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Subdirect decompositions of rings seem to be an important
tool in the theory of rings promoting the development of this
theory. It is a very natural thing to study subdirect products
of semigroups but to the author’s knowledge the only paper
on the topic is that of G, Thierrin [22] where certain properties
of subdirectly irreducible semigroups are considered.

Subdirect decompositions of semigroups are closely con-
nected with homomorphisms of these semigroups, so we describe
in the first section the structure of an arbitrary congruence
on a semigroup. The second section is devoted to certain special
subsets and elements of a semigroup, Main notions of the
section are those of disjunctive element (i.e., an element that
does not form a congruence class medule any nontrivial con-
gruence) and of core of a semigroup (i.e., a least nonnull
ideal). Subdirectly irreducible semigroups are considered in
the third, fourth and fifth sections. We consider certain
general properties of such semigroups and find characteriza-
tions of special classes of such semigroups (e.g. nilpotent, idem-
potent, commutative). Section 6 treats homomorphically simple
(h-simple) semigroups, i.e., semigroups having no nontrivial
congruences, Section 7 is devoted to consideration of certain
semigroups having special subdirect decompositions. By analogy
with f-regular rings [3] we introduce f-regular semigroups.
There are considered also completely reductive semigroups, i.e.,
semigroups having no nononreductive homomorphic images.

Several results of this paper have been published without
proofs in our note [18], Certain results of [18] had been
previously found in [22] but we did not know this when [18]
was published. All concepts of the theory of semigroups that
are not defined here are defined in [6, 12]. We use the symbols
A, —>, <, A\ respectively for conjunction, implication, (logical)
equivalence, universal quantifier and follow the ordinary
agreement as to the use of brackets in statements. If ¢ isan
equivalence relation, then <(g) is the ¢-class containing ¢ and
g1 = g:(e) or g, = g, means that g; and g, are in the relation e,
If G is a semigroup then G' denotes G with adjoined identity
(unless G already has an identity), G° denotes G with ad-
joined zero (unless G already has a zero). Variables g and %
(with or without indices) take values in the set of all elements
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of (7, variables « and y take values in the set of all elements
of G' (i.e., x and y may be void symbols ([12], p. 7)). A one-
element set is often denoted in the same way as its element,
As a rule, one-element semi-groups are excluded from con-
sideration. Js is the identity relation on the set G.

Congruences on semigroups., It is known that the consideration
of homomorphisms may be limited to the consideration of congruences
on semigroups (it is necessary to emphasize that such a limitation can
lead to an essential loss of information—e.g., when one considers
automorphisms).

Let #(G) denote the complete lattice of all congruences on a semi-
group G. A minorant basis of O(G) is any subset B of #(G) such
that each element of #(G) is the greatest lower bound (i.e., the inter-
section) of some subset of B.

If H is a subset of a semigroup G then the equivalence %
defined as follows:

(1.1) 91 = 9 %) — (A, y)xgye H— g,y e H]

18 a congruence [17, 21]-the principal congruence determined by
H. R. Pierce [14] and R. Croisot [7] define &, in another way (they
do not allow « and y in (1.1) to be void). Clearly &y = &5, where
H'’ is the complementation of H in G. E.g., &, = €z =G X G.

Let ¢ be an equivalence on a semigroup G. The greatest congru-
ence included in ¢ is called the stable opening of ¢ (ef. [16]). We
omit the straightforward proof of the following

LemMA 1.1. FEvery equivalence € on a semigroup G possesses a
stable opening & and &€ = (WFup)seca

Every congruence coincides with its stable opening, so every
congruence ¢ coincides with intersection of the family of principal
congruences generated by e-classes.

THEOREM 1.2. The set of all principal congruences on @ semi-
group forms a minorant basts of the lattice of all congruences.

This theorem is no longer true if principal congruences are un-
derstood in the sense of R. Croisot [7].

Let G be a subsemigroup of a ring R. Then every congruence
of the ring R induces a congruence on G. It is easy to prove that
if R is the semigroup ring of G over the ring of integers, then every
congruence of G is induced by some congruence of R,
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2. Disjunctive element and cores of semigroups. A subset H
of a semigroup G is called indivisible by an equivalence ¢ (by a sub-
set F') if H is contained in some e-class (&,-class). H is called
saturated for e, if H is the union of a family of e-classes. M. Teissier
[21] has proved that & is the greatest congruence for which H is
saturated.

Let us associate with every subset H the subset r(H) defined
by the formula

(2.1) ger(H) — (A, y)lrgy ¢ H]

r(H) is called the (bilateral) restdue of H in G. It is an ideal of G
and, if nonempty, an Zz-class. If = and y in (2.1) are not permitted
to be void, one comes to the definition of residue in the sense of
R. Croisot [7]. In our previous papers we designated &, by ¢ and

r(H) by Wy. It follows from (2.1) that r(H)cC H’, i.e., r(H) N H = ¢.
H is called neat if r(H) = ¢. If G contains a zero 0 and 0¢ H
then H cannot be neat because 0e¢ »(H). H is called 0-neat if r(H)
contains at most one element (i.e., r(H) coincides with ¢ or with {0}).
Both notions are identical for a semigroup without zero.
A subset H is called disjunctive if the only subsets indivisible by
&y are empty and one-element. This means that

(2-2) Eu = da -

Disjunctive subsets were considered by E. J. Tully, Jr. [23],
M. P. Schiitzenberger [20] and (in a slightly different sense) by
R. Pierce [14].

