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In several previous papers I. M, Isaacs and this author
studied properties of groups which are related to the degrees
of their absolutely irreducible representations and in particular
to the biggest such degree. The results were concerned mainly
with the existence of ‘‘large’ abelian subgroups in these
groups. It was found that much more could be said in the
p-group-like situation in which the degrees of the irreducible
characters of group G are all powers of a fixed prime p. We
say group G has r.x.e (representation exponent ¢) if the degrees
of all the irreducible characters of G divide p°. In this paper
we characterize groups with r.x.2. It is found that the prime
p = 2 plays a special role here. This supports the conjecture
that additional and more complicated groups with r.x.e occur
for p < e. With a few exceptions for p = 2, all groups G with
r.x.2 are shown to have either a normal subgroup of index p
with r.x.1 or a center of index dividing 7p°.

1. Preliminary remarks. We will use here the notation and many
of the results of the first four sections of [5]. For example, we need
the characterization of groups with r.x.1 given there. From this we
obtain the following.

(1.1) LemMA. (i) Let N have r.x.l. Then either N has a
characteristic abelian subgroup of index p or [N: 3(N)] divides p°
where 3(N) denotes the center of N.

(ii) Let N be a normal subgroup of G. Suppose G has r.x.e,
N has r.x.1l and [G: N| = p*. Then G has a normal abeltan subgroup
A with [G: A] dividing p"**.

Proof. We consider (i) first. By Theorem C of [5] we can assume
that N has a normal abelian subgroup A of index p. If A is not
characteristic then N has another such subgroup B. Thus N = AB,
and since both 4 and B are abelian, ANB < 3(N). Since [N: ANB] = p?,
this results follows.

If N in (ii) has a characteristic abelian subgroup A of index di-
viding p* the result is clear. Otherwise by (i), [V: B(N)] < »°. Now
B(N)4G and G/3(N) is a p-group. Let A be the inverse image in G
of a central subgroup of order p of this quotient. Then clearly 4 is
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a normal abelian subgroup of G of index dividing p"*:.

We will have need for some known results, which we tabulate below.

(1.2) LeEmMMA. Let G be an arbitrary group.

(i) Let B be a normal abelian subgroup of G such that G/B s
a p-group. Then B can be extended to A, a normal self-centralizing
abelian subgroup of G.

(ii) Let N be a nontrivial normal subgroup of p-group G. Then
NN3(G) > 1.

(iii) Let K and N be subgroups of G with (K, M) < 3(G). For
any ke K the map m — (k, m) ©s a homomorphism of M into 3(G).
For any me M the map k— (k, m) ts also a homomorphism. In
particular, if K = G and M = 3,G), the second center of G, then the
result holds and hence (G, 8.@)) = 1.

(iv) Let x be an element of order p acting on an abelian p'-
subgroup H of G. Then x acts fixzed point free on H/Cy(x).

Proof. (i) If &(B) > B then since B is normal so is €(B) and
we can join them by a principal series of p-group G/B. Thus we can
find subgroup C normal in G with €B)2C > B and [C:B] = p.
Clearly C is abelian and we continue this process.

(ii) Since G is nilpotent, N contains V a subgroup of order p
normal in G. G acts by conjugation on V, a group with automorphism
group of order p — 1. Hence G fixes V and V < 3(G).

(ili) For the first case we use the commutator identity ([2], p. 150)
(u, vw) = (uw, w)(u, v)* to obtain

(k, mymy) = (k, mo)(k, m,)" = (k, m.)(k, m,)

since (k, m,) is central. For the second case we use (uv, w) = (u, w)(v, w)
to conclude

(f.ke, m) = (K, m)*(ky, m) = (k,, m)(k., m)

since (k,, m) is central.

(iv) Suppose x does not act fixed point free on H/C,(x). Set
H, = G4(x) and let H, be the complete inverse image in H of €y ().
Then & acts on H,. Set G, = {x, H,). Clearly H, = 3(G,) sinece H, > H,.
Also G,/H, is abelian, so G; < H, = 3(G,). Hence G, is nilpotent of
class 2 and so the p- and p’-elements commute. Thus « centralizes H,,
a contradiction.

(1.3) LeEmMMA. Let G be a group of order p', Then G has a
normal abelian subgroup A of index p,
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Proof. If G is abelian the result is obvious. Suppose | 3(G)| = p°.
Then we need only take A to be a subgroup of index p containing
3(G). Thus we can assume |3(G)| = p. Let (e B8,G) — B(G) with
{re 3(G). By (iii) of the above lemma g — (g, {) is a homomorphism
with image B3(G) and kernel €({). Hence [G:CE()]=p. But
[€(0): KL, B(G))] = p, so €(L) is abelian and the result follows.

(1.4) LEMMA. Let G be a group of order p° which vs not elementary
abeltan. Then we can find g 3(G) and he G so that {g,h> is a
normal subgroup of order p.

Proof. If 3(G) contains an element of order p* we can take this
for g and = 1. So we can assume that 3(G) has period p and also
that G is nonabelian., We show now that G has a central subgroup N
of order p with N == G’. This is clear if |3(G)| >». If |B(@)|=»p
and G’ = 3(G), then |G'| = p and p* = |G: 3(G)] = p* by Lemma 2.3
of [5], a contradiction. Thus we can find such an N with N < NG’
and both groups are normal. Choose L normal in G with | L| = p* and
N < L € NG'. The generators of L, one from N and the other from
G, are the required elements.

2. Groups with nontrivial kernel. For convenience we make
the following definition.

(2.1) DEFINITION. We say e(G) = e if G has r.x.e but not r.x.(e — 1).
If e(G) =2 we set 2(G) =N ker#® where # runs over all irreducible
characters of G of degree p*.

In this section we characterize those groups G in which the kernel

2(G) is nontrivial.

(2.2) PrOPOSITION, Let e(G) =2 and suppose 2(G) > 1. Then
p == 2 and G has a normal subgroup N of index 2 such that 2(G), N’
and (@, 3(N)) are the three distinet subgroups of order 2 of a central
subgroup U of type (2,2). Moreover, we have [G: 3(G)] = 2.

Conversely, let [G: 3(G)] = 2! and let G have a normal subgroup N
of index 2 such that N’ and (G, 3(N)) are distinet central subgroups
of order 2. Then for p =2 we have ¢(G) = 2 and (G) is the third
subgroup of order 2 in {(N’, (G, 3(N))> = U.

Proof of converse. Since N is a maximal subgroup of G and 3(N)
is not central in G we must have N = €3(N), the centralizer of the
center of N. Thus 3(G) = N and hence 3(G) < 3(N). Now N is
nonabelian so [N: 3(N)| = 2°. We show now that for p = 2, ¢(G) = 2.
Clearly e(G) = 1 or 2 by Propositions 1.1 and 1.4 of [5] since [G: B(G)]=2",
Hence it suffices to show that G does not have r.x.1,
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We suppose G has r.x.1. By Lemma 1.1 (i), G has a normal abelian
subgroup A of index 2. Clearly A+ N so B=ANN is a normal
abelian subgroup of N of index 2, Since N is nonabelian €,(B) = B.
Hence B > 3(N). Thus €3(N) 2<N, A)> = G, a contradiction, and we
have ¢(G) = 2.

