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Let AH* denote the algebra of bounded analytic functions
in the unit disk D = {z: |z| < 1}. A function ¢ in H*= is called
a generator if the polynomials in ¢ are weak-star dense in H .
The problem to be considered here is that of characterizing
the generators of H=,

The weak-star topology of H>= can be thought of as arising in the
following way. By Fatou’s theorem, each function + in H> has radial
limits at almost every point of the unit circle C = {z: |z | = 1} and thus
gives rise to a bounded measurable function «; on C. The map  —
sends H* isomorphically and isometrically onto a certain subspace of
L=(C); we denote this subspace by H=(C). (We regard C as endowed
with normalized Lebesgue measure.) The space H=(C) is the dual of
a quotient space of LYC) and as such has a weak-star topology (which
is simply the topology induced on H>=(C) by the weak-star topology of
L=(C)). Because of the natural correspondence between H= and H=(C),
the weak-star topology on the latter induces a topology on the former,
and this is what we mean by the weak-star topology of H=. The
convergent sequences of this topology are easily characterized.

LEmMMA 1. A sequence {4} in H> converges weak-star to the
function + tf and only if it is untformly bounded and converges to
¥ at every point of D.

Proof. This is of course well-known; however we include a proof
for the sake of completeness. To simplify the notation we shall write
@(e") in place of @y(e') for any @ in H* For each point ¢ in D let
P, denote the corresponding Poisson kernel, i.e,,

_1—Jap _
Pa(z)——rl—;‘d—zl—gs fz|=1.

We then have

(1) 2@ = - | el P(eat

for all @ in H= and all @ in D,
Now suppose the sequence {v-,} in H> is uniformly bounded and
converges to the function + at each point of D. Then it follows from
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(1) that
(2) [ rem(eat = tim | "y (e n(eat

for every function % in the linear hull of the functions P, (a<€ D).
But the linear hull of the functions P, is dense in L*(C) (since, by
Fatou’s theorem, no nonidentically zero funection in L>(C) is orthogonal
to every P,). This together with the uniform boundedness of {v-,}
implies that (2) holds for all » in L*C), and thus 4, — +» weak-star.

Conversely, if 4, — 4 weak-star, then the sequence {v,} is uni-
formly bounded by the principle of uniform boundedness, and +,(a) —
(@) for all @ in D because the funetions P, belong to L'(C).

The problem of characterizing the weak-star generators of H> was
suggested in the preceding paper [9]. It is proved there that every
generator is univalent. From now on we let G denote a fixed but
arbitrary bounded simply connected domain and we let @ be a conformal
map of D onto G. We seek necessary and sufficient conditions on G
in order that @ be a generator. Eventually we shall obtain such
conditions. Although they are not particularly simple, this seems, at
least to the author, to be an unavoidable concomitant of the complexities
of the weak-star topology. Perhaps it is worth mentioning at this
point that there are domains G for which ¢ is not a generator. In
fact, we know from Proposition 2 of the preceding paper that if ¢ is
a generator then ¢, is univalent almost everywhere, and it is a triviality
to construct domains G for which this condition is violated.

Before treating our problem in its full generality we consider a
specialization. We shall say o is a sequential genmerator if every
funection in H= is the weak-star limit of a sequence of polynomials in .
In view of Lemma 1 the following assertion is immediate.

PropPOSITION 1. For ¢ to be a sequential generator it is necessary
and sufficient that G have the following property: for every bounded
analytic funetion f in G, there is a sequence of polynomials which is
uniformly bounded on G and converges to f at every point of G.

The domains with this property have a simple topological charac-
terization which was discovered by O. J. Farrell [5], [6]. Before stating
Farrell’s result we need a few definitions.