An clement ¢ is called 0-neat (disjunctive) if {g} is 0-neat (dis-
junctive). In [18] disjunctive elements were called separative.

The least nonempty ideal of a semigroup G (if it exists) is called
the kernel of G. The kernel of a semigroup with zero is trivial. We
call an ideal nonnull if it contains at least two elements., The least
nonnull ideal (if it exists) is called the core of G. The core and the
kernel of a semigroup without zero coincide,

THEOREM 2.1. Let G be a semigroup with disjunctive zero.
Then an element of G is disjunctive if and only if it 1s 0-neat.

Proof. If an element % is disjunctive then by (2.2) r(k) contains
at most one element. Hence k is 0-neat. Now let k£ be 0-neat. If
k= 0 then k is disjunctive, so let % == 0. For every g¢g,, g,€G there
exist «,y such that exactly one of elements xg,y, xg,y is equal to 0
(this follows from disjunctivity of 0). Let xg,y = 0. Then there
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exist «,, ¥, such that xxg.yy, = k. But zg,y = 0, so x,2g,yy, = 0 # k,
and g, # g£L&%), i.e., k is disjunctive.

Let K be the core of G. Since K* is an ideal, one has two
alternatives: K*= K or K*= 0, In the first case we call K globally
idempotent, in the second case K is called nilpotent.

The set of all right annihilating elements of a semigroup G (i.e.,
such elements g that Gg = 0) is called the right annihilator of G.
The left annihilator is defined dually. The set of all (left and right)
annihilating elements is called the annthilator of G. The right an-
nihilator is called trivial if it contains at most one element.

A core K is called premetive if it contains exactly one nonzero

element,

THEOREM 2.2. If a semigroup G having a core K conlains a
nonzero element g such that GgG = 0, then K s included in the
right or in the left annihilator of G. If K s included tn both,
then K 1is primitive and coincides with the annihilator. In every
case the core K is wnilpotent.

Proof. Let M(G) be the set of all ge G such that GgG = 0.
M(G) is a nonnull ideal, so K M(G) and GKG = 0. Therefore GK
and KG are ideals. If GK is nonnull, then KC GK, so GK = K and
KG = 0, i.e., K is contained in the left annihilator. Analogously, if
KG is nonnull, then K is contained in the right annihilator., If GK =
KG = 0 then K is contained in the annihilator. Every subset of the
annihilator is an ideal, hence the annihilator cannot contain more than
two elements. So K coincides with the annihilator and is primitive.
Clearly, in every case K® = 0,

It is easy to prove that ¢f the core K is globally idempotent then
KgK = K for every nonzero gcG.

3. General properties of subdirectly irreducible semigroups.
Let (G));er be a nonempty family of semigroups. Its direct product
is a semigroup X (G;);c; whose set of elements is the Cartesian product
of the family of sets of elements G;, the operation is defined component-
wise.

A subsemigroup G of the semigroup X(G;) is called a subdirect
product of the family (G,);c; of semigroups if pr{G) =G, for allie [
(here pr; denotes the natural projection of X(G,) on G,). Clearly, all
pr,; are homomorphic mappings of G.

We say that a semigroup S is decomposable as a subdirect product
of a family (G,);c; of semigroups if S is isomorphic to the subdirect
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product of (G,);. This isomorphism is called a subdirect decomposition
of S.

If the subdirect decomposition followed by some one of the pro-
jections pr; is an isomorphism of S with G,, then this decomposition
is called trivial. A semigroup is called subdirectly irreducible if each
of its subdirect decompositions is trivial. In the same way direct
decompositions and directly irreducible semigroups are defined.

Two following theorems are true ([2], Th. 10, p. 92; [1], p. 765):

THEOREM 3.1. Ewvery semigroup ts decomposable as a subdirect
product of a family of subdirectly irreducible semigroups.

THEOREM 3.2. A semigroup G is subdirectly irreducible if and
only if it possesses the least nmonidentical congruence,

If a family (¢;) of congruences on G has 4, as its intersection,
then G is decomposable as a subdirect product of a family (G/e;) of
semigroups ([2], Th. 9, p. 92).

THEOREM 3.3. FEwery subdirectly irreducible semigroup has at
least two different disjunctive elements.

Proof. Consider the congruence () (&,),e« o0 a subdirectly irre-
ducible semigroup G. Each of {g} is a &,-class, so our congruence is
equal to 4 Since G is subdirectly irreducible, &, = 4, for some g,
(by Theorem 8.2). Now consider the congruence [)(Z7,),w,. Every
g # g, forms its congruence class, so our congruence is equal to 4,
and there exists g, * g, such that &, = 4,. ¢, and g, are two different
disjunctive elements, by (2.2).

