Pacific Journal of
Mathematics

WHICH WEIGHTED SHIFTS ARE SUBNORMAL

JOSEPH GAIL STAMPFLI




PACIFIC JOURNAL OF MATHEMATICS
Vol. 17, No. 2, 1966
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Let H be a Hilbert space with orthonormal basis {f;};2..
If the operator 7 is defined on H by 7Tfi:= a;fiy for ¢ =
1,2,---, where |a;| =< | | =M for ©=1,2,.--, then T
will be called a monotone shift. The first section of the paper
examines some of the elementary properties of such operators,

Every monotone shift is hyponormal. The central portion
of the paper aims at discovering which monotone shifts are
subnormal. Necessary and sufficient conditions are given in
terms of the {a;}. These conditions make it easy to show that
even the first four coefficients (a; < a; < a3 < a+) may ‘‘prevent”’
a shift from being subnormal. However, for any a, < @, < @,
there does exist a monotone shift with these as its initial terms,
In fact, the unique minimal one is constructed.

A complete description is given of subnormal monotone
shifts for which |a; | =|aj+ | for some j,. The paper
concludes with counter-examples constructed from the machi-
nery developed.

We are tacitly assuming that lim;_..| a; | exists, i.e., T' is a bounded
operator., If |a;|=|a;y,| for y=1,2,.--, then T is (up to unitary
equivalence) simply a multiple of the justly famous unilateral shift.

We recall that an operator 7' on a Hilbert space H is subnormal
if it is the restriction of a normal operator to an invariant subspace.
The terms ‘‘point’’, *‘ continuous’’ and ‘‘residual spectrum’’ have their
usual meaning and are designated by o,(+), 64(:) and o,(-) respectively.

(X3

THEOREM 1. Let T be a monotone shift on H where A=
lim; .. |a;|, then

(i) [[TlI=4

(ii) 0x(T)={z:]2| < 4}

(iil) o(T*) = {z:|z| < 4}

(iv) 0o(T) = 0(T*) = {z: |z | = A}.

Proof. Surely (i) is clear,

For |z,| < A, consider the vector g = >, 2b,.f, where b, = 1 if
a,.,=0, a, =0 and b,,, = 2b,/@, for n >k. Since |z,/aq,|=r <1
for n sufficiently large, g H. But (T'* —2I)g = 0 so g is the desired
eigenvector, proving (iii)., The relation b,.;, = z:,/@, is necessary which
implies the eigenvalue z, is of multiplicity one.

For any z, it is clear that (T — z2I)h = 0 for he H, and h # 0.
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Now for an arbitrary operator, z,c o,(T*) implies Z,€ 0,(T) U 04(T)
and (ii) follows.
It is not hard to see that

op(T)N{z [zl = At = ¢ =0(T*) N {z: 2] = A}
and hence (iv) is proved.

ReEMARK. If one considered a two-sided monotone shift Tf; =
a;fiq for g =0, 41, ---, then the above theorem is easily modified,
the spectrum of 7 now being the annulus B = |z| =< A where A =
lim; .. |a;| and B = lim;,_..|a;].

THEOREM 2. If T is a monotone shift then T s hyponormal;
that is || Tg|| =z | T*g|l for ge H.

Proof. Clear.

THEOREM 8. If T 4s a wmonotone shifi then T ts not a spectral
operator, (for T = 0).

Proof. Assume T is a spectral operator; then 7 is also a spectral
operator which can be written as S + N where S is a scalar operator
and N a commuting quasi-nilpotent. By Theorem 1 we know that every
point in the dise |z] < || T'|| is an eigenvalue of T*. Invoking Corollary
5 to Theorem 1 of [2] every point in the disc [z ] < || T'|| is an eigenvalue
of S. But S is similar to a normal operator which must have an
uncountable number of distinet eigenvalues. Thus our original assump-
tion was ill founded.