Let 6 be a character of G of degree 2 and let 6| U = 2°\. Since
N cannot be abelian in the representation associated with 6 we see
that N’ & ker ». Similarly 3(N) is not central in the representation
since [G: 3(N)] = 2° so (G, 3(N)) & ker . Hence, since U has only
three subgroups of order 2, the third subgroup must be contained in
the kernel of M and hence in the kernel of 4. Since this is true for
all such 6, we see that this third subgroup is contained in 2(G). We
will prove in the forward direction of this proposition that | 2(G)| < 2.
Therefore, with this additional fact, the result follows.

(2.3) LEMMA. Let G be an arbitrary group.

(i) Let g and h be two nonidentity elements of G. Then there
1s an trreducible character y of G with g, h ¢ ker y.

(ii) Let G, G, and G, be three monidentity subgroups of G.
Suppose that for every irreducible character ¥ of G we have G; S ker
for some i =1, 2, or 3. Then ithe G; are the three distinct subgroups
of order 2 of an abelian subgroup U of G of type (2, 2).

(iil) Let G, G,, G; and G, be four monidentity subgroups of G.
Suppose that for every irreductble character ¥ of G we have G; = ker
for some 1 =1,2,3 or 4. Then at most two of the G; can have
order = 4.

Proof. Let C[G] denote the group algebra of G over the complex
numbers C. We use the fact that this algebra is semi-simple. Thus,
if in the algebra an expression of the form []; (1 — g¢;) is not zero, then
we can find an irreducible representation .~ with 2 (II.(1 — g;) # 0
and hence 7°(g;) # 1.

(i) It suffices to show here that (1 —g)1 — k)% 0. But if
1 —9¢g)1 —h) =0 we have

1+gh=9g+h.

Since 1 occurs on the left, it occurs on the right, a contradiction since
g+#1and h#1,

(ii) Let g;€ G, with g; # 1. Then for all such choices we must
have (1 — g,)(1 — g.)(1 — g5) = 0, or

1+ 99 + 095 + 9.9 = 9. + g2 + 95 + 9:9:05 .

Since 1 occurs on the left, it oceurs on the right. But g, # 1, so
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1=g9.9. If g, and g, are fixed, then this holds for all g,e G, — {1}.
Hence |G;| = 2 and similarly for G, and G,. Also the above equation
implies that G,, G, and G, are the three distinet subgroups of U =
{G,, G,, G;) which is abelian of type (2, 2).

(iii) Suppose first that two of these groups have a nontrivial in-
tersection. Say G;NG,= H > 1, Then applying (ii) above to the
groups G,, G, and H we see that |G, | = | G,| = 2, so the result follows
here. Hence we can assume that for 7 j we have G;NG, = 1.
Suppose g€ G can be written in the form g = g;9;, with g,e G; and
9;€ G;. Then for fixed ¢+ and j this representation is unique. If not,
we can find §;€ G; and g, € G; with g;+ g; and g = g,9; = §.9;. Hence

g:'9: = 9,9;'€G:NG; =1,

So g; = §;, 9; = §;, a contradiction.

Let us assume | G,| = 3 and | G, | = 4. We show that |G,| = |G,| = 2.
This will clearly yield the result. Choose nonidentity g¢,€ G,. Since
|G,| = 8, we can choose nonidentity g, € G, with ¢, ¢ 9.G,. This follows
by the uniqueness mentioned above. Since |G;| = 4, we can choose
nonidentity g,¢ G, with ¢, ¢ ¢9,G, and ¢, ¢ G,g;. Now for all g, € G, — {1}
we have

(I =g)1 = g)I —g)A —97) =0,

or

1+ 979 + 979 + 9797 + 9295 + 9.971 + 997 + 91'9.9:97"
=97 + 9.+ g+ 97" + 90'0:0: + 97'9:951 + 97'9:97 + 9:0:9: .

Since 1 appears on the left side, it must appear on the right. But g; # 1
and g, ¢ G,g,, 9.G, or g;G,. Hence we must have 1 = ¢,9,9;' or g, = 9.0.
Since this is true for all nonidentity g,€ G,, we have |G,| = 2. Finally
interchanging the roles of G, and G, yields |G,| = 2 and the result
follows.

(2.4) LEMMA. Let e(G) =2. Let N be a normal subgroup of G.
Then

(i) if e(N) =2 then QG)NN< QN),

(ii) if e(G/N) = 2 then AG)N/N < 2G/N),

(i) 2G) < G

Proof. Let xe 2G)NN with = 1. If x¢ 2(N) we can choose
character @ of N of degree p* with x ¢ ker . Let y be a constituent
of @*. Then p* =degp = degy < p*, sodegy = degp and | N = o.
Hence x ¢ ker x and deg y = p* a contradiction. Thus x € 2(N) and (i)
follows.

Part (ii) follows easily, since any character of G/N of degree p*



480 D. S. PASSMAN

can be viewed in a natural way as one of G.

Let « be a nonidentity element of 2(G) and let 0 be a character
of G of degree p*. We have xckerd. If x¢ G’ then we can find a
linear character A of G with Mx) # 1. This implies that O\ is an ir-
reducible character of G of degree p* with x ¢ ker O\, a contradiction.
This completes the proof.

(2.5) LEMMA. Let ¢(G) =2 and 2AG) > 1. Suppose also that G
has a nmormal subgroup N of index p with €3(N) = N. Then p = 2,
1Q(G)| =2, |G: 3(G)] = 2* and 2AG), N’ and (G, 3(N)) are the three
distinct subgroups of order 2 of a central subgroup U of type (2.2).

Proof. Since 2(G) € G’ we see that Q(G) S N. Set G, = 2(G),
G. = (G, 3(N)) and G, = N’. By assumption, G, > 1 and since ¢(G) = 2,
N is nonabelian and G, > 1.

Suppose G has a character ¥ which does not contain either G,, G.
or G, wholly in its kernel. Since 2(G) = G, is not in the kernel and
2(G) € G, we see that degy =p. We consider y|N. If y|N=o
is irreducible, then clearly 3(IN), being central in the representation
associated with ¢, is in the center of y. But this implies that
(G, 3(N)) = G, < ker x, which is not the case. On the other hand,
suppose X | N =N, + Ny, + ++- + A, a sum of p linear characters. Then
clearly N’ = G, < ker %, again a contradiction. Thus no such ¥ exists
and by Lemma 2.3 (ii) we see that G,, G, and G, are the three distinct
subgroups of order 2 of U = {G,, G,, G,» which is abelian of type (2, 2).
Since the G; are clearly normal subgroups of G, they are central since
they have order 2, and thus U is central. In particular 3(N) = N,
so N is nilpotent of class 2. Since (V) is abelian and central in N,
this implies that N’ is a p-group. Hence p = 2.

If ¢(N) =2, then 2(G) =2(G)NN<S QN)ES N’ and so G, = G,
which is not the case. Since N is nonabelian we must have
¢(N)=1. By Lemma 2.3 of [5], [N: B(N)] =2°. Now G/N acts on
B(N) and |(G, 3(N))| = 2. Thus applying Lemma 1.2 (iii), since
3(N) 2 3(G), we have [3(N): 3(G)] = 2 and hence [G: 3(G)] = 2¢. This
completes the proof.