If B is a bounded domain in the plane, then the Carathéodory
hull (or z-hull) of B is the complement of the closure of the unbounded
component of the complement of the closure of B. We denote the
&~-hull of B by B*. Loosely speaking, B* can be described as the
interior of the outer boundary of B, and in analytic terms it can be
defined as the interior of the set of all points z, in the plane such that

[p(z)) | = sup [p(2) |
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for all polynomials p. The components of B* are simply connected;
in faect, it is a simple matter to show that each of these components
has a connected complement. We denote by B' the component of B*
that contains B. We can now state:

FARRELL’S THEOREM. Let B be a bounded domain in the plane
and let f be a bounded analytic function in B. Then in order for
there to exist a sequence of polynomials which ts untformly bounded
on B and converges to f at each point of B, tt ts mecessary and
sufficient that f be the restriction of a function bounded and analytic

wn B

This result was recently rediscovered and extended from domains
to arbitrary bounded open sets by Rubel and Shields [8]. An interesting
proof of Farrell’s theorem based on the theory of Dirichlet algebras
has been given by Hoffman and Wermer; see [10, p. 27].

Farrell’s theorem tells us immediately that our domain G satisfies
the condition of Proposition 1 if and only if G = G'. The sequential
generators of H* can thus be characterized in the following terms.

ProrosiTioN 2., The function ¢ is a sequential generator if and
only if G is a component of its Z™-hull,

But Farrell’s theorem tells us even more; it enables us to identify
the functions in H= that are weak-star limits of sequences of polynomials

in .

ProposiTiON 3. A function + in H= is the weak-star limit of a
sequence of polynomials in ¢ if and only if o~ is the restriction
of a function bounded and analytic in G*.

We now take up in its full generality the problem of characterizing
the generators of H*. Let M° be the set of polynomials in ¢, and
for each countable ordinal number « define M* inductively to be the
linear manifold in H*= consisting of all functions that are weak-star
limits of sequences of functions in |Js<. M*®. It is a well-known property
of weak-star topologies [1, p. 213] that the manifolds M* eventually
become constant, i.e., there is a least countable ordinal «’ such that
M* = M=+, Moreover M* is the weak-star closure of M° and so is
the weak-star closed subalgebra of H= generated by ¢ and the identity.
Thus ¢ is a generator if and only if M* = H>, in which case we call
@ a generator of order a’. Above we used Farrell’s theorem to identify
the functions in the manifold M*, A more refined application of Farrell’s
theorem will enable us to identify the functions in M< for every «.
First a number of preliminaries are necessary.

From now on let B denote a bounded domain in the plane. (In
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our applications B will be simply connected.) For any simply connected
domain E containing B we define the relative hull of B in E, or the
E-hull of B, to be the interior of the set of all points z, in F such that

| f(z0) | éggg[f(z)l

for every function f bounded and analytic in E. The crucial step in
our reasoning will be to show that if B is contained in the open unit
disk D, then the D-hull of B coincides with B*, the &~hull of B. For
this we need:

LEMMA 2. Let f be a bounded analytic function im a bounded
stmply connected domain A. For each point a on 0A define

m(f, 4, a) = limsup{| fz)|:2€ 4, [z — a| < 1/n}

(in other words m(f, A, a) is the maximum of the moduli of all
cluster wvalues of f at a). Let ac(A) denote the set of points on 0A
that are accessible from A. Then

(3) sup | f(z)] = Sup m(f, 4, a) .

Proof. Although this is well-known we include a proof for the
sake of completeness. Let w be a conformal map of the unit disk D
onto A. Let S be the set of points on the unit circle C at whiech both
w and fow have radial limits, Fatou’s theorem implies that C — S
has measure zero. Since fow is the Poisson integral of its boundary
values, it follows that:

sup | f(z) | = sup lim | f(w(rd))|

= sup m(f, A, w)) .