Next we would like explicitly exhibit a normal extension B of T
assuming 7T to be subnormal. The normal extension we construet will
be minimal, (see [1], [3] for a discussion of subnormal operators).
From now on we will assume a;* 0 for ¢4=1,2,..-, There is no
real loss in generality if we do so. Forif ¢, =a,= --- =a, =0,
then the subspace M spanned by {p, :--, @,} is a reducing sub-
space of 7 and moreover T is normal on M. Hence we are really
only concerned with what takes place in M*, Let us designate the
original basis for H= H"™ by {p}7,. We shall use the terms a;
and af’ interchangeably as a notational convenience, It will be to our
advantage to assume that ¢’ >0, for j=1,2, ..., and we may do
this by simply rotating the ¢{"’s of the original basis by e,

Now set B*g" = a)p!l; + b ¢ where ||p [| =1 and ¢ is
orthogonal to H" for j = 1,2, ---. Since || B*¢" ||* = (a2,)* + | b *=
[| B [P = (a®)* we may conclude that | b [F = (ai’)* — (a2 (af’ =
0). We claim that the ¢{”’s are orthogoral, for

b6 (P, ;") = (B e, B*gY) = (Bpl”, Bp;') = 0,
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when 75, We are assuming for the moment that 8» #0forj=1,2,.--
Since the p{’s are determined up to a scalar of modulus one we may
take b = [(a")* — (a{)*]"*. Now let us consider the possibility that

b = 0. This would mean aj) = ajl, or that || T*pp || = || Toy Il
But by Theorem 4 of [5] the set of vectors {f: ]| T*f|| = || Tf ||} forms
a closed invariant subspace of T. Thus || T || = af? = af for k = j,

and thus b = 0 for &k = 7.
We will designate by H® the space spanned by {p?) for bY == 0.
So far we know that (Bg?, o) = b = [(@}V)* — (a)*]"*. Now

(Bpiti, Bp)') = (Bpith, Te;") = biha® = (B*pi, B*p)
—_ (B*¢.(7.2“£‘1’ a(1)1¢§1_)1 b(.Z) (_2))
= (B*pi, bY9) = b7 (s, Bl
thus (Be?, o) = a’b®,/b?. We set af’ = a{b¥,/b¥. Since (p{,
Pi's Py 5 P

J

B*BpP) = 0 for k + j — 1, it follows that
O —_ (B* (2) B* (1)) — (B*CP(Z) a'l(cl)l(,z)gtl)l + bl(c2)¢§c2))
= (B*@P, b'pi?) = bP(@, Bel)
or (Bpi?, 9i") =0 for k+#j— 1. Thus By = afofl, + bPp + f;
where f; is orthogonal to HY @G H™,. We now wish to show that

fi=0forj=1,2, ..., We observe that (Bf;, By = ai’(f;, B*pH)=0
for all 7, k since B*gp’” e HY@ H®, But then

0= (BF;, B*9) = (£, BOYPY + apii))
= (£ BYY'9) = b9(f3, Pt + b0 + £)
=511

from which we may conclude f;=0. Thus we have BpP=aPpH,+ b ¢}
and since {p{"} is a basis for H® and B is bounded by assumptlon, B
is now defined on H P H®,

It is perhaps worth while to write it down in matrix form on
H(l) @ H(z):

0 b

a,(i) 0 b(g)
al(;) 0 b(g)

ad . R
<10
a? 0
a?0

0 a(;)
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where b = ((@$)* — (@$2,)%)** and bPal® = b,a’. We have assumed
that all the aj’’s # 0 and have shown that if b’ = 0 then b = 0 for
k=j,. In this case, H® would be finite dimensional.

We will now assume B has been defined on HY, --., H™ where
{p}, -+ -, {p} are the respective bases and Bpl* = aPp®), 4 b¥ pE-1
for k=2,.---,n. We also note that all b 0. That is, if b, ... b
are nonzero and b, =0 then b/ =0 for j=zj, +1 and H® is
spanned by {@", -+, pi}. Further aj”’ + 0 for j=1,---,7, — 1.
The above can be considered to be the induction hypothesis,

We set B¢l = a @™, + b»Vep for §=1,2, ..., where
@™ || =1, and @ is orthogonal to H™ & -..- H H™. Since
| B*@i || = || Bpy” || we have | by [* = (a")* + (b") — (ai"1)*(as™ = O
by definition). Now

(B*@i”, B*@[) = b b (@™, @i*th)
= (Bp{™, Bp®) = 0 for ¢ #j.

