,w(Z,))) = 1
and (%;, w(Z;)) = 1. Thus in module notation

(@, ;) = (s, z) =10
and G’ is generated by the four elements
(xiyxj)y ?;:1,2,;3':3,4.

Now
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(2) Wy, X)) = W(Ey, ) = (—&, — Boy — &y — %) = (2, 2;) ,
v =1,2;7 =38, 4.

Since w is fixed point free on G', for any element ce &,

A+ w+ whe =c¢ + wle) + wie) =0.
Setting ¢ = (x,, #;), we have from (2)
(3) 2{w,, ) + 2(@s, ) + (B, ) = (2, ) = 0,
Similarly, setting ¢ = (2, 2,), we obtain

(4) I+ w+ )z, z) =0
= — (@, ¥} — (@, ) F (&), 2,) — 2@, X5) .
Solving for (z,x,) in (4) and substituting for (x,, #,) in (8), we obtain
3wy, xg) + 3wy, ) + 3wy, 25) =0
or
(5) (2, ) + (@, ) + (&, ) = 0.
Adding (4) to (5) yields

(€) (@, ) = (@, @) .

Thus G’ is at most two-dimensional, and from (5) and (6) is generated
by (3, %5) and (2., ©,).

Now N, is a normal subgroup of G and contains (v, G). Then
v{e)ei e N, for ¢ =1,2,8, 4. Since N, is normal, (%, g)e N, for any
he N,and ge G, Thus the commutators {(v(z)xr?, z,) and (v(z)sr", w(x,))
lie in N, NG'. Thus

(@ — @y, @) = (@, ) — (B, B)
and
(€, — @y, @) = (@, ) — (2, ©,)
= (xﬁy x4) - <QC2, xs) ’
by (6), all belong to N, NG'. Thus
(@, ) = (X, B) = (2, T) = (@, ¥y mod N, NG .

Then from (B) 3(z,, ) = 3(x,, ) = 3(x, #,) = 0 mod N, N G’. Since
23, (x, @) and (z,, x,), the generators of G/, both lie in N,. Thus
N, 2G'. Then N,= w¥N)=2GC and N, = w(N,) 2 G'. Since the N,
have trivial meet, G’ = £ and G is abelian.
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Now suppose p = 1 mod3. Then the two irreducible V-modules,
F, and F,, afford representations of V equivalent to that given in
(B). Thus we may select a basis, {z,, %, #;, .} for which

v(x,) = @, X)) = @,
(7) w(xl) = ax, w(x3) - bx3
w(xy) = a*, w(x,) = b,

where a and b are scalars in GF'(p), different from 1, and satisfying
o' =0 =1, Now the multiplicative group of nonzero elements in
GF(p) is cyclic and so has a unique subgroup of order 3. Thus,
since a and b both belong to this subgroup, either ¢ = b or a = b%

Let 2, and Z, be chosen so that f(%;) = x;,% = 1,3. Then, setting
Z, = (&) and Z, = v(&,), f(&;) = =; for § = 2, 4. If G, is chosen so that
G,/2(G) = F;, ¢ =1, 2, then, by induction, the G, are abelian. From
this and (7) we have

(2, 2,) = (25, 2,) = 0
w(x,, %) = ab(zx,, x,)
{8) w(x,, x,) = ab(z,, x,)
w(x,, ;) = a*b(x,, x5)

w(®,, x,) = a?b(x,, x,) .

If a =0, (x, ) and (x,, x;), being fixed by w, must be zero. If
a = b, (x,, %;) and (x,, x,) are zero. In either case, G’ is generated by
two elements. By interchanging the symbols representing x; and x,
if necessary, we can, without loss of generality assume that a =1b
so that (z,, z,) = (2, @) = 0.

Since v(x,)xi'e Ny, (27!, ;)€ N, NG for j = 3, 4. Thus

(@ — 2, ) = (T, T3) — (T, X5) = (25, %) = 0
(X, — o, ) = (2, ) = (2, ) = — (%, 2) = 0mod G' N N, .

Since G" = {(x,, x5), (x,, %,)}, N, 2 G’ whence G’ < N, Nw(N,) N w*N,) =
E. Thus G is abelian.