But if b is in S then w(b) is in ac(A), and thus the right side of the
preceding inequality is no greater than the right side of (3). This
proves the lemma,

REMARK 1. With the notations of the preceding lemma, let a, be
any point in ac(A4). Then the supremum on the right side of (3) is
equal to

sup m(f, 4, a) .

a€ac(4)
aFay

This follows from the fact that the set of points on C at which the
radial limit of w equals a, is a null set [7, p. 52].
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REMARK 2. The conclusion of Lemma 2 remains true if one drops
the assumption that A is simply connected. To show this, take a
uniformizer w of A and repeat verbatim the above proof, using the
easily proved fact that all radial limits of w are boundary points of A.
In our application the domain A will be simply connected.

LeEMMA 8. Let the domain B be contained tn the unit disk D.
Then the D-hull of B ts equal to B*.

Proof. The D-hull of B is obviously contained in B*, To prove
the reverse inclusion we must show that if z, is any point of B* and
if f is any bounded analytic function in D, then

(4) f@)] = sup | F@)] .

This is obvious if z, is in B, and so we may suppose that z, is in
B* — B, Let A be the component of B* — B containing z,, We assert
that at most one point of ac(A4) lies on the unit circle C. In fact, if
ac(A) N C contained two distinet points b, and b,, then we could join
b, and b, by a Jordan arc J lying except for its end points in A, The
arc J would then separate D into two disjoint nonempty domains D,
and D, and since B is connected it would have to lie either entirely
in D, or entirely in D,, But this is absurd because A meets both D,
and D, and B separates A from <. This contradiction proves our
assertion that ac(4) N C contains at most one point.

Now it is easy to verify that A has a connected complement, i.e.,
A is simply connected, Therefore by Lemma 2 and Remark 1 following
it, for any function f bounded and analytic in D we have

| f(z0) | = sup m(f, 4, a)

= sup |f(a)].

a€dAND

This implies (4) because 0A C 0B. The proof of the lemma is complete.

COROLLARY. Let the domain B be contained vn the bounded stmply
connected domain E. Then the components of the E-hull of B are
stmply connected.

Proof. Let w be a conformal map of E onto D. By Lemma 3 w
sends the E-hull of B onto the &-hull of w(B). Hence the corollary
follows from the already observed fact that the components of a Z~hull
are simply connected.

Lemma 3 yields the following extension of Farrell’s theorem.

THEOREM 1. Let the domain B be contained in the bounded simply
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connected domain E, and let B be the component of the E-hull of B
that contains B. Let f be a bounded analytic function in B, Then
wn order for there to exist a sequence of functions bounded and
analytic in E which s uniformly bounded on B and converges to f
at every point of B, it ts mecessary and sufficient that f be the

restriction of a function bounded and analytic in B.

Proof. If a sequence of functions bounded and analytic in E
converges to f in the manner described, then by Vitali’s theorem [3,
p. 186] this sequence converges uniformly on compact subsets of B to
a bounded analytic function f, and we have f= f|B. To prove the
converse we may by a conformal map reduce the general case to the
case where £ = D, But when F = D the desired conclusion follows
immediately from Lemma 3 and Farrell’s theorem.

It might be worth while to try to find a more direct proof of
Theorem 1, one that does not use Farrell’s theorem and conformal
mapping. Such a proof could conceivably be illuminating.

Before applying Theorem 1 to the problem at hand we obtain a
topological description of relative hulls. This description will be in
terms of the notion of a crosscut. If K is a domain then a crosscut
of E is a Jordan arc contained in E except for its end points. If E
is simply connected and J is a crosseut of E, then E — J consists of
two disjoint nonempty domains E, and E,, and we say that J separates
the points of E, from the points of FE, [2, pp. 328-329].

ProproSITION 4. Let the domain B be contained in the bounded
simply connected domain £ and let F' denote the relative closure in £
of the E-hull of B. Then E — F' consists of those points of E that
can be separated from B by a crosscut of E.

REMARK. This proposition really does give a description of the
E-hull of B, because the E-hull of B is the interior of F.

