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This paper is a study of the oscillation and other properties
of solutions of the differential equation

(L) Y + p@y’ + qy =0.

Throughout, we shall assume that p(x) and ¢(x) are con-
tinuous and do not change sign on the infinite half-axis
It o <2 <400, A solution of (L) will be said to be oscillatory
if it change sign for arbitrarily large values of z.

Our principal results will be concerned with the existence,
uniqueness, (aside from constant multiples) and asymptotic
behavior of nontrivial, nonoscillatory solutions, and criteria
for the existence of oscillatory solutions in terms of the be-
havior of nonoscillatory solutions. Other results are concerned
with separation properties and the question of when the ampli-
tudes of oscillatory solutions are increasing or decreasing.

The general properties of linear homogeneous thirdorder differential
equations were first studied by Birkhoff [1]. Other investigators have
been Gregus [2-11], Hanan [12], Mammana [14], Rab [15-20], Sansone
[21], Svee [22, 23], Villari [24, 25], and Zlamal [26]. In this paper
we shall study successively the cases

(i) »(@) =0, q) >0,

(i) p(x) =0, q2) =0,

(iii) p{x) =0, q(x) =0,
and shall show that under certain conditions the solutions of (L) have
similar qualitative properties as in the cases when p(2) and ¢g(x) are
nonzero constants., It is for this reason that we list the following

remarks which characterize these cases when p(x) and ¢(z) are nonzero
constants,

A. If plx) = p < 0 and q(x) = q > 0, (L) has oscillatory solutions
of and only tif.

2 52
_ = (- >0.
1 313 ?
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When this condition is satisfied all solutions of (L) are oscillatory
except constant multiples of ome solution which does not vanmish on
I, and which together with all of its derivatives is monotonic on I
and approaches zero as x tends to imfinity.

B. If p(x) and q(x) are both megative constants p and q, (L)
has oscillatory solutions +f and only if

2 372
g2 (0.
VA

When this condition is satisfied, (L) has two independent oscillatory
solutions and the zeros of any two oscillatory solutions separate on
I.  Moreover the absolute values of the successive maxima and MiNIMe

Jform a decreasing sequence.

C. When p(x) and q(x) are both positive constants p and g, all
solutions are oscillatory except comstant multiples of ome solution
which does mot vanmish on I, and which together with all of its

’

derivatives approaches zero as x temds to imfinity.

1. We first consider the case where p(x) = 0 and ¢(x) > 0. For

this case the following lemma will be of fundamental importance.

LEMMA 1.1, If p(x) <0, g(x) = 0 and u(x) is any solution of
(L) satisfying the initial conditions
(1) ue)z0, we)=0, u'(c)>0,
(where ¢ s an arbitrary number greater than a), then
(2) u(x) >0, w'(x) <0, w(x) >0,

for xela,c).

Proof. From (1) it is clear that the inequalities (2) hold in an
interval (b, ¢), b < e. If the inequalities (2) failed to hold in the
interval [a, ¢) there would be a first point ¢, to the left of ¢, where
the function wu(z)u'(x)u’'(x) vanished. On the other hand

u(@w (wyu(x)) = (w'(x))w’” () +ulx)(w”(x))*
— w(@)u'(@)(— ple)u'(x) — g@)u(z)) >0,

for ze(c, c).
On integrating the above inequality from ¢’ to ¢ we would have

0< g: (u(t)w )" (t)y dt = ule)w(c)w(c)
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which is a contradiction.

The following theorem can be derived from a result due to Hartman
and Winter [13]. For completeness, we shall present an elementary
proof based on Lemma 1.1,

THEOREM 1.1. If p(x) = 0 and q(x) > 0, then (L) has a solution
w(x) with the following properties:

w"(x)w" (x)w'(x)w(x) = 0 xzela, ),
sgn w(x) = sgn w'(x) # sgn w'(x) = sgn w'’'(x),
lim w"”(x) = lim w'(x) = 0,
z—>+oo Z—> 400
and w(x) vs asymplotic to a finite constant.

Proof. For every positive integer n greater than a, let y,(x) be
a solution of (L) satisfying the initial conditions

Yo(m) =0, y(n)=0, y/(n)>0.
By Lemma 1.1, we have
(3) (@) >0,  y(x)<0, yli(z)>0

for z€[a, n). Let z(x), z.(x), z,(x) be a set of three linearly independent
solutions of (L). By multiplying each y,(x) by a suitable constant we
may assume that

Yu®) = €1,2,(X) + C0,2(X) + C5,25()
with
(4) c‘lzn+c;27n+03n:1-

Since the three sequences {c;,}, ¢+ = 1,2, 3, are bounded, there exists
a sequence of integers {n,} such that the subsequences {c,,} converge
to numbers ¢;, 2 = 1,2,3. From (4) we see that

(5) c+cttei=1.,
We now consider the solution
(6) w(x) = clzl(x) + szz(x) + Csza(x) .

Since the sequences {y, (x)}, {y.,(2)}, {v.,(x)} converge uniformly to the
funections w(x), w'(x), w”’(x) on any finite subinterval of [a, ), it
follows from (3) that

(7) w@) =0, w@)=0, wi(=0,

and
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w"'(x) = —p(@)w'(x) —g(@)w(@) = 0

for x€[a, «). If equality held at a point Z in the first inequality
(7), then

w(x) =0 for xzelx, ),

which contradicts (5) and (6).
Thus

(8) w(x) >0, xzela, «).
By a similar argument
(9) wi(x) <0, wi(x)>0, w'(e)<O0, for all xela, ).
From (8) and (9), it follows at once that
lim w'(x) = lim w"(x) = 0
gt b oo

and w(x) is asymptotic to a finite constant.

LEmMmA 1.2, If p(x) £ 0, q(x) > 0 and y.(x), y(x) are two inde-
pendent solution of (L) such that either

(10) Yu(®o) = yo(w,) = 0,
or
(11) Y1(%,) = ya(x,) = 0

(z, € [a, o), arbitrary) then
Wy, y2) = y:(@)yi(@) — pa(2)yi(x) =0 for «>w,.

Proof. If
¥:(@)yAT) — v(T)yi(@) = 0
held for a point # > x, there would exist constants ¢, and ¢, such that
ey (%) + (@) = 0
(@) + cy(T) = 0

with ¢} + ¢ # 0.
By Lemma 1.1, if w(x) is the nontrivial solution

w(x) = eyu(x) + cys()
then w(x) w'(x) # 0 for « < x,. But this contradicts (10) or (11).

REMARK. It follows immediately from the above that if p(x) < 0,
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q(z) >0 and y,(x) and y,(x) are two independent solutions satisfying
either (10) or (11), then the zeros of #,(x) and y.,(x) separate to the
right of z,; i.e., between any two zeros of y.(x) to the right of wx,
there is precisely one zero of ¥,(x).

LEMMA 1.2'. Suppose p(z) <0 and ¢(x) > 0. If w(x) and v(x)
are two nontrivial solutions of (L) such that

w(@e) = v(x,) = 0

and w(x) is oscillatory, then v(x) s also oscillatory.