Proof of Proposition 2.2. By induction on |G|. If G has a normal
subgroup N of index p with €3(IN) = N, then the result follows by
the previous lemma. Hence we assume that for all such N, 3(N) <
3(G) and we obtain a contradiction.

We first show that G is nilpotent. Let N be a normal subgroup
of G of index p (see Proposition 3.4 of [5]). If e(N) =2 then
AG =G S N so 2AN)>1. Hence p=2 and [N: 3(N)] = 2* by
induction, Thus [G: B(G)] = 2' or 2°, Now suppose N has r,x,1, Clearly
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N is nonabelian. If [N: 3(N)] = p* or p°, then [G: 8(G)] = p* or p*.
Hence in either case, G is nilpotent. The remaining possibility is that
N has a characteristic abelian subgroup 4 of index p (Lemma 1.1 (i),
and so G has a normal abelian subgroup A of index pZ

We study this latter case. We show first that G/A is abelian of
type (p, p). Suppose not. Then G/A is cyelic, and so there is a unique
subgroup N of G with G > N > A. Clearly N is nonabelian. By Lemma
2.3 (i), G has an irreducible character ¥ not containing either N’ or
Q(G) wholly in its kernel. Since 2(G) & ker %, we see that deg y = p.
Also N’ & ker y implies | N = @ is irreducible. Now A is abelian, so
Y|A=@|A=X\-+N\+ -+ + X\, asum of p distinet conjugates since,
if p|A=a>iN, we have a’t = [N: Al = p. Let T be the inertia
groupof N ==X,. Then G >T > A, so T = N. But this implies that
A, is fixed by N, contradicting | A =X\, + «-- +\,. Thus G/A is
abelian of type (p, p).

Write A = H X P where P = &,(A) and H is the Hall p’-subgroup
of G. Both are clearly normal in G. We show that H is central. If
not, let H, = HN3(G) < H. Let g be an element of order p of G/A.
Now G/A acts on H, since A is abelian, Clearly €,(¢9) 2 H,. On the
other hand €,(g9) S 3({4, ¢0) S 3(G) by assumption, since (A, ¢> has
index p in G. Hence H, = €4(9). By Lemma 1.2 (iv), ¢ acts fixed
point free on H/H, and this is true for all g. Then group G/A, which
is abelian of type (p, p), acts fixed point free on H/H,, a contradiction
([1], Theorem V, p. 336). Hence H is central and G is nilpotent.

We have G = 9(G) X &,(G). Let {e 3,(G) — 3(G) with {7 e 3(G).
For any ge G we have (g,{)e 3(G) and (g, ()" = (9,{?) = 1. Hence
(G, ) is central and has period p. If |(G,{)| = p, then [G:E)] =»p
and (e 3C() € 3(G), a contradiction. Henece | (G, {)| = p>. Thus we
can choose a central subgroup J of order p with J 2 2(G). Consider
G = G/J. We show first that ¢(G) = 2.

Since 2(G) = G' we see that G is nonabelian. If ¢(G) =1 then
either G has an abelian subgroup B of index p or [G: 3(G)] = p°.
Suppose the first case occurs. Let B be the complete inverse image of B
in G. Clearly B is nonabelian. If ¢(B)=2 then (G) < B’ = J, a contra-
diction. Hence e(B) =1 and [B: 3(B)] = p* by Lemma 2.3 of [5]. Thus
|G: 3(G)] = »* or p’, which contradicts e(G) = 2. On the other hand, sup-
pose |G: 3(G)] = p’. Let { belong to the complete inverse image of 3(G)
in G. Then (G,{) S J so [G:E({)] =1 or p. Hence {c BE() = 3(G)
and |G: 3(G)] = p* or p’, again a contradiction. Thus ¢(G) = 2.

By Lemma 2.4 (ii), 2(G) > 1. Hence by induction p = 2, [G: 3(G)] = 2*
and G has a normal subgroup N of index 2 with |N: 3(N)] = 2°. As
in the above, [G: 3(G)] = 2¢ implies that [G: 3(G)] = 2‘. Let D be the
complete inverse image in G of 3(N). Since [D: 3(G)] =2, we can
write D = {3(G), 7> with e 3,G). Now |(G,3(N))| =2 and |J| =



482 D. S. PASSMAN

p=2s0 |[(G,n)| =2or 4. If |(G,7n)| <2 then » would be central, a
contradiction. Hence |(G,7)| = 4 and [G: €(n)] = 4. This means that
[€(): <B(G), p>] = 2 and hence A = E(y) is a normal abelian subgroup
of G. Moreover, since 7° € 3(G), (G, n) has period 2, Hence G/4A = (G, 1)
is abelian of type (2, 2).

Let us denote by N,, N, and N, the three subgroups of G satisfying
G > N; > A. Since clearly A = €(A4) 2 B(G) we have N; 2 3(G) and
hence [N;: 3(N,)] = [N:: 3(G)] = 2°. Each N, is nonabelian and has a
normal abelian subgroup of index 2. Hence, by considering the action
of N;/A on A, we obtain |N/||3(N,)| =|A]| and so |N/| =4, Set
G; = N!fort=1,2,3 and set G, = Q(G). Since |G,| = |G.| = |G,| =4
and |G| > 1, we see by Lemma 2.3 (iii) that there is an irreducible
character ¥ of G with G; £ ker y for 7+ =1, 2, 3, 4.

Since 2(G) £ ker ¥ and 2(G) S G’ we see that deg ¥ = 2. We con-
sider y|A. Since A is abelian, we have either y|A =2\N or ¥ | A =
A 4+ N.. In the first case A would be central in the representation.
This would imply that each N, is abelian in the representation and hence
G;= N! Z kery for © =1, 2,3, which is not the case. Thus y|A4 =
A + No. The inertia group T of \, satisfies G > T > A so T is one of
the N;, say N,. Suppose ¥ | N, = ¢ is irreducible. Then @ | A =\, + A,
which is not the case, since )\, and \, are not conjugate in 7= N,.
Hence x| N, has only linear constituents and so G, = N, & ker ¥, again
a contradiction. This completes the proof.

We show by example now that such groups exist.

(2.6) ExamMPLE. Let D be the dihedral group of order 8 and let
D* =D x D. Now for p = 2, ¢(D) =1 and in fact D has precisely one
nonlinear character. Then clearly D* has e¢(D*) = 2 and precisely one
character of degree 2:. But D* is not a faithful linear group, since
its center is not ecyclic, so 2(D*) > 1.

The reason for studying groups G with 2(G) > 1 can be seen from
the following.

(2.7) ProprOSITION. Let G have r.x.2 and suppose that G has a
normal subgroup N of index p with ¢(N) = 2 and N = €3(N). Then
p=2, (G,3(N)) =Q2(N)>1 and |[G: 3(G)] = 2°.

Conversely, let G have a subgroup N of index 2 with e¢(N) = 2
and Q(N) > 1. Suppose also that (G, 3(N)) = 2(N). Then for p =
we have ¢(G) = 2.