Proof. We first show that it suffices to consider the case where
E =D, For this let w be a conformal map of E onto D and let z, be
a point of E. We must show that z, can be separated from B by a
crosscut of E if and only if w(z,) can be separated from w(B) by a
crosscut of D. The implication in one direction follows from the fact
that w maps crosscuts of E onto crosscuts of D; see [2, p. 353, Satz
XVII]. To obtain the reverse implication, suppose J is a crosscut of
D separating w(z,) from w(B). It may not be true that w='(J) is a
crosscut of . However by modifying J slightly we can replace it by
a crosscut J’ of D which still separates w(z,) from w(B) and has the
additional properties:
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(i) the radial limits of w~ exist at the endpoints a and b of J';

(ii) w(a) #* w(b);

(iii) J’ approaches a and b radially.

The map w~* then sends J’ onto a crosscut of E, as desired.

We may thus suppose that £ = D). By Lemma 3 the D-hull of B
is B*, If the point 2z, of D can be separated from B by a crosscut of
D, then =z, obviously belongs to the unbounded component of the
complement of B and therefore is in D — F. Suppose on the other hand
that 2z, is in D — F. Then we can join 2z, to -« by a polygonal are
that does not meet B. Let a be the first point at which this arc meets
the unit circle C, and let J, denote that portion of the arc between z,
and o (inclusive). The point a, and therefore some circular neighbor-
hood of @, is contained in the unbounded component of the complement
of B. Therefore, from some point & on C, near but distinct from a,
we can draw a segment into D which is contained except for b in the
same component of D — F' as is J, — {a}, and which moreover does not
meet J,. We can now continue this segment so as to obtain a polygonal
arc J, joining b to z,, not meeting B, and not meeting oJ, except at z,.
Then J = J, U J, is a crosscut of D which does not meet B. This
crosscut separates D into two disjoint nonempty domains and the set
B N D, being connected, lies entirely in one of them. Thus by modifying
J slightly in the vicinity of 2, we can produce a crosscut of D which
separates z, from B.

COROLLARY. Let B and E be as in Proposition 4. Then the
E-hull of B equals E if and only tf every crosscut of E meets B.

After these preliminaries we are prepared to discuss generators of
H=. Recall that we are letting G denote a bounded simply connected
domain and ¢ a conformal map of D onto G. We have already defined
G* to be the component of the Z~hull of G that contains G. We now
define induectively for every countable ordinal number o a simply con-
nected domain G* containing G as follows. If « has an immediate
predecessor we let G* be the component of the G*~'-hull of G that
containg G. (G“ is then simply connected by the corollary to Lemma 3.)
If @ has no immediate predecessor we define G* to be the component
of the interior of {Ng., G* that contains G. (It is easily verified that
G* then has a connected complement, and so is simply connected.) By
Proposition 4, if the inclusion G*** C G* is proper then G* — G**! contains
interior points. Hence the inclusion is proper for at most countably
many «, and so there is a least countable ordinal v such that G* = Gv*1,
We call v the order of G. Obviously G* = G* for a > 7.

THEOREM 2. The mantfold M= consists of all functions v in H*
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such that o™ is the restriction of a function bounded and analytic
wmn G,

Proof. The case a = 1 is given by Proposition 3. We proceed by
induection, assuming that the theorem holds for all ordinals less than a.
If « has an immediate predecessor the desired conclusion follows
immediately from Theorem 1. We pass on to the case where « has
no immediate predecessor. Suppose first that - is a function in M=,
Then by our induction hypothesis, there is a sequence of functions
{f.)r with the following properties:

(i) each f, is a bounded analytic function in G® for some B8 < «
(perhaps a different 8 for each n);

(ii) the sequence {f,} is uniformly bounded in G;

(iii) lim,_. fu(@(z)) = (2) for all z in D.