Proof. If u(x) and v(x) are dependent there is nothing to prove.
If u(x) and v(x) are independent the result follows easily from the
above remark.

LEmmA 1.2”7, Suppose p(x) =<0 and g(x) > 0. If (L) has one
oscillatory solution and u(x) is any nontrivial solution with either

@) =0, or w(w) =0,

(z, arbitrary) then w(x) is also oscillatory.

Proof. Let v(x) be an oscillatory solution of (L) which vanishes
at x, and suppose u(x,) = 0. Construct a solution z(x) of (L) such that
2(x,) = 2(x) = 0, #(x) # 0. Applying Lemma 1.2’ first to the solutions
v(x) and 2(x) at the point x,, we see that z(x) is oscillatory. Next,
applying Lemma 1.2’ to the solutions z(x) and u(x) at the point z, we
see that u(x) is oscillatory. If w'(x,) = 0 and wu(x,) # 0, consider the
solution y(x) such that y(x,) = ¥'(x,) = 0 and y"(x,) = 1. By the above
argument y(x) is oscillatory and from Lemma 1.2,

Wu(x)y(e)) = w(@)y'(x) — y(@)u'(x) =0 for @ > ;

consequently u(x) is oscillatory.

The above result shows that whenever p(x) <0, ¢(x) > 0 and (L)
has one oscillatory solution, then for any nontrivial nonosecillatory
solution w(z), w(x)u'(x) = 0, x€[a, ). The following theorem will
place even stronger restrictions on the nonoscillatory solutions in the
event that (L) has oscillatory solutions,

THEOREM 1.2. Suppose p(x) <0 and q(x) > 0. A necessary and
sufficient condition for (L) to have oscillatory solutions is that for
any nontrivial nonoscillatory solution u(x),
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12) u(x)u'(x)u”(x) = 0, sgnu(r) = sgnu’(x) # sgn u'(x)
for all xela, =), and

(13) lim «/(x) = lim w"(x) =0, limu(x)=c+* % .
L—+ o0 z— oo T—}oo

Proof. The sufficiency is immediate; indeed if any nontrivial non-
oscillatory solution wu(x) satisfies (12), any nontrivial solution which
vanishes once is oscillatory. To prove the necessity, let us assume
that (L) has oscillatory solutions and that w(x) # 0 is a nonoscillatory
solution. By the above Lemma 1.2” w(x)u'(x) # 0 for all xe[a, o).
Let us assume without loss of generality that w(x) is positive. Suppose
u'(x) were positive. Then for a suitable positive constant b,

w(a) — dbw(a) =0.

Here w(x) is the nonvanishing solution whose existence was shown in
Theorem 1.1 which we also take to be positive. We now consider the
solution

v(@) = u(@) — bw(w) ;

as sgn w(x) = sgn w'(x) = —1, v'(x) = u'(x) — dbw'(x) > 0 for all z € [a, o).
On the other hand, v(a) = 0 and thus by Lemma 1.2” v(x) would be
oscillatory. This contradiction shows that wu’(x) is always negative.
Since u(x) satisfies (L) and p(x) =0, q(x) >0, v (x) = —p(x)u'(x) —
q(z)u(x) < 0 for all xe[a, ). Hence, w''(x) is eventually of one sign.
It is impossible that «”’(x) < 0 from a certain point on, for if #'(x) < 0
and %"(x) < 0 from a certain point on, u(x) would eventually be nega-
tive. Thus for a certain number Z € [a, ).

w@) >0, w@<0, w(x)>0
for x = . By Lemma 1.1
wz) >0, w@)<0, u'(x)>0

for xe[a,Z). Hence for all x€(a, «), u(x)u'(x)u”’(x) # 0, sgnu(x) =
sgnu”(x) # sgn u'(x) = sgnu”’(x). The relations (13) follows at once
from the above.

LEmMmA 1.3. If p(x) = 0, g(x) > 0 and u(x) = 0 ¢s a nonoscillatory
of (L), there exists a number ce€ [a, ) such that either

(1) u(@)u'(x) =0 for x=c or

(i) w(@)u'(x) = 0 for x = ¢, and u(x) = 0 for x = ¢. If (i) holds
then

w(x)u'(x)u”"(x) = 0,
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sgn w(x) = sgn u''(x) # sgn u'(x) ,
for all xela, <),

lim v”(z) = limu'(x) = 0,
Z—+ oo

T4 o0

and u(x) s asymptotic to a finite constant.

Proof. If u(x) # 0 is a nonoscillatory solution of (L), it follows
from Lemma 1.1 that w(x) cannot have more than one double zero;
thus there exists a number b such that u(x) = 0 for = b. Without
loss of generality let us assume u(x) >0 for x = b. We assert that
#'(x) cannot change signs more than twice in [b, ). In fact, if we
assume that «;, and 2, are two consecutive points in [b, o) where u'(x)
changes sign, then by multiplying (L) by w«’(x) and integrating by
parts between xz, and x,, we have

0= Smuu(x)u’(x)dﬂ? -+ szp(x)u'(xfdx + qu(r)u(:c)u’(fv)dac

*1

= (@) (@) — rzu”(x)zdx + g:zp(x)u’(m)gdx

+ gxzq(w)%’(w)u(x)dx
= — szu”(x)zdx + szp(x)u’(ac)zdx + S :2q(x)%(%)u'(x)d” .

Since p(x) = 0 and g(x) > 0, it follows from the above that wu(x)u'(x)
is positive in (2, x.), and from this condition the assertion follows
easily. Thus there exists a ¢ such that either w(x)u'(x) = 0 for o > ¢,
or w(x)w'(x)u'(x) = 0, for « > ¢. If the first alternative holds then

u"(z) = —pe)w(2) — q(@)u(z) <0,

for x = ¢ and by essentially repeating part of the argument given in
the above Theorem 1.2, one can show that

w(x)w' (x)u"(x) = 0, sgnu’(x) # sgn w'(x) % sgn u(w)
z e [a, ), and

limw/'(z) = limw'"(x) = 0 .
z—+ oo

x— -+ oo

We now derive an oscillation condition for (L) under the conditions
p(x) = 0 and g(z) > 0.

THEOREM 1.3. If p(x) <0, q(x) > 0 and
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S:[q(x) — WL_B.(— p(x))s/z]dx e

then (L) has oscillatory solutions.

We note (see Synopsis) that this condition is necessary as well as
sufficient if p and ¢ are nonzero constants.

Proof. Suppose u(x) is any nonoscillatory solution of (L). By the
above Lemma 1.3, there exists a number ¢ such that either

(41a) to) =uw'(@)u(r) =20, z=c
or
(41b) tx) =u'(@))w(z) =0, z=c.