COROLLARY 2.1, Let G be a group admitting V =S, as a fixed
potnt free group of operators and suppose G has order prime to
|V |=6. Then the commutator subgroup of G is nilpotent.

Proof. The property that G’ is nilpotent is residually complete,
and so, since V is fixed point free on each factor group, we obtain
immediate reduction to the case that G has a unique minimal normal
V-invariant subgroup, M. Since G is solvable, M < 0,(G) for some
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p dividing G, and 0,.(G) = E. Thus 0,(G) = 0,.,(G). Now V is meta-
eyelic of order 6. Since G is odd, the restriction on Fermat primes does
not apply, and hence we may use Corollaries 1.1 and 1.2 to obtain that
G = G/0,,(G) satisfies (*). Then G = G, X G, where G, is fixed point
free under v, an automorphism of order 2, and G, is a group satisfying
conditions (i)—(iv) of Theorem 2. Thus both G, and G, are abelian,
whence G is abelian. Thus G’ S 0,,(G) = 0,(G), which shows that
G’ is a p-group and hence is nilpotent.

4. Nilpotence of the commutator subgroup in groups ad-
mitting fixed point free operator groups. In this section we prove
the impossibility of extending the results of Corollary 2.1 to solvable

groups, V, other than those already considered. We begin with

THEOREM 3. Let V be a solvable group satisfying one of the
following properties

(a) V contains a normal subgroup W == K such that [V: W] is
an odd prime, P.

(b) V has a factor group of order 4,|V| =+ 4.

(e) V has a dihedral factor group of order 2p, p = 5.

Then there exists a group, G, having order prime to |V | which
admits V as a fized point free group of operators and jfor which
the commutator subgroup s not nilpotent.

Proof. Case I. (V satisfies (a)).

Since V is solvable, W’ is a proper subgroup of W, normal in
G. Select U maximal with respect to the properties: W/ S UC W,
and U<QV. Then V/U is either abelian of order p* or pg or it is
metabelian of order pg® where ¢ is the exponent of pmodg defined
by letting an element of order p act irreducibly on the elementary
abelian group (W/U) of order ¢°.

Let & be a group of order #°s™ having a normal elementary
abelian subgroup, A, of order s and factor group G/A isomorphic
to the extraspecial group of order »°. The primes, » and s are chosen
so that » =1modp and s = 1modrg (or rp if [V :U] = p%. Since
r # s, G splits over 4 and we may write G = AR where R is generated
by two elements & and y such that ¢" = y" = 1 = 2", where z = (x, y)
generates the center of R.

V acts on G as follows: First U acts trivially on G, and W acts
trivially on B. If v generates V mod W, set v(x) = a°, v(y) = y*, v(z) =
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2z where a is a primitive pth root mod ». (Such a root exists since
# = 1 mod p.) The action of V and R on A is defined by writing the
elements of A additively, selecting a basis @, @y, <+, @i, ** ¢, Cpprp
for A, and letting {a,, a,, ---, a,} afford the representation p, of
(W/U)R, defined by

(Ol(z) - BIr ’ lol(wl) = 7Ir ’ (Ol(w’b) = Ir ’ 2 >1

where w,, «--, w, are a basis for W/U (e = 1, and the last matrix is
not involved if [W:U]=q or p.) I, is the » by » identity matrix,
and B and v are respectively primitive rth roots and ¢th roots (or
pth if [W:U] = p) modulo s. Also,

pi(x) = diag(l, 87, +++, 87

and
01 0
(01(?/) = “q
10.-.+0

If H denotes the semidirect product (V/U)R, set

o(h) = diag(o(h), 0(vhv™?), <+ -, 0,(0"hv'?))
for he (W/U)R, and

0 1,0 --- 0
I
p(w) = .
I,
ul, 0 0 -«- 0

where # = v if V/U is cyclic of order »* and 1 otherwise. This com-
pletely defines the action of VR on A.

W acts in fixed point free manner on A since, on each component
{a;1, s, «++, a;,} it is represented as scalar multiplication by v, (the
kernel of the representation of W/U may differ on each component,
of course.) Since p is odd, a* = 1 mod », and so v acts in fixed point
free manner on R. Summing up, then, V is fixed point free on
G/A ~ R whence G,= A. Again, G, £ A, = E, whence V is fixed
point free on G.