But then the sequence {f,} is uniformly bounded on G*, so that by
Vitali’s theorem it converges on G* to a bounded analytic funection f,
and we have o™ = f|G. This takes care of one half of the induection.
For the other half we choose a strictly increasing sequence of ordinals
{a,}7 such that « is the least ordinal exceeding every «,. By our
induction hypothesis it will suffice to show that if f is a bounded
analytic function in G*, then there is a sequence of functions {f,}
with the following properties:

(i") each f, is a bounded analytic function in G*»;

(ii’) the sequence {f,} is uniformly bounded on G;

UUD

FIGURE 1
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(ii") lim,_. f,(?) = f(z) for all z in G.

To do this, choose a point z, in G* and for each n let w, be the
conformal map of G* onto G*» satisfying w,(z,) = 2, and wi(z,) > 0.
Since the sequence of domains {G“#} converges to G* in the sense of
Carathéodory it follows that lim, . w,(z) = 2z for all z in G* [4, p. 76].
Hence, given a bounded analytic function f in G*, we can achieve
conditions (i’)—(iii’) by defining f, = fow;"'. (This reasoning is of course
well-known.) The proof of the theorem is complete.

COROLLARY 1. If the function ¢ ts a generator of H= of order
v then the domain G has order v and GY = G. Conversely, 1f G has
order v and G'" = G, then ¢ is a gemerator of order 7.

COROLLARY 2. The function @ fails to be a generator if and
only if there is a domain B containing G properly such that

sup | f@)| = sup | f(2) |

for every function f bounded and analytic in B.

Proof. If such a domain B exists then it is contained in every
G* and so ¢ is not a generator. Conversely, if ¢ is not a generator
and G has order v, then the domain G” has the Tequired property.

]
- G

FIGURE 2
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COROLLARY 3. If @ s a generator then G is the interior of its
closure.

Proof. If G+ int(G) then int(G) satisfies the condition of
Corollary 2.

COROLLARY 4. The weak-star closed subalgebra of H= generated
by @ and the identity is isometrically isomorphic to H=,

Proof. Let ¢, be a conformal map of D onto G”, where v is the
order of G. Then the map

Y—opyiop

is an isometrie isomorphism of H* onto the weak-star closed subalgebra
generated by @ and the identity,

In conclusion we give two examples of generators of orders greater
than one. The reader can convince himself that for the domains G of
Figures 1 and 2 the corresponding mapping functions ¢ are generators
of orders two and three respectively. It is easy to see how, by
compounding the method used to obtain the domains of Figures 1 and
2, one can produce a generator of infinite order, for example of order w.
However the author has been unable to construct generators of arbitrary
order. .

The author is indebted to Professors Allen Shields and Lee Rubel
for helpful discussions.

REFERENCES

1. S. Banach, Théorie des Opérations Linéaires, Chelsea Publishing Co., New York,
1955.

2. C., Carathéodory, Uber die Begrenzung einfach zusammenhingender Gebiete, Math.
Ann. 73 (1913), 323-370.

3. , Funktionentheorie, Bd. I, Verlag Birkhauser, Basel, 1960.

4, , Conformal Representation, Cambridge University Press, 1963.

5. 0. J. Farrell, On approximation to an analytic funcition by polynomials, Bull.
Amer. Math. Soc. 40 (1934), 908-914.

6. , On approximation by polynomials to a function analytic in a simply con-
nected region, Bull. Amer. Math, Soc. 41 (1935), 707-711.

7. K. Hoffman, Banach Spaces of Amnalytic Functions, Prentice-Hall, Inc., Englewood
Cliffs, 1962.

8. L. A. Rubel and A. L. Shields, Bounded approximation by polynomials, Acta Math.
112 (1964), 145-162.

9. D, Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math.
10. J. Wermer, Seminar iber Funktionen-Algebren, Springer-Verlag, Berlin, 1964.