We assert that (41a) is impossible. To prove this we assume the
contrary and observe that ¢(x) satisfies the second-order nonlinear
Riceati equation

(15) (@) + 3t'(x)t(x) = —(B(x)’ + p(x)i(x) + q(%)) .
If ¢(x) = 0, for x = ¢, then by considering the minimum of the function
F(y, x) = v* + p(@)y + q(x) for y =0,

and substituting this minimum in (15), we would find that

d ’ n 3 .2 - 2 . 3/2
(16) 2 (t@ + 26@) = —a@) + S22 @)

From the condition of the theorem it would then follow that

(@) = t'(e) + %ﬁ (¢) — %ﬁ(x)

~{Taw) — 2 pyy»]as
c 3173
— — o0 a8 ¥-— + oo ;

consequently #(x) would eventually become negative. Hence (4la) is
impossible and u(x)u’'(x) = 0 for = ec.
By Lemma 1.3,

w(x)uw'(x)u'(x) = 0, and sgnu(z) # sgnu'(x) # sgn u'’(x)

for all xe[a, «). Since u(x) was taken to be any nonoscillatory solution
it now follows from Theorem 1.2 that (L) has oscillatory solutions.
Gregus [11] has shown that if p(z) < 0, ¢(x) = 0, 2¢(x) — p'(x) > 0



THE BEHAVIOR OF SOLUTIONS OF THE DIFFERENTIAL EQUATION 443

except at isolated points, and (L) has one oscillatory solution, then all
solutions oscillate except constant multiples of one nonvanishing solution.
In Theorem 1.4 below we shall establish another condition which will
insure this type of behavior. Although Gregus’ method of obtaining
the nonvanishing solution is based on the inequality 2¢ — p’ = 0, his
construction is similar to that used in Theorem 1.1. As the following
example shows, the condition 2¢ — p” = 0 is not necessary for oscillation
when p(x) < 0 and g(x) > 0.

ExampPLE 1.5. Consider the differential equation

17 " _ (2 — si 2)2/8,,1 S b> :0, b 0.
17 Y —( smx)y+<31/3+ Y >

Here p(x) = —(2 —sina?)** < 0, q(x) =4/3V3 +-b>0 and

NECE 57 (POt = (o o sl ¢ )it =+ oo

and thus by Theorem 1.3, the equation has oscillatory solutions.
On the other hand

2q(x) — p'(x) = <2b + W%) + ii—w cos 22 — sin x*)~® |
which is negative for arbitrarily large values of x. Therefore we
cannot use Gregu$’ condition to show that all nonoscillatory solutions of
equation (17) are constant multiples of one nonvanishing solution.
However Theorem 1.4 below will show that this is still true for this
example.

LEMMA 1.4. If q(x) > 0 (< 0) and

p o) d
a@)

the absolute values of a solution at its successive maxima and minima
form a nondecreasing (nonincreasing) sequence.

=0(=0)

Proof. If u(x) is any solution of (L), then as can be verified
through differentiation, we have the identity

2u/(@u"(@) | g @)u'(x)’
q() q(x)*

w'@®) g (200 o dg@)7" ],
_H[u(a)]+2g s g[ R ] (t)dt .

Hlu(w)] = u*(z) +
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By the conditions of the theorem HJ[u(x)] is a nondecreasing (non-
increasing) function of z., At a maximum or minimum point of wu(x)
where u'(2) = 0, H[u(x)] = u*(x); hence the squares of the maxima and
minima of #(x), and hence the corresponding values of |u(x)| form a
nondecreasing (nonincreasing) sequence.

TueoREM 1.4. If g(x) >0, p(x) <0

2p(x) d? .
2O 4 L =0,

and (L) has one oscillatory solution then all solutions oscillate except
constant multiples of the nonvanishing solution whose extstence was
proven wn Theorem 1.1,

Proof. Suppose that (L) had an oscillatory solution and that in
addition to the nonvanishing solution w(z) of Theorem 1.1 there was
a second independent nonosecillatory solution »(x). By Theorem 1.1 and
Theorem 1.2 there would exist constants ¢, and ¢, such that

lim w(x) = ¢, and lim v(z) =c¢,.

r—+ oo T->+oco
Let b be a number such that v(a) — bw(a) = 0 and consider the non-
zero solution

u(x) = v(x) — bw(x) .

Since u(a) = 0, we see by Theorem 1.2 that u(x) would be oscillatory.
On the other hand

lim u(x) = ¢, — be, .

zo oo

This ¢, — be, = 0 and lim u(xz) = 0, otherwise u(x) could not be oscillatory.

But, by Lemma 1.4 ZI{&Q the hypothesis on p(x) and ¢(x), the absolute
values of the successive maxima and minima of w(x) form a nondecreas-
ing sequence and consequently

1i£n supu(x) >0 and lim inf u(x) < 0.

g—+00 Zsf 00
Thus contradiction proves the theorem,

By considering the case of constant coefficients, one might be led
to conjecture that whenever p(x) < 0, g(x) > 0, and (L) has one oscil-
latory solution, then every nonoscillatory solution tends to zero as
tends to infinity. Whether or not this conjecture is true still remains
an open question, although Svee [22] Villari [25] have proved it for
the case when p(x) is identically zero. In the following theorem we
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will prove it with the added restrietion

waﬁq(w)dx =+ o,

THEOREM 1.5. If p(a) < 0, q() > 0, S“’afq(x)dx = + o, and (L)
has one oscillatory solution, then any momnoscillatory solution tends
to zero as x tends to infinity.

Proof. Let u(x) and v(x) be the solutions of (L) defined by the
initial conditions

w(@) =u"(a) =0, u(@=1
v(a) =v(a)=0, v()=1.

By Lemma 1.2
W(u(x), v(x)) = u(x)v'(x) — v(x)u’(x) # 0 for © > a, and since

(18) W(u(a), v(@) =0, W' (u(a), v(@)=0, W'ua), v(@)=1,
we see that
(19) W(u(x), v(x)) >0, for = >a.

Furthermore, as can be shown through differentiation,

(20) W@ (@) — v(@)u(z) = 1 + S:q(t) Wu(t), v(t)dt

and

21)  W"(u(®), v(x)) =1 +§:(I(t) W(u(t), v(£))dt — p(x) W(u(x), v(2)) .