Thus ¢ and @{"*" are orthogonal for we may assume b{"*V, bi»™
are nonzero else @{"s"} would not be defined. Thus b/ may be taken.
positive. Consider

(P, B*Boy") = (417, B*(a' it + by ir™)
= (P, aPDEPRPY) = e
= (P, BB*@?) = (", B@pifs + by o)
= (@) B Bty |

This implies Bp*™" = bi""Vp” + af Vi + f; where (f;, ¢iti") =0
and a{"™" satisfies the relation a{"*Vb{"*" = ab{"i", for j=1,2, ---.

Now let us clear up the zero, nonzero relation between the a’s
and the b’s. By the induction hypothesis either all a{"’s # 0 for
j=1,2, ..., or there are a finite number and all but the last is non-
zero. In either case assume b*" = 0 and b"}" = 0; then a{**'b" ™" =
0 =a™b? + 0 (for there are at least & nonzero a!™’s since the
dim H™+9 < dim H™), This is impossible. Now assume b{**" == 0 for
i=1,2,---,k, and b"" =0 for 5 > k, i.e., H" is k-dimensional.
Then o = a™b"3V /b is well defined for j < k& and since H™ was.
at least k-dimensional, a{® # 0 for =1, .-+, k — 1; hence a{"™ # 0
for j=1, ...,k — 1 as we wished to show.

Let us go back to the defining relation

B@_(;H-l) — a§n+1)¢,(7"/-bi-‘il) + b_(,'”+1)¢‘(7'%) + fj .
Since

(@i, B*Bpy) = 0 for i %4+ 1

we have
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(@Y, BB*@) = (@™, bt (aipii + birtip™ + f;))
+ (gD(nH) Ba(n)l@;n_) — (CPYLH) =0 for ©v+7+ 1.

Now (@i, f;) = 0 by definition and hence f; is orthogonal to
HYD.-- S H", But

(ij B*nggn)) = (f3, B*(a’gmq)ﬂd .7 ¢J” 1)))
= 0= (f;, BB*9}")
= (f}, B@™,p\®, + bir+bpir+vy)
— (ij b;_n-}—l)B@ n+1) )
= (fs, b5 (@ Vb Vi + )
b ] £l and since bV %= 0

we conclude f; = 0. Thus Bp{*™" = a{™V ot + b ™o where by # 0
for =1, .-+, (dim H"™ and a{"*™ = 0 for j=1, «-+, (dim H """ — 1),
It should help to present B as an infinite matrix with respect to the
basis {p/”} where j=1,2, .+, dimH™ and n =1, 2, ---.

F(l) G(% O
0 FeGw® 0
B— 0 0 F@®.
0
where
0
a™ 0
a™ 0
Fin) — aén) .
and
b™
bén)
G pim

Now that we have a normal extension of T in concrete form it
is not difficult to read off some necessary conditions for the sub-
normality of 7. In faect, it is clear that:

(I) (@™ + )= (a”)* for n=2,8,--+, and j=1,2, +--,

(otherwise it would not be possible to define b{"*" compatibly
with the normality of B).
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(II) If " = 0 then b/, =0 for j=1,2, .-+, and n=2,3, ...,
(else the equation a{”b{® = a{ b, could not be satisfied).

(III) There exists a constant M such that |a{” | < M and [ b | = M
for n =2,8, -+, and =1, 2, ---, (else the normal extension
would not be bounded). These conditions are also sufficient,
More precisely:

THEOREM 4. Let {a'"} be a sequence such that 0 < a{) <af’ < ---
and define To = af’pil, for j =1,2, -+, where {p}7-, s an or-
thonormal basis for H". The operator T is subnormal tf and only if

(1) (@) + @) — (a‘ %)= 0

(IT) b = 0=10\, =

(III) there exists a constant M such that |ai® | < Mand || = M
for n=2,8,---, and j=1,2, -+-, where

B+ = + @) + B — (@)

and af™ = aPbyEP /b7t (of b = 0 then afY is taken to be zero).