Note that, using the structure of groups N with Q(N) > 1 as given
in Proposition 2.2, the structure of group G above is as follows. G
has subgroups N and K with
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G>N>K>3K)>3N)>36) >1
(I B (- |_|
2 2 2 2 2

and (G, 3(N)), (N, 3(K)) and K’ are the three distinet subgroups of
order 2 of U, an abelian subgroup of type (2, 2) contained in B(N).

Proof., We show first that 2(N) 2 (G, 3(N)) > 1. Let x be a
nonidentity element of (G, 8(N)). If x¢ Q(N), then there exists a
character @ of N of degree p* with x¢ ker . Let x be a constituent
of @*. Then, since ¢(G) = 2, we have p* = deg ¥ = deg @ = p>. Hence
degy =degp and x| N = @. Thus 3(INV) being central in the repre-
sentation associated with @ is central in the representation associated
with ¥. But this implies that (G, 3(N)) < ker y N N = ker @, which is
not the case. Thus 2(N) 2 (G, 3(N)) > 1 and Proposition 2.2 applies
here.

Clearly N 2 3(G), so 3(N) > 3(G). Now we have p»p =2 and
[N: B(N)] = 2'. Moreover, [2(N)| =2 and so |(G, 3(N))| =2, Let
G ={N, 7). Then 3(G) = E(n) N 3(N) is the kernel of the homomorphism
a—m,a) of J(N) into (G, 3(N)). Hence [3(N):3(G)] =2 and
[G: 8(G)] = 2°. This completes the forward direction of the proof.

Conversely we see as above that |(G, 3(N))| = 2 implies that
[B(N): 3(G)] = 2 and hence, since [N: 3(N)] = 2¢ by Proposition 2.2, we
have [G: 3(G)] = 2°. For p = 2, Propositions 1.1 and 1.4 of [5] imply
that G has r.x.3. Hence we need only show that G has no irreducible
character of degree 2°. Suppose ¥ were such a character. Then since
N has r.x.2 we must have ¥ | N = @, + @,, the sum of two conjugate
characters of N of degree 2°. But then Q(N) < ker ¢, Nker ,, so
Q(N) = (G, B(N)) < ker x. This implies that 3(N) is central in the
representation associated with ¥, a contradiction, since [G: 8(N)] = 2°.

Finally we give an example of such a group.

(2.8) ExAMPLE. Let D* = D x D be the group given in Example
2.6. D* has an obvious automorphism of degree 2 which amounts to
essentially interchanging the two factors. Let F); be the semidirect
product of D* by an element of order 2 acting in this manner.

Now we have shown for p =2 that e(D*) =2 and 2(D*) > 1.
Moreover, it is easy to see that (£}, 3(D*)) = 2(D*). Hence by the
above Proposition, F; has r.x.2,

3. Self-centralizing abelian subgroups. We saw in the last
section that the prime 2 plays a special role in the characterization of
groups with r.x.2. We discuss now another special case which can
oceur,
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(8.1) ExaMPLE. Let G, be the following group of order 72. G,
is the semidirect product of V,, an abelian group of type (3,3) by D,,
the dihedral group of order 8. We write this as G, = V,x.D,. The
action of D, on V, is a faithful irreducible representation of degree 2
of D, over GF'(38). Now D, has only one nonlinear irreducible repre-
sentation and this is realizable over GF'(3), so G, is well defined by this
information.

Let us consider a concrete example of the representation. D, is
generated by elements ® and y of order 4 and 2 respectively, given by

ol T

Now D, has four noncentral elements of order 2. Let w be such an
element. Sincew +1+# 0, w —1%0and 0 = w* — 1 = (w + 1)(w — 1),
we see that (w — 1)V, is a one-dimensional subspace of V, and this is
invariant under w. If (w — 1)V, = (@ — 1)V, for some other noncentral
element w of order 2, then clearly

@+ Dw—-1)=@w—w+1)=0,

so w — i, a contradiction. Henece the four subspaces (w — 1)V, for the
four elements of order 2 are all distinet. But V, has only four sub-
spaces of dimension 1 and thus every one is of this form.,

Since V, is a normal abelian subgroup of G, we have by Proposition
1.1 of [5] that G, has r.x.3 for p = 2. We show now that G, has
r.X.2.

Let N be a nonprincipal linear character of V,. Then ker) is a
one-dimensional subspace of V, and so ker A = (w, V) by the above in
multiplicative language for some noncentral element w of D, of order
2. Then

A (v) = Mwovw™) = Mwow v )Mv) = M)

and so w fixes ». Thus )\ has 1, 2 or 4 conjugates. In the first two
cases we would have A fixed by z, the central element of D,. But
2oz~ = v s0 M(v) = Mv™Y) = Mv) implies M%) = 1, which is not the
case for all v. Hence M has 4 conjugates.

Now let y be a character of G, with x|V,=a>iN,. If ¢t =1,
then A = \, is the principal character of V, and hence X is a character
of D, and has degree 1 or 2. If ¢ = 1, then A = A, is a nonprincipal
character and hence ¢t = 4. Since a*t < [G,: V] = 8 by Lemma 1.2 of
[5], we have @ = 1 and degy = 4. Thus G has r.x.2.

For convenience we introduce the following.

(3.2) HypoTHESIS. Group G has r.x.2 and for every subgroup N
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of G of index p we have 3(N) & 3(G).

The main result of this section is the following.

(3.3) PropPOSITION, Let G satisfy Hypothesis 3.2. Moreover, suppose
G has a self-centralizing normal abelian subgroup of index p°. Then
either [G: 8(G)] divides p° or G is a central extension of an abelian
group Z by G, (of Example 3.1) such that ZV, is abelian.

Conversely, let G be a group with [G: 3(G)] dividing p° or let G
be a central extension of abelian group Z by G, such that ZV, is abelian,
then G has r.x.2. In the latter case we of course have p = 2.

Proof of the converse. If [G:3(G)] divides p°, then the result
follows by Propositions 1.1 and 1.4 of [5]. So we assume G has the
second structure.

Let % be a character of G. Say y|A=a >N, and % |Z = by
where A = ZV, is abelian. Now the X\; are all constituents of p*
(induction to A), a character of degree 9. Since D, fixes ¢, we see that
D, permutes the constituents of p*, which are all linear. Since D, is
a 2-group, it must fix some constituent, say \N. Then the characters
;N are a full set of conjugate characters of A/Z = V,. Hence, by the
results proved in Example 3.1, we have either ¢ =1 or 4. Since
at < [G: A] = 8 and a is a power of 2, we seethata =1lor2if¢t =1
anda=1if t = 4. Thusdegy = at = 1,2 or 4 and the result follows.

(8.4) LeMMA. Let K be a proper normal subgroup of L.

(i) Let e(K)=1 and suppose L fixes all nonlinear characters
of K. Then 3(K)<S 3(L).

(ii) Let L have r.x.l and suppose K 1is monabelian. Then
3(K) & 3(L).

(iii) Suppose L is a subgroup of G, a group with r.x.2. If K
18 nonabelian and C3(K) = K, then e(G) = e(L) = 2.