From (19), (21) and the fact that p(x) < 0, we see that
W"(u(z), v(x)) =1 for z=a;
therefore by (18) and (20),
(22) W'(u(x), v(x)) = w(x)v"(x) — v(@)u"(x) >z —a,
Wu(a), v(@) = u(@)v' (@) — v(@u(@) > L2,

w' ()" (x) — v'(x)u"(x) > 1 + S:(I(t)kz-g)jdt

for x >a.
Hence by the conditions of the theorem

(23) w(z)v'(x) — v(x)u'(x) >0, wuv'(x) — v(x)u"(x) > 0,
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w'(z)v"(x) — v(x)u’(x) > 0
for z > a, and
(24) lim w(x)v'(x) — v(x)u'(x) = Um w(z)v”(z) — v(x)u"(x)
g—r+oo L+ o0
= lim w'(x)v" () — V'(x)u'(x) = + o .
x>+ o0
Suppose now that z(x) is any nontrivial nonoscillatory solution of

(L). By Theorem 1.2 and the assumption that (L) has oscillatory
solutions it follows that

2(x)z'()2"(x) = 0, sgnz(x) = sgnz’(x) # sgnz'(x)
for all z€[a, «), and we may assume without loss of generality that
(25) 2x) >0, ZE)<0, 2'x)>0

for all zela, «).
We now consider the Wronskian

2(x)  w(x) v(x)
Z(x) wi(x) V() |,
zli(x) ul'(x) ,Ull(x)

where u(x) and w(x) are the solutions studied in the above. By
Liouville’s identity,

2(x)  u(x) v(x) |z(a) w(a) wv(a)
Z(x) u(x) '(x)|= {z’(a) w'(a) v'(a)
2'(x) uw'(x) V'(x) 2'a) u'(@) v'(a)l
a) 0 0

=z 1 0|=za).
2@ 0 1

Thus, on expanding the determinant, we have

2(@)(w ()0 (@) — v'(@)u"(x)) — 2" (@) w(x)v"(x) — v(@)u’(2)
+ 2" (@) (u(@)v'(x) — v(eyu'(x)) = 2(a) .

According to (23) and (25) all the terms in the left hand side of the
above equation are positive and consequently,

0 < 2(@)(w'(x)v"(x) — v'(x)u"(x)) < 2(a) .
From (24) and the above inequality, it follows immediately that

lim 2(x) = 0.

T—+oo
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2. In this section we shall first investigate some rather general
properties of the solutions of (L) for the case p(x) <0 and ¢(x) = 0.
By placing stronger conditions on p(x) and ¢(x) we shall then give
two conditions under which the zeros of two linearly independent
solutions of L separate. Finally we shall give an oscillation condition
for the case p(x) <0 and g(x) — p'(x) < 0.

LEMMA 2.1. If p(x) =0, () =0 and y(x) ts any solution of
(L) sattsfying the initial conditions

Y@) =20, y(x)=0, and y'(z) >0
(z, € [a, =) arbitrary), then
y) >0, '@ >0, y'(@@ >0, y"()=0
Jor x > x, and

lim y(x) = lim ¢'(x) = + oo .
>+

T—+oco

Proof. We assert that ¢”(x) >0 for x = x,. To prove this we
consider the function

w(@) = y(@)y'(@)y" () .

If y”(x) vanished for some value of % greater than x, there would be
a smallest number «, >, such that y'(x,) =0. Since y(x,) = 0,
¥ (2) 0, y'(x) >0 we would have y(x) >0, ¥'(x) >0 for xe(x,, x,),
w(x,) = 0, and w(x,) = 0.

Moreover, since p(x) < 0 and ¢(x) < 0 it would follow that

dw(zx)
dux

= (¥"(@)y(2) + y" @)y (®)) — p(@)y (x)y(x)
—q(@)y(x)y'(x) >0 for ze(x, x,) .

But, by integrating the above inequality between %, and x,, we would
obtain the impossible inequality

0 = w(x,) + S w(t)dt > 0 .

%0
Thus y"(x) > 0 for = x, and since y(x,) = 0 and y'(x,) = 0, we see
that y(x) > 0, ¥'(z) >0, and ¥ (x) >0 for = > x,. Finally y"'(x) =
—p(x)y () — g(x)y(x) = 0 for = > x,, and from the above inequalities
it follows easily that

lim y(x) = lim y'(x) = + oo .
z—too Z—too
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LEmMA 2.2, If p(x) =0, g(x) =0, and u(x) = 0 is any non-
oscillatory solution of (L) then there exists a number cela, «) such
that either

w(x)u'(x) >0 for z=c,
or

wx)uw'(x) =0 for z=c.

Proof. If w(x) is any nontrivial, nonoscillatory solution of (L)
then by Lemma 2.1, it follows that u(x) can have at most one double-
zero, Without loss of generality we may suppose that u(x) > 0 for
x=b., To prove the lemma it is sufficient to show that w'(x) can
change from negative to positive values at most once in the interval
[b, ). Let ¢ be a point such that u{c) > 0, «#'(c) > 0, and «"(c) > 0.
By Lemma 2.1, u(x) >0 and w'(x) >0 for x >¢ and the proof is
complete,

THEOREM 2.1. If p(x) =0 ¢(z) =0 and (L) has one oscillatory
solution, then for any mnonzero, mnonoscillatory solution w(x) there
exist a number c€ [a, «) such that

sgn u(x) = sgnu'(x) = sgn w'’(x) #= 0
for x = ¢, and

lim|w(x) | = lim |u'(2) | = + o .
x->+oco T—+oo

Proof. If u(x) = 0 is any nonoscillatory solution then by the above
lemma there exists a number d ¢ [a, «) such that either w(x)u’(x) > 0,
or uw(xyu'(x) =0, for ® =d. Thus, lim u(x) exists finite or infinite.
Let v(x) be an oscillatory solution of Z(It;o and consider the Wronskian
W(x), w(x)) = v(x)u'(x) — v'(z)u(x). W(v(x), u(x)) must certainly
vanish for some values of x in the interval [a, o), otherwise the zeros
of u(x) and v(x) would separate and u(x) would be oscillatory. If b is
a zero of W(wv(x), u(x)), there exist constants ¢, and ¢,, both not zero,
such that

c,v(b) + exu(b) =0,
¢, v'(b) + cu'(by =0,

and
¢, v (b) + cu'(b) > 0.

We now consider the solution
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2(x) = cv(x) + cou(x) .
Since 2(b) = 2'(b) = 0, and 2”(b) > 0; it follows from Lemma 2.1 that
(26) lim 2(x) :wlﬂri Z(w) =+ o .,

L~r+4oo

As remarked above lim u(x) exists finite or infinite, If the limit were

22— o0

finite, we would have

lim ¢,0(a) = lim (#(2) — egu(@)) = + o= ,

xr—+oo

and v(x) could not be oscillatory. Thus lim w(x) = & < and from

T— 400

Lemma 2.2 we see that there must exist a number ce[a, ) such
that u(x)u'(x) > 0 for x = ¢. Without loss of generality let us suppose
that w(z) > 0 and «'(x) > 0 for z = ¢ so that

u"' (@) = —p(e)w'(c) — g(eyu(z) = 0

for © =z ¢. From this it follows that for some d = ¢ either w'(x) > 0,
or 4 (x) £0 for = d. If the second alternative held lim «/'(x) would

be finite since u'(x) > 0 for ® = d = ¢. But in this ca§g+gy (26)
lim ¢,v'(x) = lim (2'(2) — c,u'(x)) = + o
Z—r+oo z—+oo

and v(z) could not oscillate.
Hence

sgn u(x) = sgn w'(x) = sgnu’’(x) = 0
for # = d, and
lim |u(x) | = lim | w'(x) | = + o .
z—too &> oo
Whether or not the converse of this theorem is true remain an

open question. In the next theorem we will give a condition under
which the converse holds.