Proof. The necessity of (I), (II) and (III) has already been proved.
In the other direction, since conditions (I) and (II) are satisfied the
recursive definitions of the a{"*" and 5" make sense. We now set
Bp = aPp, + bV where {p{”} is an orthonormal basis for H™,
If b = 0 then @{ is omitted from the basis. With this definition it
should be clear from the former construction that

(Bp{”, Bpi™) = (B*¢, B*p;”)  for all n,m,j, k.

(Here as elsewhere all should be interpreted as vacuously covering the
case when ¢! has been omitted from the basis.) Thus B is defined
and satisfies || Bz || = || B*z || on finite linear combinations of the basis
elements. From (III) we may infer that B is bounded: certainly
| B|| < 2M. Hence B is defined and is normal on all of H=>@H™,

We remark that the a!”’s were taken to be real only as a nota-
tional convenience. To modify the theorem for an arbitrary monotone
shift one need only add absolute value signs in the appropriate places.

Let a,, ---,a, be given. If there exist elements a,.,,, G, +--,
such that Top; =a; p;,, for j =1,2, ..., is a subnormal operator, we
will call T a subnormal completion of a,, ---, a,.

In Theorem 5 we will show that for any a, a, a; where
|a, | < |a,] <|as|, there exists a subnormal completion. However, one
can specify a,, a,, a,, a, where a, < a, < a; < a,, in such a manner
that they can not be completed to form a subnormal monotone shift.
This can be easily done by making use of necessary condition (I).
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Consider (a{®)* + (b)* = (e¥)* which is equivalent to:

a: — q? a — q?
(@G — @) + ai—— = a3———
A — Oy Oy — a;
or
a? (a2 — a?)?
1) aggagju._l_(s_z)_ k!

a; ai—a}

If a, is chosen so as not to satisfy (1) then clearly no choice of the
remaining a;’s will make the resulting shift subnormal. For example,
if @, =1, a,=2"%, a, = 3% then for 3* =< a, < (10/3)¥* there exists
no subnormal completion,

THEOREM 5. Given a,, a,, a; where 0 <|a,| <|a,| < |a;| then
there exists a subnormal completion of a,, a,, a, . Moreover, if S is

any subnormal completion of a,, a,, a, then

HSHZ;1/2[1% |2M

@[ — el
s (et - varieri=el) ]

Further there is, up to unitary equivalence, exactly ome subnormal
completion for which equality holds.

Proof. We may take a,,a,, @, to be positive. The a,’s for the
minimal completion are given by the following rule:

ai., — a a: — a’_

2 +1 —_ 2 1 2 2

@) Gp =t = g — (@), — @) .
@y — Uy Qyy — Ay

Sinee a?_,/(ai_, — ai_,) > 1 the right side is strictly positive and
Ayt > a,. The defining relation (2) is simply the necessary condition
(@) + (b)* — (a,)* = 0 with equality holding.

Next we will find a more convenient expression for a,. From (2)
we have: ‘

®) Uy = Qo Gy Gy — Gy

2 2 2 2 2
@ — Gyq @ Qpey — Ay

and so by induetion,

4 Upy — @ @07 a—a _ C

2 2 -

A, — OQuoy @+ 0ny G — Q7 GOy

! Note that @} means (a7 not a!”
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by definition of C. Thus

(5) G = ah+ C[ 1 — L]

an—l a'_:t

and again by telescoping:

(6) G = @3 + C[ 12 — 12].
o} al
From (6) we can see that {a,} converges and we will shortly compute
the limit.
Is the operator T defined from the a@,’s actually subnormal? Let
us write down its normal extension.

