Vol. 17, No. 3, 1966

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Invariant subspaces and unstarred operator algebras

Donald Erik Sarason

Vol. 17 (1966), No. 3, 511–517
Abstract

It is proved in the present paper that if A is a normal Hilbert space operator, and if the operator B leaves invariant every invariant subspace of A, then B belongs to the weakly closed algebra generated by A and the identity. This may be regarded as a refinement of the von Neumann double commutant theorem. A generalization is given in which the single operator A is replaced by a commuting family of normal operators. Also the same result is proved for the case where A is an analytic Toeplitz operator.

Mathematical Subject Classification
Primary: 47.35
Secondary: 46.65
Milestones
Received: 7 January 1965
Published: 1 June 1966
Authors
Donald Erik Sarason