THEOREM 2.2. If p(z) =0, g(x) £ 0, p(x) — 2¢(x) = 0, and
[t — 2a00at = + =

then a mecessary and sufficient condition for (L) to have oscillatory
solutions ts that for every mnonoscillatory solution wu(x) # 0, there
exists a number cela, «) such that

(27) sgn w(x) = sgnu'(x) = sgnu'(x) = 0

Jor x = ¢, and
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(28) lim | w(x) | = hm | w(x)| = — oo .

z—+oo

Proof. The necessity follows from Theorem 2.1. To prove the
sufficiency we will employ the identity

(29) Fly(@)] = o/(ef — 25(@)y"(@) — p()y()
= Fly@] - | ') — 2anw0)ie

which holds for any solution y(x) of (L). This identity, which has

played an important role in most of the previous investigations of (L),

is originally due to Mammana [14]. It may be verified through

differentiation.

We assume that (27) and (28) hold for any nonoscillatory solution
w(x) of (L). Without loss of generality we may assume that u(z) > 0,
w(x) >0, w(x) >0, and " = —p(x)u'(z) — q@)u(x) = 0 for = > c;
otherwise consider — u(x). It follows that

u@) > L1 @ — oy
for > ¢, and hence by (29)

Flu@)] = Flu)] —w'©] E L) - 200)de

for © > c¢. Thus, by the hypothesis of the theorem,
lim Flu(x)] = — = .
T—+oo
This must be true for every nontrivial, nonoscillatory solution and

therefore, to prove the existence of an oscillatory solution, it is sufficient
to prove the existence of a nonzero solution y(z) for which

lim Fly(x)] = — o .

x—+ oo

To this end, we choose a basis of solution of (L) 2,(%), z,(x), and z,(x),
and consider the sequence of solutions of (L){y.(x)} defined by the
initial conditions

Yau(n) = yo(n) =0, yi(n)#0,
and the normalization
Yul) = €1,2:(2) + C22:(®) + C2u2o(%) + C3025(T) ,

with ¢, + ¢, + ¢, = 1. Here n is any integer greater than a. By
using the same type of argument that was used in the proof of
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Theorem 1.1, we can show the existence of a sequence of integers {n;}
such that the sequences

. (@)}, {v. (@)}, and {y ()}

converge uniformly on any finite subinterval of [a, «) to y(x), ¥'(x), and
y"'(x), where y(x) is a nonzero solution of L. Since p'(x) — 2¢(x) = 0,
it follows from (29) that F'[y,(x)] is a nonincreasing function of x.
Therefore, since Fly, (n)] =0, Fly,(2)] =0 for x€la,n;). Letting
n; approach infinity, we see that Fly(x)] = 0 for all ze[a, ) and
hence, lir+n Fly(x)] # — co. By the above remark the nonzero solution

y(x) must be oscillatory.

We now turn to the question of when the zeros of two different
oscillatory solutions separate.

LEMMA 2.3. If p(x) <0 and p'(x) — 2q(x) < 0 then the derivative
of any oscillatory solution of (L) ts bounded on [a, o).

Proof. Let us suppose that y(x) is an oscillatory solution of (L)
and that be[a, ) is a zero of y"(x). Since the function

Fly(2)] = y™(») — 2y(x)y"(x) — p(x)y*(x)
= Fly@] — | /) — 2q(¢)y(e)at
is nonincreasing and () < 0, we see that
YO = Y OF — Y = Fly®)] = Fly@)] .

Thus the values of ¥'(x) are bounded at its relative maxima and minima
and furthermore, since y(x) is oscillatory, y’(x) vanishes for arbitrary
large values of ®. From these two conditions we see once that y'(x)
is bounded on [a, ).

THEOREM 2.3. If p(x) <0, qx) £0, and 2q(x) — p'(x) =<0, then
the zeros of any two linearly independent solutions of (L) separate
on [a, «).

Proof. It is sufficient to show that if u(x) and v(x) are any two
linearly independent solutions of (L), then their Wronskian W(u(x), v(x))
does not vanish for any z€[a, «)., If we assumed on the contrary that

W(u(d), v(b)) = u(b)v'(b) — v(b)u'(b) = 0

for some b€ [a, ), then there would exist constants ¢, and ¢, both
not zero, such that
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cu(b) + c,v(b) =0,

e’ (b) + c,v’(b) = 0,
and

cu''(b)y + ¢ev(b) > 0.

On considering the solution z(x) = c,u(x) + ¢,v(x), it would follow from
Lemma 1.1 that

lim 2(z) = lim #2’(x) = + <o .

zo-too z—+o0
On the other hand, the assumptions that p'(x) — 2¢(x) = 0, p(x) < 0,
and that w(x) and w»(x) are oscillatory, would imply, by Lemma 2.3,
that both «'(x) and ¢'(x) and hence z'(x) = c,u'(x) + ¢,v'(x) are bounded
as z tends to infinity. From this contradiction it follows that Wi(u(x),
v(xz)) #= 0 for all z€[a, ).

THEOREM 2.4. If 9'(x) — 2q(x) = d > 0, p(z) = 0, and u(x) ts any
osctllatory solution of (L), then w(x)e LYa, «) and xljirzou(x) = 0.
Proof., Since u(x) is oscillatory the function
Flu(x)] = w'(2)* — 2u(@)w"(z) — p()u’(r)
= Flu@)] — | 170 — 20wt
is nonnegative for arbitrarily large values of x, namely, those values

of # for which u(x) vanishes.
Thus,

p—t

S”uz(t)dt < S”[p'(t) _ 2q()|ui(t)dt < ﬂ%@-] for all zela, =) .

d
Hence

rw(t)dt <t

a

Since the conditions this theorem include those of Lemma 2.3, it follows
that #'(x) is bounded. Therefore, since u(x)e L[a, ), it is easy to
see that

lim u(x) = 0 .

z—+o0

TuroREM 2.5. If p(x) < 0, ¢(z) < 0, and 228 + ¥ (g@)~ = o,
q(x) da?

then the zeros of any two linearly independent oscillatory solutions
of (L) separate.
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Proof. If w(x) and v(x) are two linearly independent oscillatory
solutions of (L) then by the above conditions and Lemma 1.4 the absolute
values of u(x) and v(x) at their successive maxima and minima points
form nonincreasing sequences. Since u(x) and v(x) vanish for arbitrarily
large values of #, it is easy to see that both u(x) and v(x) are bounded
on [a, )., If the Wronskian W(u(xz), v(x)) vanished at a point
bela, ), then by the same argument as was used in the proof of
Theorem 2.3, there would exist constants ¢, and ¢, such that

lim cu(x) + cv(x) = + <o .

00

But this is impossible if both #(x) and wv(x) are bounded. This con-
tradiction shows that w(u(x), v(x)) # 0 for all zela, ), and hence,
the zeros of u(x) and v(x) separate.