0 b
a, 0 b
a, 0 b
a, - .
0 b0
a0 0 b
a? 0 00
0;(,2) . .
<10 0 |B¥0
a®0 {0 bY
0 0 |00
a?0 |0 bY
0 0 |60
a®0 |0 09

R al. — a2 e
ap = a B = BT~ ar, - ae

A — Qs
We see from (2) that

2 2
an '_' an~1

2

2 2
2 Onp1 — Oy § a;
Q1 — ai—z

a
"al —al,

—1
and hence the a{’s are bounded and obviously the b?’s are. Now if
it can be shown that a{®, b{®, b, for k=3, 4, ---, can be defined
to satisfy the normality relations and moreover remain bounded then
we are finished. The defining relations are:

(i ) al(n)bin) — a;n—l)bén)

(i) By = @) + o)
and

i) (b) = (67) — (@)
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There is no difficulty in defining a{® from (i) and """ from (ii). From
(ii) we see that b{**"’s are increasing and bV > a{”., Hence from
(i) we have 1< b"/a™" =b"/a™ or (b") — (&) — (a™)* >0 so
there is no obstacle to defining b{**" by (iii). Now to show bounded-
ness. From (iii) we see {b{”} is decreasing and thus converges which
also implies that {a{”} converges to zero. Combining (ii) and (iii) we
have

(b§n+l))2 — (bin))? — (b;n))ﬁ — (b;n+l))2 .
Thus
by — (09 = (b)Y — (b

which implies {b{¥} converges since {b{¥} does. Now B the normal
extension of T must be a bounded operator.

We will compute the norm of this completion from (6). Let
A=1lim; .|a;?=1T]|* Then (6) yields

o a-ard Lo 1]

or
A*— (a3 + Clah)A —C = 0.

Recalling that C = ala[(a? — ai)/(ai — a})] and selecting the proper root
of the quadratic equation yields

1 Q@ — @ a—a? a: — g2 )
®) A=l =% 1 g B M g — D
2 a — a; 3 a; — a;

2 a;

(the expression inside the radical is positive).

Before we show that the subnormal operator 7' which we constructed
to complete a,, a,, a;, is minimal in norm, we will prove that it is an
efficient subnormal completion in another sense. Let Sp; = ¢;p;., be
any subnormal operator with ¢; = @; for ¢ = 1,2,3. Rather than be
inundated by absolute value signs we will assume that both the a,’s
and the c¢;’s are positive. .

Now the necessary condition (I)

(@) + () — (@) 2 0

applied to the operator S yields the following analogue to (2):

02 c? C? 02

2 +1 2 ] —1 2 2

(9) cn._;"—z__”_ > c;—l __.2_1'_—“2 — (c; — c;~1)
Cn Cu—1 n—1 Cn—z

and if we argue as before we can reduce this to
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(10) Oi+1za§+0[ 19 — 1)].
a e

If the completion ¢, is different from the one given above then for
some first £k we have ¢, > @, (it can not be less by the necessary
condition (I)). But then we have

a; (7 al a

Hence ¢; > a; for j = k.

Now we will prove the last statement of the theorem. Let S and
¢; be as above. Let k& be the smallest integer such that a,., = ¢,
but a,., < ¢,... Using the necessary condition (I) we arrive at

(11a) G=ab+ D[ — =]
a, (129

and

(11b) Cryy = €, F ﬁ[ 21 — 12 :I
cnvl c%

for nw = k + 3 where

d f) O A
an = Craolprr—

2 2
ks T Ok Cr+2 — Crt1

2
2 2 Opyz = Qs

These are obtained by a restricted telescoping of (§) and (9). Since
Chir = Qpi1y, Cpis = Gpyy aNd €,y > Qpuy, certainly D > D. Now from
(11a) and (11b) we obtain

(122) G = @ + D[~ — -]
Qi1 Gy
and
2 2 A 1 1
(12b) =+ D— — = for n=k+ 3.
€ c.

If we let »— o in (12a) and (12b) we obtain

(132) A= dj,+ D[ 1 — L]
Q41 A

and

(13b) Az o+ D ——— =]
W1 A
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or

~ = 9 ~ 1 . ~1_]

Az=al,, + I)[ o il
Now in (13a) the solution A is a strictly increasing function of D and
since D > D we must have A > A. But | T|P=A< A= S| and
thus we have shown there is exactly one subnormal completion of
a,, @, a, with the norm given by (8) (again we note that operators
are specified up to unitary equivalence only).