Proof. Let e(K)=1. We show first that for all nonidentity
elements € K we can find an irreducible nonlinear character ¢ with
x ¢ ker @, Using the semisimplicity of the group algebra, we can find
a character M of K with x¢ ker . It clearly suffices to assume that
M\ is linear. Let @ be a character of K of degree p. Then clearly
either x ¢ ker 6 or x ¢ ker O\,

Suppose we have (i). We show that 3(K) & 3(L). If not, then
(L, 3(K)) is a nontrivial subgroup of K. Choose nonidentity « ¢ (L, 3(K))
and let @ be a nonlinear character of K with x¢ker . Let ¥ be a
constituent of @*. Then Y| L = a > »; where the ¢, are the distinct
conjugates of @ = @;. Since L fixes all nonlinear characters of K, we
havet =1 and | L = ap. Since 3(K) is central in the representation
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associated with ¢, it is central in the one associated with . Thus
(L, B(K)) < ker x N K = ker ¢, a contradiction, and (i) follows.

Let L and K be as in (ii). Clearly e(L) = ¢(K) =1. Let @ be a
nonlinear character of K and let ¥ be a constituent of ¢*. Then
1| K=a3\p; and deg ¥ = atdeg p. Since degy =< p we havea =1t =1.
Hence L fixes @. The result now follows by (i).

Finally, suppose G, L and K are as in (iii). Since K is nonabelian,
e(L) =z e(K) = 1. If e(L) =1 then by (ii) above, L & €3(K), which
is not the case. Thus 2 = ¢(G) = ¢(L) = 2 and the result is proved.

(3.5) LEMMA. Let G satisfy Hypothesis 3.2. Let K be a normal
subgroup of G of index p* with e¢(K)=1. If K= C3(K) then
B(K) > 3(Q), and either [3(K): 3(G)] = p or [G: 3(G)] = p°. In par-
ticular, we see that the Hall p’-subgroup of 3(K) is central.

Proof. G/K is abelian and in fact either type (p, p) or (p?). We
show that the latter cannot occur. Suppose to the contrary that G/K
is eyelie. Let L be the unique subgroup with G > L > K. Let ¢ be
a character of K of degree p and let ¥ be a constituent of @*. Then
1| K=a>!p;. Sincedegy = p*, we see that ¢t = 1 or p. Then clearly
L fixes @. Since this is true for all such ¢, L & €3(K) by Lemma
3.4 (i), a contradiction. Thus G/K is abelian of type (p, p).

Let H be the Hall p’-subgroup of J3(K). This is normal in G.
We show that it is central. If not, then H, = HN3(G) < H. Let »
be an element of order p of G/K. Now G/K acts on H, since H = 3(K).
Clearly, €z(x) 2 H,. On the other hand, €,(x) S 3K, >) & 3(G) by
Hypothesis 3.2. Hence H, = €x(x). By Lemma 1.2 (iv), x acts fixed
point free on H/H, and this is true for all . Then nonecyeclic abelian
p-group G/K acts fixed point free on H/H,, a contradiction ([1] Theorem
V, p. 336). Thus H is central.

Let 8(K) = H x P where P is a Sylow p-subgroup of 3(K). Clearly
P is normal in G. Also 3(K) > 3(G) 2 H, so 3(G) = H x P, with
P, =PN3(G) < P. Since 3(K)/3(G) is a normal p-subgroup of G/3(G)
we can find an element of order p in the center of a Sylow p-subgroup
of G/3(G) in that group by Lemma 1.2 (ii). Let { be an inverse image
of this element in G with {e P. Thus ({,S,(G)) < 3(G) for some
Sylow p-subgroup of G. But {e 3(K) and K 2 (G), so (, H(G)) = 1.
Hence ¢ is an element of 3.(G) — 3(G) with {? e B(G).

The map g — (g, {) is a homomorphism of G into 3(G) by Lemma
1.2 (iii). Let L be the kernel. Since (e 3(K), L2 K. If L > K,
then e B(L) = 3(G) by Hypothesis 3.2, Thus K = L and the group
(G, ) = G/K is an elementary abelian group of order p°. Let J be a
subgroup of (G, () of order p with J 2 K’. Such a choice is clearly
possible, since |(G, )| = p*. Under the homomorphism g — (g,{) let
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N be the complete inverse image of J. Then N is normal and G > N > K.
Let M = {3(G), O. ~

Consider the group G = G/J with subgroups N, K and M. Since
M > 3(G) 2 J, we have

G>N>K23K)23K)2M>1.

Note that G has r.x.2, but that it does not necessarily satisfy Hy-
pothesis 3.2. Now K is nonabelian by our choice of J. There are now
two possibilities, either €3(K) = K or €3(K) > K.

Suppose first €3(K) = K. Then by Lemma 3.4 (iii) ¢(G) = e(N) = 2.
Now M < 3(N), since J = (N,{). But M & 3(G), since otherwise
J 2 (G, ¢), which is not the case. Thus G satisfies the hypothesis of
Proposition 2.7. Hence for p = 2, [G: 3(G)] = p°. Let 7 be an element
of G in the inverse image of 3(G). Then clearly 7e 34G). Now
(G,n) & J, so by Lemma 1.2 (iii) we see that [G: €(n)] =1 or p. But
by Hypothesis 3.2 we cannot have |G: €(n)] = p. Hence ne 3(G).
Therefore [G: 3(G)] = p°.

Now let €3(K) > K, and in particular G(3(K)) > K. Choose sub-
group L with G > L > K such that L is contained in the complete
inverse image of €(3(X)). Then (L, 3(K)) =J. Let L =K, ). The
map b— (b, ) is then a homomorphism of B = 3(K) onto J. Thus the
kernel which is 3(L) has index p in 3(K), since J has order p. But
by Hypothesis 3.2, 8(L) = 3(G) and the result follows.

Let G be a group with r.x.2, and let A be a normal abelian sub-
group of index p°. Suppose G/A is nonabelian. For each e G let
d(x) = [A: €,(x)]. This is clearly a function of the cosets of A. If n
is prime to p, then clearly d(2") = d(x). Also € (a¥) = € (x)Y, so that
d(ax¥) = d(x). Hence, if x and y correspond to noncentral elements in
the same subgroup of order p* of G/A, then d(x) = d(y).

Let K be the unique normal subgroup of G with K > A and
[K: Al = p. Now K= d{A,w) and we can assume that we G’. Let
a, = d(w) and let a; = d(x;) for z;€ K; — K where K, is the 4-th nor-
mal subgroup of index p in G with K; > K. There are clearly p + 1
such subgroups.

Let s(A) be the number of classes of conjugate characters of A
under the action of G/A (see Definition 4.2 of [5]). Then by Lemma
4.3 (iv) of [5] we have

() A+ @ —-D[Al/ay + (p* — p) 24" | Al/a; = [G: Als(A) .

Since G has r.x.2, no character of A can have more than p® conjugates
and the principal character is fixed. Hence s(4) > | A|/p® and we obtain

(**) lja, + p X" 1/a; > 1.
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(3.6) LEMMA. Let G have r.x.2. Let A be a normal elementary
abeltan q-subgroup such that G/A is nonabelian of order p°. Suppose
that G/A acts faithfully and irreducibly on A. Then G = G, with A
corresponding to V, and so p =2 and q = 3.