We conclude this section by deriving a sufficient condition for (L)
to have two linearly independent oscillatory solutions under the con-
ditions p(x) = 0 and q(x) — p'(x) < 0.

THEOREM 2.6. If p'(x) — g(x) > 0, p(x) < 0 and
|8V T 0@ — a(@) — 2(— p(e)*lds = + oo
then (L) has two independent oscillatory solutions.
Proof. By Theorem 1.3, if p'(x) — q(x) > 0, p(x) <0, and
|18V B (@) — a(a)) — 2= pla)*lds = + <= ,
then the adjoint of (L)

(L) ¥+ p@)y + (0'(@) — q@)y =0

must have some osecillatory solutions. By considering two independent
solutions with a common zero and then applying Theorem 1.2 it is
easy to see that (L) has two independent oscillatory solutions w(x) and
v(x). Furthermore, by Theorem 1.1, (L) has a solution w(x) which
does not vanish on [a, ). It is well known (see for example [21])
and can be easily verified, that the Wronskians

Vi) = w(x)v'(x) — v(z)w'(z) = WZ(x)E%<%%> ,

and

Ulx) = w(z)u' () — w(x)w'(z) = w(z) ——( M(?))
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are solutions of L. Moreover, they are linearly independent and
oscillatory.

3. In this final section, we will investigate properties of solutions
of (L) under the conditions p(x) = 0, q(x) = 0. In all of our theorems,
we will also require 2¢(x) — p’(x) = 0, and not identically zero in any
interval., The following lemma will serve as a basic tool in our
investigation.

LEMMA 3.1. Ifp(x)=0, g(x)=0, 29(x) — p'(x) = 0 and not identi-
cally zero im any subinterval of [a, ) and y(x) =0 s a non-
oscillatory solution of (L) which ts eventually monnegative with

0 = Fly(e)] = y'(c)’ — 2y(c)y"(c) — p(e)y*(c) ,

(c€ @, =) arbitrary) then there exists a number d = c¢ such that
y(x) >0, y'(x) >0, y"(x) >0, and y"'(x) =0, for © =d.

Proof. Since
Fly@)] = Fly©)] + | @at) — p@)wt)at

is strictly increasing, nonnegative at & = ¢, and vanishes at points
where y(x) has a double zero, it follows that if y(x) is any nonoscil-
latory solution which is eventually nonnegative, there exists a ¢; = ¢
such that y(x) > 0 for ® = ¢,. If b is any point in [¢,, ) such that
y'(b) = 0, then since

Fly(®)] = —y"(b)y(d) — p)yd)* >0, y"(6) <O0.

Consequently #’(x) cannot vanish more than once in [¢,, ), and there
exists a ¢, = ¢;, such that y(x) > 0, y'(x) = 0, for x = ¢,. We will now
show that %'(x) > 0 for « = c,.

Suppose on the contrary that y'(x) < 0 for x = ¢,. If (i), ¥"(x) =0
for x = b= ¢, then ¥'(z) <y'(b) <0 for x = b so that y(x) would
eventually become negative in [b, «), which is a contradiction. If (ii)
y"(x) = 0 for © = b = ¢,, then since y'(x) < 0 for x = b, we would have
lim %’(x) = 0, and consequently

zo+oo

lim Fy(x)] = }i‘}i Y'(2)* — 2y (2)y(w) — p(x)y(x)®

T—400

:,lfffi, — 2y(®)y"(x) — p(x)y*(x) = 0

which would contradict the fact that F'[y(c)] is nonnegative and F'[y(x)]
is strictly increasing. Finally, suppose (iii), %" (x) changed signs for
arbitrarily large values of z. Since for positive € > 0, there would
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have to exist arbitrarily large values of x for which 0 > ¥'(x) > —¢,
there would exist relative maxima & of y(x) with

0>y >—¢, y'&E)=0.
We would then have
Fly@)] =& — p@y'@) =&
for arbitrarily large values of #, which would imply that
lim Fly(x)] = 0.
T—r+-00
This, as in the above would be a contradiction. Thus, since the three
mutually execlusive and exhaustive possibilities all lead to a contradie-
tion when we assume y'(2) < 0 for x = ¢,, we must have y'(x) >0

for x = ¢,
From this it follows that

y”'(@ — ,p(@)y'(b) — q(ﬂs)y(%) <0

for © = ¢, and hence, y”(x) must eventually be of one sign. If y”(2)
were eventually negative, say for z = d, then

Y' () =y'(d) <0 for v=d

so that lim ¢'(x) = — c>. Hence, y”’(x) is eventually positive and there

exists a number d such that
y@) >0, y'@ >0, y"x>0

and y"(z) < 0, for @ = d.

LEMMA 3.2, If y(x)e Clla, ), and y(x) > 0, y'(x) >0, y""(x) < 0,
for x = a, then

lim inf - Y& > 12
v w0y ()
Proof. Consider the function
G@) = (@ — apo) = DLy
G(@) = 0, and G'@) = y() — T y(a)

— y(@) + @)z — o) + &gﬁf[y'w — @),

where a < ¢ < . Since y"'(x) £ 0 for 2 = a, y"(c) = y"(x), and hence,
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G'(x) > 0 for x > a. Thus since G(a) = 0, G(x) > 0, and hence,

y(%)
m>1/2, for z>a.

From this, the assertion of the lemma follows immediately.
By means of the two preceding lemmas and the classical Sturm
comparison theorem we shall derive an oscillation condition for (L).

THEOREM 3.1. If p(x) =0, q(x) =0, 2¢(x) — p'(x) =0 and not
wdentically zero in any interval, and there exists a number m < 1/2
such that the second-order differential equation

y" (@) + [p(x) + mag(x)]ly = 0

1s oscillatory, then (L) has oscillatory solutions. In fact, if y(x) s
any nonzero solution of (L) with

0 = Fly(o)] = ¥'(2)" — 2y(x)y"(z) — p(@)y*(x)
then y(x) ts oscillatory.
Proof. Suppose that wu(x) = 0 were a nonoscillatory solution of
(L), with Flu(c)] = 0. Without loss of generality, we could assume

u(x) to be eventually nonnegative. By Lemma 3.1, there would exist
a number d = ¢ such that

(30) u(x) >0, u'(x) >0, «'(x) >0, and «'"'(x) <0

for ©x = d.

Hence, by Lemma 3.2,

lim inf %) _ > 172,
sotoo axu'(x)

Thus, since m < 1/2, there would exist a number d, = d, such that
u(x)/u'(x) > mx for x = d,. By writing (L) in the form of a system

(31) uw=w
w' +pw + qu =20,

we could write the second equation in the form

(32) W’ + [p(x) + q(x) Z—((%] w(w) = 0.

Since by the above,
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(@) + q(2) )) = p(x) + () “,((”>)

> p(x) -+ meg(x) for z=d,,

w(@
w(
it would follow from the Sturm comparison theorem that since

+ () + mag(@)]y =

is oscillatory, all nonzero solutions of

(33) v+ o) + a2 Jy =0

defined for = d,, would oscillate. But this contradicts (30), for the
particular solution w(z) = w'(x). Thus, the assumption that wu(x) is
nonoscillatory leads to a contradiction.