REMARK. The above construction of a subnormal completion of
a,, &, a, can be used in slightly more general circumstances. It has
been pointed out that a,, @,, a,, @, may not have a subnormal comple-
tion, If however a, satisfies the necessary condition
2 42)\2
@z a + al% = %)
o — al
then one can obtain a subnormal completion by defining a, for n =5
as in (2). When one has a,, ---, a; this definition does not work for
reasons sufficiently complicated to remain unmentioned here.

THEOREM 6. Let T be a monotone shift, To; = a;p;.,. Assume
Surther that

(i) a;#0 for 5=1,2, -

(i) T s subnormal

(iil) |air| = | @ | for some k
then |a;| =|a;| for j =2,3, -, and a, is arbitrary.

Proof. We will assume that the a;’s are positive. Let & be the
smallest integer such that a, = a;,,. If ¥ < 2 then by Theorem 4 of
[5] we are through. For the case &k = 3 we now make use of Theorem
4, We observe that

a., — a2 e
a,ff’ — ak[ k+1 k] =0

ai - (1/%,_1
and
. @ — a2,
apl, = ai—1[Hl—] # 0
Q-1 — Qg1
and

b = [a} — ai ]

Now a necessary condition for the subnormality of 7T is just that
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0= @) + (60 — (@)’

2 2 iy 9 P
= (@} — @) — 5——5—(a; — ai) .
a

k-1 — Qj—2
But that implies (a}_.)/a;_.(a;_;) =1 or a,_, = 0 contrary to hypothesis.
This still leaves the existence of monotone shifts unsettled for a, < a, = a;
for 7=2,3,..-. We will show that these are all subnormal by
writing down the subnormal extension. (The reader may do this by

simply following the ‘‘ directions’’ in Theorem 4.)

0 a, 0
a, 0 0 »
a, 0 0 0
a3 . .
<10 Oja,
p 010}
0_0'2_
0la,
10

p = (@ — a)”

COROLLARY. The space H® 1is either infinite dimensional or
dim H® < 2, This is just another way of stating Theorem (6).

REMARK. This corollary has an analogue for the spaces H™,
We state without proof that either H™ is infinite dimensional or
dim H < mn, In the proof of Theorem 5 we constructed a sub-
normal operator where dim H® = 2, Given a,, a,, @, a, Where a,
satisfies the necessary condition (I), the construetion yields an operator
where dim H® = 3,

Using the last theorem we can construct several counter-examples.
In [4] we encounter the following:

THEOREM. If T s hyponormal and T" is normal for some integer
n then T is normal,

The question arises whether the theorem remains valid with normal
replaced by subnormal (in both hypothesis and conclusion). The answer
is no. Define Tp, = 1/Dp,, To,= 1/2)p;,, To; = ;1 for ©=3.
Clearly T is hyponormal, but not subnormal by the previous theorem,
We claim T'” is subnormal for n = 2. For T’p, = (1/8)p,, T, = (1/2)p,
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and T’p; = @, for 4=3. Thus if we let g; = @,;_, and h; = @,;
for j = 1,2, ..., then we may write T* as the direct sum of operators
acting on H, = {span of g;} and H, = {span of &;}. Now if Fg, = (1/8)g.
and Flg; = g;., for § = 2, then F, is subnormal on H,. Similarly, if
F,h, = (1/2)h, and F.h; = h;., for j = 2, then F, is subnormal on H.,.
But T7* on H equals F,@ F, on H, P H, and hence T? is subnormal,
For n = 3, T* can be shown to be subnormal by a similar argument.

We will now exhibit two subnormal operators which are similar
but whose (minimal) normal extensions are not. Let {p;}5., be an
orthonormal basis for H. Define Tp; = @;,, for j=1,2,3,-.--, and
Sp, = (1/2)p., Sp; = @;., for 5 =2,3,---. Then S and T are sub-
normal by Theorem 6, they are similar and, in faet, the operator @
given by Q@, = (1/2)p; Qp; = @; for j = 2, effects the similarity,. We
claim that the minimal normal extensions are not similar. If they were,
they would have to be unitarily equivalent since they are normal.
The normal extension of 7 is unitary while the normal extension of
S clearly is not which completes the argument.
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