Proof. We use the notation given in the material directly preceding
equations (*) and (**). Since G/A is a nonabelian p-group we see that
the number of generators of A is divisible by p. Say |A| = ¢'». We
have clearly 3(K) =1, so that a, = | A4].

Let M be a nonprincipal character of A. Since G has r.x.2, » has
1, p or p® conjugates. If A had 1 or p conjugates, then its inertia
group would contain K. However, if w fixes A, we would have
1< (K, A) S ker» < A and then (K, A) would be a nontrivial G/A sub-
module of A, a contradiction. Hence )\ has p® conjugates. From this
we conclude that the number of classes of conjugate characters of A
is equal to

s(4) =1+ (A —-1D/p".
Hence by (*), since a, = | A|, we have
Al + (@ —1) + (p° — p) X" | AlJa; = p*{1l + (|A] — 1)/p%}
or
(%) p >t Alla;=p"+p—1+[Al.

Let = and y be elements of K, — K with {4, x,y) = K,. Thenw
centralizes €, (x) N € (y). Since w acts fixed point free on A we have
Cx)NC(y) =1, and hence | A| divides a?. In particular |A|"* = [Al/a,.
Then (***) becomes

pp + DA zZzp*+p—1+ 4]
or
pp+1) = A" +1=qg"*+1.

Let us assume first that » > 2. If » = 1 then GF(g) must contain
the p™ roots of unity. Hence ¢ > p and so ¢ = p + 2. Then the above
equation becomes

P+p—-1"=m+2)7,
a contradiction for p = 3. Thus » = 2 and
pp+1)zg"+1lz¢ +1z22+1.

The only possibility here is easily seen to be p =3, ¢ =2 and r = 2,
But then (***) becomes
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33U |Alja; =11+ 64 =15

and so
SilAlle; =25 .,

Now each | A|/a; is a power of two at most equal to 8 = 64>, Hence
the only solution of the above is |A|/a, =1 and |Al/a; =8 for ¢ =
2,3,4. If G/A does not have period p then only one subgroup of order
p* is nonecycliec. Thus, say K, is cyclic and since a, = 8 we have
[4: B(K,)] = 8, a contradiction. On the other hand, if G/A has period
p, then K,/A is an abelian group of type (p, p) acting fixed point free
on A, again a contradiction. Thus p > 2 cannot occur.
Now let p = 2. We have

22 +1)=6=¢ +1,

so the only possibilities are » =1 and ¢ =3 or 5. If ¢ =5 we have
equality throughout and thus o} =|A| for all ©. But a nonabelian
group of order 8 always has a normal cyclic subgroup of order 4, If
this corresponds to K, then [A: 3(K,)] =5 and w fixes 3(K,), a contra-
diction. This leaves only ¢ = 3. Here we have from (***) the equation

and so |Al/a, =1, |A|/a,=|Al|/a; = 3. Since K,/A cannot be cyeclic
we see that G/A is the dihedral group of order 8. Thus we have
&,(G) =~ G/A the dihedral group acting on a (3, 3) group and this is the
group G, already discussed. This completes the proof.

Proof of Proposition 3.3. We will have need here for Lemma 3.5
applied to G. If the conclusion of that result is [G: 3(G)] = »* we are
trivially through. Hence we assume in the following that the conclusion
is always [B(K): 3(G)] = ».

There are three distinct cases to study. Case 1 assumes that G/A
is abelian, In Case 2 we suppose G/A is nonabelian and that $(G) is
central, Finally in Case 3 we consider the possibility that G/A is non-
abelian and that $(G) is not central.

Case 1. We show first that H = $(G) is central here. Write
A = H x P where P is the Sylow p-subgroup of A. P is characteristic
in A and hence normal in G. Consider G = G/P. If G has r.x.2, so
does G. Also &,(G) = G/A is abelian. Hence G has r.x.(2,0) (see
Definition 3.1 of [5]). Then by Theorem A of [5] we see that G has
an abelian subgroup B of index dividing p®. Let B be its complete
inverse image in G. Clearly B > A, since B2 H, B2 P and
[G: B] < [G: A].
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We show that B centralizes H. Since B is abelian, we have
(B, HY< P. But H is normal so (B, H)< H. Since HNP =1 we
have (B, H) =1. Hence €(H) > A and G(H) is normal in G. If
[G: €(H)] = p then HZ 3(G) by Hypothesis 3.2. Finally, suppose
K = @(H) has index p* in G. Since A is self centralizing, K is non-
abelian, Clearly K = €3(K). Hence by Lemma 3.5, H(8(K)) = 9(G)
is central in G.

Since D(G) is central, it clearly suffices to assume that G is a p-
group. Now A = €(A4) has index p° in G, so by Lemma 4.4 of [5] there
exists e G — A with [A: € (»)] < p*and x? ¢ A. Hence K = {4, x> is
normal, [G: K] = p* and | K: 3(K)] < p°. Moreover, K is nonabelian,
By Hypothesis 3.2 and Lemma 3.5 we have [G: 3(G)] < p°.

Case 2. Since H(G) is central we can assume that G is a p-group.
We use the notation of equations (*) and (**). Suppose a, < p*. Then
[K: 3(K)] < p* and by Hypothesis 3.2 and Lemma 3.5 we have
[G: 3(G)] = p°. Now suppose for some 72 = 0, a; = p. Letzx,ye K, — K
such that K; = A, z,y)>. Then 3(K;) 2 € (x) N€(y). But 3(K;) = 3(G),
so we have |[G: 3(G)] < p°.

We assume now that a, = p* and «; = p* and obtain a contradiction.
By Lemma 4.4 of [5] or by (**) above, some a; < p°’. Say a, = p°.
Let «# and y be elements of K, — K such that K, = {4, z,y)>. Then
Cux)NC4(y) = B(K,) S B(G) by Hypothesis 3.2, so [4: 3(G)] = p'.

Since A > 3(G) we see that V = 8,(G)NA > B8(G). Now by Lemma
1.2 (iii), G’ centralizes B,(G) so € (w) 2 B.(G)NA =V > 3(G). Since
a, = p* and [A: B(G)] =< p', we see that a,= p°, [4: B(G)] = p* and
Cw) =V with [V: 3(G)] = p. We show now that at least two of the
a; are equal to p*. First suppose p > 2. If a;, = p* for ¢ +# 1, we have
by (**)

1/p* + p/p* + p(p/p*) > 1,

or 1 4 2p* > p°, a contradiction. If p = 2, then some K;, say K, is
such that K,/A is cyeclic. Since 3(K,) = 3(G) we have a, = p* = 2,
Hence by (**) again

1/2° + 2/2° + 2/a, + 2/2¢ > 1,

and 8 = 2° > q,. Thus a, = 2%, Say a, = a, = p°.