Hanan [12], has shown that if 2¢(x) — p'(x) = 0, and not identically
zero in any interval, and (L) has one oscillatory solution, then any
solution which vanishes once is oscillatory., The following theorem,
which generalizes this result, will be useful in the remainder of our
investigation.

THEOREM 3.2. If 2q(x) — p'(x) = 0, and not identically zero in
any interval, and (L) has one oscillatory solution, then a mecessary
and sufficient condition for a solution u(x) = 0 to be mnonoscillatory
is that Flu(x)] < 0 for all xela, ).

Proof. The sufficiency is trivial. Indeed, if
Flu(x)] = w'(z)" — 2u(e)u’(x) — p(x)u’(z)

is negative for all x € [a, ) it is clear that w(x) x == 0 for all x € [a, ).
To prove the necessity we will show that if (L) has one oscillatory
solution and wu(x) == 0, Flu(c)] = 0, ce€[a, ) arbitrary, then wu(zx) is
oscillatory. If u(c) = 0, the assertion follows from Hanan’s result. If
u(c) + 0, we consider a second solution defined by the initial conditions

viey=0, v()=uc), v'(c)=uc).

Since v(x) is not identically zero and vanishes at ¢, we see from Hanan’s
result that v(x) is oscillatory. Furthermore, for any constants ¢, and
¢, both not zero

(34) Fleule) + cw(c)]
= cil'[u(c)]

+ 2ee(u'(e)v'(€) — u(e)v(c) — v (c)ulc) — p(e)u(c)v(c))
+ eF'[v(c)]
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= il [(w)] + 2c,c(u'(c)ule) — u'(c)ulc)) + ciulc)
= eiF'[u(c)] + cau(c)* = 0 .
Consider the Wronskian
Wiu(x), v(x)) = w(x)'(z) — v(z)w'(x) .

If W(u(x), v(x)) vanished at a point d > ¢, then there would exist
constants ¢, and ¢, such that

cu(d) + cvd) =0,
cu'(d) + ev'(d) =0,
and
c+e#0.
If z(x) were the solution cu(x) + ¢,v(x), then F'[2(d)] = 0 and by (34),
Fiz(¢)] = ciF'|u(c)] + cule)* = 0 .
But

Flxd)] = FIa@)] + | (2q@) - p@)e)da
> Flz(c)] = 0.

This contradiction shows that W(u(x), v»(x)) # 0 for x >¢. Hence,
since v(x) is oscillatory, u(x) is oscillatory.

The next theorem shows that solutions satisfying the conditions
of Theorem 3.2 actually exist. Since the method of construction has
already been given by Gregus [11], and is similar to the method used
in Theorem 1.1 and Theorem 2.2, we will only sketch the proof.

THEOREM 3.3, If 2q(x) — p'(x) =0, and not identically zero in
any interval then (L) has a solution wu(x) for which

Flu(@)] = w/(@) — 2u(@)yu’(x) — plr)u()
= Flu(@)] + | (2q0) — o'y

1s always negative, Consequently u(x) ts nonoscillatory.

Proof. For each integer n a, we consider the solution y,(x) defined
by the initial conditions

Yu(n) = y(n) = 0, y,(n) # 0,

and the normalization
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Yul) = Clnzl(x) + C2nzg(x) + Ca2s()
Clu + Ciw + 65, =1,

where z,(x), 2,(x), and z,(x) are a basis of solutions of (L). As in
the proof of Theorem 1.1 and Theorem 2.2, one can show the
existence of a sequence of integers {%;} such that the sequence {y,{z)},
{y. ()}, and {y) (%)} converge uniformly on any finite subinterval of
[@, =) to u(x), w'(x), and «”(x) where u(x) is a nontrivial solution of
(L).

Let b be an arbitrary point in the interval [a, «). Since
Fly, ()] =0, and Fly, (v)] is strictly increasing, Fly, (b)] <0 for
n; > b. Thus, since

Flu(®)] = lim Fly, ()],

Flu(b)] 0. As bis arbitrary Fju(x)] <0 for all x ¢ [a, ). Finally
if equality cannot hold at any point ¢, since this would imply that
Flu(x)] > 0 for © > ¢, as F'lu(x)] is strictly increasing.

In Theorem 3.5 below we will need a result due to Hanan [12],
which we state as a separate theorem.

THEOREM 3.4, If p(x) =0, q(x) =0, and the second-order differ-
ential equation
y'(@) + p(x)y = 0

nonoscillatory, and (L) has one oscillatory solution, them any non-
trivial, mnonoscillatory solution does mnot wvanish on [a, ) and is
always decreasing in absolute value.

In case the oscillation criteria of Theorem 3.1 fails, the following
theorem gives a nonoscillation condition,

THEOREM 3.5. Suppose p(x) = 0, g(x) = 0, 2q(x) — p'(x) = 0 and
not identically zero in any interval p() = 0, and rq(x)dx < + oo,

then if the second-order differential equation
(35) v + o) + 2 awat]y = 0
18 monoscillatory, (L) has mo osctllatory solutions.
Proof. We will prove that if the first conditions are met, and

(L) possesses oscillatory solutions, then the equation (85) is oscillatory.
If the second-order equation
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(36) Yy + p)y =0

is oscillatory the assertion follows trivially from the Sturm comparison
theorem. If (35) is nonoscillatory then, by Theorem 3.4, any nontrivial
nonoscillatory of L, and in particular the nonvanishing solution u(x) of
Theorem 3.3, is steadily decreasing in absolute value on the interval
[a, ), Let us suppose that u(x) > 0 so that w(x) is asymptotic to a
nonnegative constant ¢ as x tends to infinity.

It is clear that for any positive ¢ > 0, we must have
(37) 0=u'(z)<e

for arbitrarily large values of x. Indeed, if %”(x) were eventually
negative, then since %/(x) =< 0 for all xz€ [a, ), w(x) would eventually
become negative; if #”(x) = ¢ > 0 from a certain point on, wu(x) could
not be monotonically decreasing. Since p(co0) = 0, for sufficiently large
values of =,

(38) 0= p(x) <e.

Thus, since lim u(x) = ¢, it follows that for arbitrarily large values
r—+4oo

of z,

(39) 0=px)y<e, O<u@<c+1

o=u"x)<e,
and hence, for arbitrarily large values of z,
(40) Flu(x)] = w'(x)* — 2u(x)u”(x) — p(w)u(x)’
= —28(c+ 1) —elc+1).