Note that G’ = A{z} is not nilpotent.

Case II, V satisfies (b).
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Let W be the nontrivial subgroup of order 4, and select U so
that W< UcCW,U<]V and U is maximal in this respect. We shall
define a group, G, admitting V as a group of operators in such manner
that U acts trivially on G. G will have the form QM, where M is an
elementary abelian normal subgroup of G and @ is a Hall complement
of M in G, such that M becomes a sum of faithful irreducible Q-
modules, so that [Q, M] = M. Moreover, M will be fixed point free
under the action of W alone, while at the same time @ will be V-
invariant and centralized by W. In this way, V induces the group
V/W of order 4 on the group Q. Now V/U has the normal series,
E=U/0QWU<V,/U<V/U, and we select elements v, and v, in
V so that v, generates V,modW and v, generates V mod V, and v} =
or v, (mod W) according as V/W is the 4-group or is cyclic. Now we
define @ as follows. Let r and s be odd primes, such that (rs,[V:U]) =1
and s = 1mod». Then @ is a group of order r»s* defined by

=1=yl=y;
-1
Y =y, o Y = Yyt

where a and ¢~ are primitive rth roots mod s, such that a¢a~' = 1 mod s.
Then the action of V/W on @ is defined by

v(x) = 27, v(x) = « for all ve V,.

vl(y) =yi'1=1,2
y, if v;=1modW

VoY) = Yo and vy(yp) = |

yrtif vl = v, mod W

W acts trivially on Q. Then it is easily seen that @ is fixed point
free under V/W and has nilpotent length 2.

Now W/U has order 2, p or p*, where p is an odd prime, and
acts as an irreducible V/W-module. We can then find a factor system,
m,;; € W/U, such that v,v; = um,;;, mod U where w is the appropriate
coset representative, 1, v, v,, v,0,, of W/U in V/U. Now let ¢ be a
prime different from 2, » and s such that { = 1 mod p if W/U has
order p or p*. Let M, be a faithful irreducible @Q-module over GF'(¢).
We make M, into an irreducible (U/ W)Q-module by letting W/U act
nontrivially by scalar multiplication by —1 or by a pth root according
as [W:U] =2 or is odd. Then, as W acts trivially on @, WQ < V@Q.
Set

M=M"=M Qo.M PDv.M D vv,M, =~ M Qw, VQ

the induced module. Then W has a conjugate representation which
is also scalar multiplication on each component xM,, ¢ = 1, v, v,, or
v,0,. Now set G to be the semidirect product QM, where M is a
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normal abelian subgroup on which V@ acts in a manner prescribed
by the module construction of 3. Then M has order prime to | V@],
and is a sum of conjugate faithful irreducible @Q-modules, whence
[Q, M]= M. Thus M is the Fitting subgroup of G and G has nil-
potent length three. V/U has order prime to G, V is fixed point free
on both @ ~ G/M and M and hence is fixed point free on G, by the
remark following Lemma 1.2, Evidently G’ is not nilpotent.

Case III. V satisfies (c).

V contains a normal subgroup U such that V/U is dihedral of
order 2p, where p = 5.

In this example we let G = BRQ where R is a normal elementary
abelian r-group and @ is a special ¢-group of order ¢°. We select
the primes ¢ and 7 so that » = 1 mod ¢ and ¢ = 1 mod p, both ¢ and
r odd, @ is generated by four elements =z, x,, %, ©, subject to the
rules:

x‘g:l,i:l,2,3,4, (xlyx2):(x3yx4):1
2 = (%, Ts), 2y = (Ty, T,), By = (X, Ty), 2y = (5, X,)
21=1,7=1,2,3,4, {2., 25, 25, 2} = Z(Q) .