Let xe K, — K and ye K, — K be chosen so that G =dA4,x, y).
Then [A: € (x)] = [A: €, (y)] = p°. Moreover € (x) 2V and €, (y) 2 V.
This follows since €, (x) 2 V implies V & 8({4, z, w)) = 3(K,) = 3(G),
a contradiction. Set U = V€ (x)NE€,(y). By the above we see that
U > 3(@). Now (y,U) =1< 3(G), since U < € (y) and (z, U) < 3(G),
since US V€, (x) and V & 3,(G). But G =<4, z, ¥>, so we see that
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3G < U< ANB,(G) =V and hence U = V. This is a contradiction,
since V & € (y).

Case 3. If (G) were centralized by w it would be central by
Lemma 3.5 and Hypothesis 3.2, which is not the case. Write A = Q X R
where @ is a Sylow g¢-subgroup of A not centralized by w and R in-
cludes the remaining Sylow subgroups of A. Here, of course, ¢ = p. Let
G, = G/R with Q, = A/R = Q and w, = wR/R. Then w, does not central-
ize Q,, since (w, Q) = Q. In G, let &Q,) be the Frattini subgroup of
Q.. Then w, does not fix Q,/@(Q,) by Theorem 12.2.2 of [2]. Set
G, = G/O(Q,) and Q. = Q,/P(Q,). Here we have G,/Q,= G/A acting
faithfully on an elementary abelian ¢-group. Since ¢ is prime to p,
the representation is completely reducible. One of the irreducible con-
stituents will be faithful, otherwise w, = w,@(Q,)/@(Q,) will be in all
the kernels and hence centralize the group. Dividing G, by the product
of the remaining representation spaces, we have a group G with r.x.2
with an elementary abelian g-subgroup A of index p* such that G/A
acts irreducibly and faithfully on A. By Lemma 3.6 we must have
p=2¢g=3,|A| =9 and G = G,.

Thus in G we have p = 2 and [A: 8(G)] is divisible by 9. More-
over, G/A is the dihedral group of order 8. We apply equation (**).
Let K, correspond to the cyclic subgroup of order 4 of G/A. Then we
have a, =9 and a, = 9. Thus

1/9 + 2/9 + 2/a, + 2/a, > 1

or 1/a, + 1/a, > 1/3. Hence one of a, or a,is less than 6. Say a, < 6.
Since [A: 3(G)] divides a; we have that 9 divides a3 and so a, is divisible
by 3. Thus a,=3, [4: 83(G)] =9 and G/B(G) = G,. This completes
the proof.

4., The main result, Our characterization of groups with r.x.2
is as follows.

(4.1) THEOREM A. Group G has r.x.2 if and only if G satisfies
one of the following.
(i) (p=2) G has subgroups N and K with

G>N>K>3K)>BN)>36G) >1
I R (- -
2 2 2 2 2

such that (G, 3(N)), (N, 3(K)) and K’ are the three distinct subgroups
of order 2 of U, an abelian subgroup of type (2,2) contained in J(N).
(i) (p=2) G is & central extension of an abelian group Z by
G, such that ZV, is abelian. (Group G, is defined in Erample 3.1).
(ili) G has a mormal abeltan subgroup A with index [G: A]
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dividing p°.

(iv) G has a normal subgroup N of index p with [N: 3(IN)] = v

(v) 1G: 3(G)] = »p"

(vi) [G: B(G)] = p° and for all subgroups N of G of index p with
G > N > 3(G) we have 3(N) = 8(G). Moreover, every homomorphic
image of G satisfies one of these six properties (i)-(iv).

It is interesting to note that the anomalous behavior of p = 2 for
groups with r.x.2 supports the conjecture that additional and more com-
plicated groups with r.x.e can occur if p = e as compared top=e+ 1
(see Propositions 4.6 and 4.7 of [5]). This is analogous to the situation
of regular p-groups in which for p = n all the groups of order p™ are
regular while for p < n — 1 there is at least one nonregular group.

We show by example that all of the cases of Theorem A occur
independently of each other.

(i) Let G = F; be the group of Example 2.8.

(ii) Take G = G, here.

(iii) Set G = F, x F, where F', is the group of Example 4.5 of [5].

(iv) Take G = F, x F, where F) is the group of Example 3.7 of [5].

(v) Let G be the following group of order p®. G is generated
by elements z; (¢ =1,2,3,4,5) and y;; (¢ >J and 1,7 =1,2,38,4,5),
all of order p such that for @ >j, vy = (v, 2,). Let Z be the central
subgroup generated by the y;;. If U is a subgroup of G with U > Z
and [U: Z] = p, then it is not hard to see that U = C(U). With this
we see that Z = 8(G) and G does not satisfy (iii) or (iv).

(vi) Set G = F, x F,. Then [G: 3(G)] =’ and G does not satisfy
(i) or (ii). Since F, has r.x.1 we see that G has r.x.2.

The proof of the sufficiency half of Theorem A is simple and we
do this first. Let G satisfy one of (i)-(vi). By Ito’s theorem the de-
grees of all characters of G are powers of p. Cases (i) and (ii) follow
from Proposition 2.7 and 3.3 respectively. Cases (iii) and (v) follow by
Proposition 1.1 and 1.4 of [5]. In Case (iv) clearly N has r.x.1. Let
% be a character of G with x| N = a >\ @ Then deg ¥ = at deg ¢, so
a and ¢ are powers of p. But by Lemma 1.2 of [5], 't = |G: N] = p,
soa=1andt=1orp. Since deg @, =1 or p, this yields the result.

Finally, given case (vi). By Proposition 1.4 of [5], G has r.x.3.
Let % be a character of G and let G be the homomorphic image of G
which is the faithful linear group associated with y. If G satisfies
(1)~(v), then G has r.x.2 and hence degy divides p?. The result will
follow then if we show that G does not satisfy (vi). Now G is nil-
potent so therefore so is G. Let (e 8,(G) — 3(G) with ¢7e 3(G). Then
the homomorphism ¢ — (g,{) maps G into B8(G), and the image has

period p. Since G is a faithful irreducible linear group 3(G) is cyeclic
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and so [(G,{)|=p. Hence N =C€() has index p in G. Thus
e B(N) — 3(G), so G cannot satisfy (vi).

(4.2) LEMMA. Let G have a normal subgroup of index p with
r.x.d. Then G has one of the following.

(i) a characteristic abelian subgroup of index p*;

(ii) @ characteristic normal subgroup N of index p with [N: 3(N)]
diwviding

(iii) @ center of index dividing p°.

Proof. Suppose first that G has a normal abelian subgroup of
index p°. Let K denote the group generated by all such subgroups.
Clearly K is a characteristic subgroup of G and [G: K] =1, » or p
If [G: K] = p* then K is abelian and we have (i). If [G: K] = p then
K = A,A, where A, and A, are normal abelian subgroups of G of index
p:. Clearly 3(K)= A,NA, and [K: A NA,] =p*, so we have (ii).
Finally, suppose K = G. Write G = A,4,A, where A4, < G. Then
[G: A.NA,] = p*or p* and so [G: A,NA,NA,] divides p°. Since 3(G) =
A NA,NA, we have (iii).