UNIVERSITY OF CALIFORNIA, BERKELEY



PACIFIC JOURNAL OF MATHEMATICS

EDITORS
H. SAMELSON *J. DUGUNDJI
Stanford University University of Southern California
Stanford, California Los Angeles, California 90007
R. M. BLUMENTHAL RICHARD ARENS
University of Washington University of California
Seattle, Washington 98105 Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WoLF K. Yosipa

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY

CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF TOKYO

UNIVERSITY OF CALIFORNIA UNIVERSITY OF UTAH

MONTANA STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA UNIVERSITY OF WASHINGTON

NEW MEXICO STATE UNIVERSITY * * *

OREGON STATE UNIVERSITY AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON CHEVRON RESEARCH CORPORATION
OSAKA UNIVERSITY TRW SYSTEMS

UNIVERSITY OF SOUTHERN CALIFORNIA NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be
typewritten (double spaced). The first paragraph or two must be capable of being used separately
as a synopsis of the entire paper. It should not contain references to the bibliography. Manu-
scripts may be sent to any one of the four editors. All other communications to the editors should
be addressed to the managing editor, Richard Arens at the University of California, Los Angeles,
California 90024.

50 reprints per author of each article are furnished free of charge; additional copies may be
obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price
per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual
faculty members of supporting institutions and to individual members of the American Mathematical
Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal
of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6,
2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

* Paul A. White, Acting Editor until J. Dugundji returns.



Pacific Journal of Mathematics

Vol. 17, No. 3 March, 1966

Tsuyoshi Ando, Contractive projections in L), spaces .................... 391
Robert F. Brown, On a homotopy converse to the Lefschetz fixed point

TREOTEIML . . oot 407
Richard Albert Cleveland and Sandra Cleveland, On the multiplicative

EXTENSION PFOPETLY . .\ v v v e et e e ettt e ettt et 413
Harold H. Johnson, An algebraic approach to exterior differential

T 2272 423
Alan Cecil Lazer, The behavior of solutions of the differential equation

Y/ pO)Y Hq)y =0 435
Judy Parr, Cohomology of cyclic groups of prime square order . ........... 467
Donald Steven Passman, Groups whose irreducible representations have

degrees dividing P2 .......... .. .cooo i 475
Ralph Tyrrell Rockafellar, Characterization of the subdifferentials of convex

JURCTIONS « o oo e e e 497
Donald Erik Sarason, Invariant subspaces and unstarred operator

ALGEDYAS . . . . v 511
Donald Erik Sarason, Weak-star generators of H® ....................... 519

Boris M. Schein, Homomorphisms and subdirect decompositions of
SCHU-GEOUDS . . oo e e ettt et e e e e e et et

Daniel Francis Shea, Jr., Functions analytic in a finite dis
asymptotically prescribed characteristic............

Zvi Ziegler, Generalized convexity cones...............



http://dx.doi.org/10.2140/pjm.1966.17.391
http://dx.doi.org/10.2140/pjm.1966.17.407
http://dx.doi.org/10.2140/pjm.1966.17.407
http://dx.doi.org/10.2140/pjm.1966.17.413
http://dx.doi.org/10.2140/pjm.1966.17.413
http://dx.doi.org/10.2140/pjm.1966.17.423
http://dx.doi.org/10.2140/pjm.1966.17.423
http://dx.doi.org/10.2140/pjm.1966.17.435
http://dx.doi.org/10.2140/pjm.1966.17.435
http://dx.doi.org/10.2140/pjm.1966.17.467
http://dx.doi.org/10.2140/pjm.1966.17.475
http://dx.doi.org/10.2140/pjm.1966.17.475
http://dx.doi.org/10.2140/pjm.1966.17.497
http://dx.doi.org/10.2140/pjm.1966.17.497
http://dx.doi.org/10.2140/pjm.1966.17.511
http://dx.doi.org/10.2140/pjm.1966.17.511
http://dx.doi.org/10.2140/pjm.1966.17.529
http://dx.doi.org/10.2140/pjm.1966.17.529
http://dx.doi.org/10.2140/pjm.1966.17.549
http://dx.doi.org/10.2140/pjm.1966.17.549
http://dx.doi.org/10.2140/pjm.1966.17.561

	
	
	