R will consist of p irreducible @-modules, each of which has dimen-
sion ¢. Thus R has order ™,

The action of V on G is defined as follows: First, U is assumed
to act trivially on G so that G admits V = V/U, the dihedral group
of order 2p, as a group of operators. Let V be generated by elements
v and w such that =1, w” =1, and vw = ww. Since p =5, we
can find four primitive pth roots modulo ¢, @, a™ b, b=, such that
ao™ = bb~" = 1mod ¢ and b is incongruent to both a and ¢ 'mod q.
Then we set

w(%) = xf, w(xz) =~ xg_ly w(xs) - .’Eg, w(x4) = 952—4

Then w acts in fixed point free manner on Q/Z(Q). We must also
have

w(zy) = 21", w(zs) = 258", w(zs) = 250, wlzy) =2 V7
The action of v is given by

V(X)) = Ty, V(T,) = Xy, V() = Ty V(X)) = X
v(zl) = 2, ¥(2) = 25, ’1)(23) = Ry, 7)(24) =2
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so that both Q/Z(Q) and Z(Q) are the direct sum of two irreducible
V-modules, Form the subgroup @, = (v, @). This subgroup is gener-
ated by the elements x.2;?, 227", 227, 225, and (x.2;7%, %) = 2,:2;%, and
has order ¢*. Then Q/Z(Q) is an extra special g-group of order ¢,
generated (mod @,) by the elements #,x, and ., with center gener-
ated (mod Q,) by z2.2:2,. Q/Q, is fixed elementwise by w».

Writing R additively we may regard R as a QV-module. We
take R to be the direct sum of p irreducible Q-modules, R,, ---, R,,
which are permuted by V according to the rules

wlRw = R;y, (indices take mod p)
vIRY =R, v'Ry = Ry, v'Rw = Ry, -+, v Rip_yys¥ = Ripuyype

so that the manner in which the R, are permuted by V provides a
faithful transitive permutation representation of V of degree p. #» is
assumed to act on R, by scalar multiplication by —1. @ is represented
irreducibly on R, with kernel Q,, that is R, represents Q/@Q, faithfully.
The matrices are

o) = o(x,) = diag (1, ¢, -+, ¢™'")

01 ---0

1.
10(963):(0(904): "1
10..-:0

Io(zl) = 0(2,) = p(z) = p(z)) = cl,

where ¢ is a primitive gth root modulo 7, and I, denotes the ¢ by ¢
identity matrix. By defining the representation of @ on R, as the
conjugate representation under w'—*, the representation of QV on R
is completely defined.

We next observe that V is fixed point free on G. First wivw’ =
vw* leaves R,;,, — w—Rw*® invariant and for any element, ¢, in R,.,,
we have ¢ = w'e, w' for some ¢’ in R,. Then

(wivw)e(wvw') = (wivwhw e wi(wvwt)
= w™ivT e vw' = wi(—e)w!
= —wew = —e
Thus vw* acts on R;., by scalar multiplication by —1. Now suppose
h is an element of R fixed by V. Then we may write & uniquely in
the form o =h, + by + +++ + h,, where h;€ B;. Then wvw™ sends

each h;e R; into some element of R, where k& # j unless j =4 + 1.
But since it fixes & it must fix h;.,. On the other hand it acts on
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R;., by scalar multiplication by —1. Since r # 2, this implies that
h;+, = 0. Repeating this argument for each¢=1,2,3, .-+, p, we have
that A = 0, Thus V is fixed point free on R. But V is also fixed
point free on Q/Z(Q) and Z(Q) whence it must be fixed point free on
all of G.

In each case Z(Q) is represented on R, by scalar multiplication by
¢; thus (Z(Q), R) = R < G’ and Z(Q) = Q' & G’, whence G’ contains the
subgroup RZ(Q), which is not nilpotent.

COROLLARY 3.1. Let V be a solvable group containing a non-
trivial subgroup W such that W is normal in V and V/W is the
symmetric group of degree three. Then there exists a group G
having order prime to |V|, admitting V' as a fixzed point free group
of operators, such that G’ is not wilpotent.