Since F[u(x)] is always negative (see Theorem 3.3) and strictly incre-
asing, (40) implies that

lim F'lu(x)] =0,

or
w'(x)’ — 2u(z)u(x) — plr)u’(x)

= | a) — PO
Thus, since u(x) # 0 for @ = v < + <, we see that

2u' (x)  u'(x)
u(x) uX(x)

:—mm+—347mm4ﬂwwww.
u(x)* Je

(41)



THE BEHAVIOR OF SOLUTIONS OF THE DIFFERENTIAL EQUATION 461

Using the fact, established earlier in the proof that u(z) is decreasing
in absolute value and the assumption that p(e) = 0, we may conclude
that

1
w(x)?

= | "200) — ()t = 2| gt + (z) .

[ @a®) - peywear

Hence, by (41)

2u'(x)  w'(x)
(42) o e = 2 atyat

for all xe|a, ).
Let

y(s) = (@) =,

where 2(x) is chosen so that y(x) is a solution of (L). We have on
substituting into (L),

no Bu(x) 3u''(z) _
2+ u—(x)—z(w) + [p(x) + W]z(x) =0,

and after making the substitution
2(x) = w(zulx)™",

we obtain

(43) w’(x) + [ () + <2u"(”) — u'(x)z)]w(oc) =0.

u(x)  w@)

Any nonzero solution w(x) of (43) must be oscillatory; otherwise the
solution

(44) @) = u(x)gxu(t)”"“w(t)dt

would be a nontrivial, nonoscillatory solution of (L) which would vanish
for © = a, and this would contradict the assumption that (L) has
oscillatory solutions and Theorem 3.4. Since by (42), we have

2we) _ way
v+ g (S = o)

= p(x) + S q(t)dt
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it follows from the Sturm comparison theorem, that since the differential
equation

Y+ [p(w) - %(2;”(;;”) — tgi)]y =0

is oscillatory, the equation
" + [p(ac) + %qu(t)dt]y =0

is oscillatory.

We conclude by proving a generalization of a theorem due to
Zlamal [26]. At the same time, we will derive a sufficient condition
for all nonoscillatory solutions to be constant multiples of one particular
nonoscillatory solution.

Zlamal has shown that if p(x)=d >0, ¢(x) >d, and g(x) — p'(x) = 0,
then any nonoscillatory solution y(x) of (L) has the property that

y(x)e L|a, ) and
lim y(x) = lim ¢'(x) = 0 .
z—-Foo

ar—>-oc0
We relax the condition that p(x) be bounded below by a positive
constant.
THEOREM 3.6. If p(x) =0, q(x)=d >0, g(x) — p'(v) =0, and
y(x) s any monoscillatory solution of (L) then
y(x) e Lla, =) and
lim y(x) = lim y'(x) = 0.
T+ o0 200
Moreover, all nonoscillatory solutions of (L) are constant multiples

of the momnoscillatory solution w(x) whose existence was proven in
Theorem 3.3.

Proof. If y(x) is any nonoscillatory solution of (L) we may assume
that y(x) = 0 for x = ¢. From the inequality

y" (@) + p(@)y(x)
= y"(c) + p(e)y(c) — Sj(lI(t) — p'(®)y)dt
< y"(e) + pleyy(e) ,

which follows from integration of (L) and the conditions of the theorem,
we see that

y'(x) + p(x)y(x)



THE BEHAVIOR OF SOLUTIONS OF THE DIFFERENTIAL EQUATION 463

is always bounded above and since p(x)y(x) = 0 for x = ¢, it follows
that 9" (x) is bounded above for x = ¢. Henee there exists a positive
constant & such that

(45) 2y" (@) + p(e)y(e) = k

for z = ¢.
Since ¢(x) = d >0 and p(x) = 0, there certainly exists a positive
constant m < 1/2 such that the second-order differential equation

w”(x) + [p(x) + maq(x)lu = 0
is oscillatory. Thus, since
2q(x) — p'(w) =2 d + g(z) — p'(®) =d >0,

it follows from Theorem 3.1 that (L) has oscillatory solutions and hence,
from Theorem 3.2, F'|y(x)] < 0 for all x€la, ~~) or

46)  Fly(@)] — v'(x)* — 2y(@)y"(x) — p(x)y*(x)
— Fly(a)] + S:(Zq(t) PO <0, v >a.

Therefore

a| i = | awwodr = | @aw — vy
= —Flyl@)] < + =,
from which it follows that y(x)e L*[a, o).
From (45) and (46), we see that
(47) ¥ () = (2y"(2) + p@)y(@)y(x) < ky(x), «>c.

If y(x) did not tend to zero as x tended to infinity, the for some
e >0, we would have y(x) > 2¢ for arbitrarily large values of z. On
the other hand, since y(x)e L*a, ), we could also find arbitrarily
large values of x for which y(x) < e. Thus we could find sequences
{x,} and {x}} with 2z, < zF < #,,, and
limz, =lima}f = +

2— oo 2400

such that
y(xr,) < e, ylaf) > 2.

By elementary continuity considerations, we could then find sequences
{z,} and {z}} such that

Ty < 2, < R <@k,
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(48) yz,) =¢, y@@¥) =2¢,
and
(49) e< y(x) < 26 for xze(z,, 2.

Since y(x) = 0 for © = ¢ and the intervals (z,, 2¥) are disjoint, it would
follow from (49) that

S —z)E =3 Y"y(t)zdt
n=1 n=1 zfn
< ry(t)zdt < 4 oo

and hence,

(50) lim (2 — 2,) = 0 .

n—r+4 o0
By the mean value theorem, there would exist a sequence of points
¢, such that z, < ¢, <z} and

(51) ’Z/'(C ) — y(z:) — y(zn) — € .
v ¥ — 2z, 2 —z,

Hence, from (50)

lim y'(e,) = + o .

z—+oco

But, from (47) and (49),
(52) y'(e,)’ < 2ke .

Therefore the assumption that lim y(x) + 0 leads to a contradiction;
consequently

(53) lim y(x) = 0,

x— 400

and from (47),
(54) lim 9'(x) = 0 .

T——+o0
Suppose now, that in addition to the nonvanishing solution w(z),
whose existence was proven in Theorem 3.3, (L) had a second
independent nonoscillatory solution w(x). If we chose ¢ such that
v(a) — cu(a) = 0, then the solution w(x) = v(x) — cu(xr) would have
the property that

Flw(a)] = w'(a)® — 2w(@)w”(a) — pl@)w(a) = w'(a)* = 0 .

By Theorem 3.2 and the fact, established earlier in the proof, that
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(L) has oscillatory solutions, w(x) would be oscillatory. If ¥ were any
zero of w(x) with & > a, then since F[w(wx)] is strictly increasing,

Flu@] = @) = Flw@] + | @) — p@)wied
> Flw(@)] = 0.
As w(x) would vanish for arbitrarily large values of

l{rilmsup |w'(x)| >V F[w@)] >0.

But, as u(x) and v(x) are nonoscillatory, it would follow from (54) that

lim w(x) = hm v’(x) cuw'(x) =0

> +oo

which is a contradiction. Therefore every nonoscillatory solution must
be a constant multiple of u(x).

The author is grateful to Professor Richard A Moore for his warm
encouragement and many valuable suggestions.
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