Hence we can assume that G has no normal abelian subgroup of
index p®. Let N be the given normal subgroup of index p with r.x.1.
Since N does not have a characteristic normal abelian subgroup of index
» we know by Lemma 1.1 (i) that [N: 3(V)] divides p°. If N is
characteristic we have (ii). If not, let N, be another normal subgroup
of index p with r.x.1. Now N NN, is normal and has index p* in G.
Hence by assumption N NN, is nonabelian and we have ¢(NNN,) =
e(N) = ¢(N,) = 1. By Lemma 3.4 (ii) €(INNN,) = <N, N>=G. But
finally N,N3(N) < 3(N NN, so we have (iii) again and the result
follows.

Proof of Theorem A. We assume G is nonabelian. If G has a
normal subgroup N of index p with r.x.1, then G is type (iil), (iv) or
(v) by Lemma 4.2, If G has a normal subgroup N of index p with
e(N) =2 and €3(N) = N then G is type (i) by Proposition 2.7. Thus
it suffices to assume that G has no subgroup of index p with r.x.1 and
that G satisfies Hypothesis 3.2.

We use induction on |G|. Thus for all groups G of order less than
that of G having r.x.2 we assume one of the following.

(1) G has r.x.1;

(2) G has a normal subgroup N of index p with r.x.1;

(3) [G: 3(G)] divides p°;

(4) G is a central extension of abelian group Z by G, such that
ZV, is abelian.

We will show that either [G: 8(G)] divides p° or G has a normal
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abelian subgroup A of index p®. In the latter, since G has no subgroup
of index p with r.x.1, A must be self-centralizing. Then Proposition
3.3 will yield the theorem.

Now by Proposition 3.4 of [5], G has a normal subgroup N of
index p. By assumption e(IN) = 2 so N satisfies (2), (3) or (4) above.
If N satisfies (2), then the result follows by Lemmas 4.2 and 3.5, and
Hypothesis 3.2. We assume then that G has no subgroup of index p*
with r.x.1.

Suppose N satisfies (3). By Hypothesis 3.2 we see that G is nil-
potent. For convenience we can assume that G is a p-group. We have
[G: 3(G)] = p". The only case we need consider is [G: 3(G)] = p” and
we obtain a contradiction here. Let J be a central subgroup of G of
order p and set G = G/J. Then G has r.x.2 and so satisfies (1), (2) or
(3) above. Case (4) clearly cannot occur.

Suppose G is case (1). If G is abelian we have [G: 3(G)] = p* by
Lemma 1.3 of [5]. If G has a normal abelian subgroup B of index p,
then let B be its complete inverse image in G. As above [B: 3(B)] < p*.
Since 3(B) < 3(G), this is also a contradiction. If neither of the two
oceur, then |G: 3(G)] = p* by Lemma 1.1 (i). Let £ belong to the com-
plete image of 3(G) in G. Then (G,{) < J is, by Lemma 1.2 (iii),
[G: €()] =1 or p. But by Hypothesis 3.2 we cannot have |G: €({)] = p.
Thus [G: 3(G)] = %, a contradiction.

Let G be case (2). Then either G has a normal abelian subgroup
B of index p* or G has a normal subgroup L of index p with
[L: B(L)] = p°. In the first case let B be the complete inverse image
of B. Since ¢(B) = 2, we have by Lemma 1.3 of [5] that [B: 3(B)] = p'.
Hence [3(B): 3(G)] = p and we can choose (€ 3(B) — 3(G). In the
second case let L be the complete inverse image of L and let  be the
inverse image of 3(L) such that {e 3,(G) — 3(G) and (?e 3(G). (See
Lemma 1.2 (ii).) Since ({, L) = J, we see that [L:C,{)] = p. Thus
in both cases we have an element (e B,(G) — 3(G) with {?e 3(G) and
[G: €(&)] = p*. Clearly we must have [G: €({)] = p*. Now G/€({) = (G, Q)
is elementary abelian of order p®. Choose two distinet subgroups G,
and G, with G > G; > €({). Now ¢(G;) = ¢(€({)) = 2 and E3(C({)) = &(Q).
Hence by Proposition 2.7, (G, ) = (G, {) = 2(€()). Thus (G, ) =
2(€(Z)) has order p = 2, a contradiction.

Finally, suppose G satisfies (3). Clearly the inverse image in G of
3(G) is central and this contradicts [G: 3(G)] = p'.

We need only assume now that N satisfies (4). Since V, is a
characteristic subgroup of G, we see that 4 = V,8(IV) is characteristic
in N and hence normal in G. A is abelian and G/A has order p* for
p=2. By Lemma 1.3, G/A has a normal abelian subgroup of index
». Let K be its complete inverse image in G. Then K is metabelian
and hence cannot be case (4), since clearly G, is not metabelian. Thus
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K is one of cases (2) or (3), and the result follows. This completes
the proof of Theorem A.

5. Corollaries. With the complete characterization of groups with
r.X.2 we can easily read off several properties they have in common.

(5.1) COROLLARY. Let G have r.x.2. Then G has a normal abelian
subgroup whose index divides p'. In particular f(2) =4 where f is
the function studied in Theorem A of [5].

Proof. The result is clear for groups of type (ii) and (iii). If G
is type (iv) then since G/3(N) is a p-group and N/3(IN) is normal, we
can choose normal subgroup A with G > N > A > 3(N) and [A: 3(N)] =p.
Clearly A is abelian. If G is type (v) we merely take A to be a normal
subgroup with A > 3(G) and [A4: 3(G)] = p.

Now let G satisfy (i) or (vi). Suppose first that G/3(G) = J is not
elementary abelian. By Lemma 1.4 we can find ge 3(J) and heJ’ so
that <g, &> is a normal subgroup of J of order p°>. Let g and % be
inverse image of these elements of G with he G'. Set A = {3(G), g, h).
Then A is a normal subgroup of G of index p'. But ge B.G), so g
and & commute by Lemma 1.2 (iii). Hence A is abelian and the result
follows here.

We need only consider the case where J is elementary abelian.
Suppose for some ze 3(G) we have C(x) ><x, 3(G)>. Then choose
ye C(x) — <z, B(G)>. Clearly A =<z, vy, 3(G)> is an abelian subgroup
of G of index p* which is normal since G/3(G) is abelian, We suppose
now that for all ¢ 3(G) we have €(z) = {x, 3(G)> and obtain a con-
tradiction. This will yield the result. With this information we have
clearly that the number of classes ¢ of G is given by

¢=13G)| + (G| — 3G D/’
=[G 1/p° + 1/p° — 1/p") .

Since G has r.x.2 we have, using the fact that G has ¢ characters, the
inequality

|Gl =cp'=[G|A/p + 1/p* — 1/p) .

This is the required contradiction.
That p* is the best possible bound can be seen by considering the
group G = F, X F, where F is the group of Example 3.7 of [5].

(5.2) COROLLARY. Let G have r.x.2. Then G has a normal sub-
group H of index dividing p* with [H: 3(H)] dividing p* or 18 &¢f
p =2,
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This follows quite easily. It is possible that the p* term here can
be reduced to p®. This would require a further study of groups of

type (vi).

The author would like to take this opportunity to thank his advisor
Professor Richard Brauer for the help and encouragement he so freely
gave.
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