Proof. This case is not direetly subsumed under those cases
listed in Theorem 3, but the required example is easily provided by
that theorem. Let V* be the unique subgroup of index 2 in V con-
taining W. Then V* is a solvable group containing a nontrivial normal
subgroup, namely W, of index 38, which is an odd prime. Thus V*
satisfies (a) of Theorem 3. Accordingly, there exists a group G, having
order prime to V* which admits V* as a fixed point free group of
operators and which has a commutator subgroup which is not nilpotent.
Let the element v generate V module V'*, so that +* is an element of
V*. Also, let G, be an isomorphic copy of G, and let f be the iso-
morphism f:G, —@G,. Then if H =G, x G,, the action of V on H
can be defined as follows: G, already admits V*. Let v(9) = f(9) for
every ge @, and wv(g) = v*(k), where g = f(k), for every geG,. The
latter is well defined since f is onto and one to one (making k£ unique)
and v* is an element of V* whose action on G, is already known. For
any 4 € V*, and ge G, we define u(g) to be f[(v-'uv)(k)] where f(k) =
g; thus, writing v for f when the domain of » is in G,, this becomes
v[vuv(v(g))] = u(g9) so that V* can in this way be regarded as a
group of operators applying to H. Clearly V* acts in fixed point
free manner on the subgroup G, since, if f(k) =g and V* fixes g,
v~ *V*y = V* must fix k, which is impossible unless k& (and hence g)
is the identity. Thus V aets in fixed point free manner on H =
G, X G,, Now by hypothesis G is not nilpotent, and hence its iso-
morphice copy, G} is also not nilpotent., But it is obvious that both
of these subgroups lie in H’, whence H’ is not nilpotent.

THEOREM 4. Let V be a solvable group with the property that
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4f G ts any group admitting V as a fixed point free group of
operators and G has order prime to |V, then G’ is always nilpotent.
Then V is one of the following groups:

(1) V s cyclic of prime order

(ii) V s one of the groups of order 4

(iii) V 4s the symmetric group of degree three.

Proof. Case I. V has a factor group of odd prime order.

If W<V and V/W has odd prime order, then by Theorem 3,
sinee V satisfies (a) if W # E, we must suppose that V is cyeclic of
prime order. :

Case II, V has no factor groups of odd prime order.

Since V is solvable, it contains a normal subgroup V, of prime
index, and because of the case division the prime must be 2, If V, =
E,V is cyclic of order 2, and so V enjoys (i). Thus we may take
V.+# E. BSelect V, maximal with respect to being a proper subgroup
of V, and normal in V. Then, since V is solvable, V,/V, is elementary
abelian, and is irreducible as a V/V,-module. If [V,:V,] is a power
of 2 it is in fact equal to 2, so V/V, is a group of order 4. Then
if V,= E,V satisfies (b) and so by Theorem 3, we would be con-
fronted with a counter example to the hypothesis of this theorem.
Thus we must suppose, in this case, that V, = E, whence (ii) holds.
If [V,:V,] is not a power of 2, it is an odd prime, p. If p = 5, by
Theorem 3, the hypothesis would be denied. Thus p = 3. Then if
V., # E, by Corollary 3.1, the hypothesis is once more denied. Con-
sequently, V,= K and V is the symmetric group of degree three.

COROLLARY 4.1. The condition that V is solvable can be dropped
2% Theorem 4.

Proof. Let T be a proper subgroup of V and suppose that T is
not cyclic of prime order, does not have order 4 and is not isomorphiec
to S;, the symmetric group of degree 3. Let 1 =1,2, ---, 2, be a
full set of right coset representatives of 7 in V., By induction on
the order of 7T, there exists a group, G,, fixed point free under T
such that G| is not nilpotent. Let G be the formal set of k-tuples
(., 7'04%y, * -+, ©;9,2%;), where the g, lie in G,. Under the rule that
x27* =1,G becomes a group (under component-wise multiplication)
isomorphic to a direct product of %k copies of C,. By defining ¢~lgt =
g° for all te T and ge G, (the exponential notation indicating that ¢
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acts as an operator in the manner given by the induction hypothesis),
the action of V on G is defined by componentwise conjugation, Then
it is easy to verify that V is fixed point free on G, and that G’ is
not nilpotent. We may thus suppose that any proper subgroup of V
is either cyclic of prime order, has order 4, or is S..

By Theorem 4, it now suffices to show that V is solvable. Assume
V is not solvable. Then a 2-Sylow subgroup, S,, of V, being proper,
has order 2 or 4. If N,(S, =V, V/S, is metacyeclic and hence V is
solvable. If N,(S,) <V, it is clear that since A, is not a proper sub-
group of V, S, lies in the center of its normalizer and so V has a
normal 2-complement, K, which is also metacyelic and hence is solvable.
Thus V is solvable, contrary to our assumption.
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