Disjunctive elements are 0O-neat, every nonzero O-neat element
belongs to every nonnull ideal, i.e., belongs to a core,

COROLLARY 3.3.1. [22]. Every subdirectly irreducidble semigroup
has a core,

All disjunctive elements of a semigroup belong to its core. But
a semigroup having a core need not be subdirectly irreducible (as it
is for rings).

THEOREM 3.4. Let 57 be a family of subsets of a subdirectly
trreducible semigroup and let the imtersection ([ H or the union
U H of this family be disjunctive. Then at least one subset in the
SJamily 57 1is disjunctive.
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Proof. It is easy to prove (cf. [17], p. 387) that
(3'1) n (gﬂi)iel - gn(H,l;)ie[ ’ n (gHi)iEI < gU(Hi)ief .

If 27 = (H;) and N 22 or U H are disjunctive, then (€%, = 4e.
Hence there exists ¢ ¢ I such that &, = 4,, i.e., H; is disjunctive.

COROLLARY 3.4.1. Let G be a subdirectly irreducible semigroup,
K its core, ¢, the least nonidentical congruence on G, k a disjunctive
element of G, HCG. Every disjunctive subset of G contains at
least one disjunctive element. H 1is saturated for ¢, 1f and only if
it ts nmot disjunctive. H 1is disjumctive tf and only +f HN K s
such. If ge G and {k, g} ts not disjunctive, then every subset of G
containing k but not g is disjunctive; excluding at most one, every
two-element subset containing k ts disjunctive.

This follows from Theorem 3.4 and evident equality H =
(HNK)U (H\K). If {k, g} is not disjunctive then every subset con-
taining k& but not g intersects with {k, g} by {k}.

Let g, b be elements of a semigroup G. If gh = h then g is called
a left wnit for h. If gh = hg = h, then g is called a wnit for h. An
element ¢ is called central if eg = ge for every ge@G.

THEOREM 3.5. Let G be a subdirectly irreducible semigroup and
e a central element of G. If e is a unit for some mnonzero element
then e is the identity of G.

Proof. Let e be a unit for g = 0, K be the core of G and k€ K.
There exist x,y such that xgy = k£ (since k& is 0O-neat), so ke =k,
since ¢ is central. So for every ke K ke =k and for an arbitrary
positive nke™ — k. Consider a binary relation ¢, defined by the formula:
g, = g.(&,;) <> g.e™ = g.e” for some positive integers m and n. Clearly,
€. 1s a congruence and it induces on K the identical congruence. Let
e = K X KU 4, be the congruence generated by K., Then ¢ Ne¢, =
44, Since G is subdirectly irreducible and &¥ # 44, &, = 4q. For
every g€ G g = gele,,), so g = ge.

Every central idempotent is a unit for itself. So we have:

COROLLARY 38.5.1. [22]. A subdirectly trreducible semigroup does
not contain central idempotents different from zero and identity.

THEOREM 3.6. Semigroups G and G* (G and G°) are simultaneously
subdirectly irreducible or reducible.
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Proof, If G has an identity, then G = G' and there is nothing
to prove. Let G be a semigroup without identity., If ¢ is a congruence
on G, then ¢ = ¢ U {(1,1)} is a congruence on G*. If & is the least
nonidentical congruence on G', then it induces the least nonidentical
congruence on (. It is easy to prove that if ¢, is the least nonidentical
congruence on GG then &) is the least nonidentical congruence on G'.
The proof for G and G° is analogous.

THEOREM 3.7. A semigroup G with disjunctive zero s subdirectly
wrreductble if and only vf it satisfies one of the following conditions
(which are equivalent):

(1) G contains at least two different 0-neat elements.

(2) G contains at least two different disjunctive elements.

(3) G has a core.

Proof. By Theorem 2.1, conditions (1)-(3) are equivalent. They
are necessary for subdirect irreducibility (Theorem 3.3). Now let G
satisfy (1)~(3), & be a 0-neat element different from 0. If ¢ is a non-
identical congruence, then {0} cannot be an e-class (otherwise e C &, =
4s). So 0 = g(¢) for some nonzero g. Since % is 0O-neat there exist
2 and y such that xgy =k, so 0 = 20y = 2gy — k. This is true for
every k< K, so ¢£ C¢ and the congruence €€ generated by K is the
least nonidentical congruence on (. G is subdirectly irreducible, by
Theorem 3.2.

COROLLARY 3.7.1. A semigroup with primitive core is subdirectly
wrreductble +f and only if its zero ts disjunctive.

A subset H of a semigroup G is called a left reductor if it has
the property:

If g,,9.¢ G and hg, = hg, for every he H, then g, = g..

H is a right reductor if it satisfies the dual property.

We define the congruences ¢, and ¢, by the formulas

(3.2) g, = 9:(&) — (ADlg:.9 = 9.9]

(3.3) g, = g:(e) — (AD9g. = 99.] .

G is called rtght (left) reductive if &, = 4y (e, = 4g).

Let G be a subdirect product of a family (G;) of right reductive
semigroups and ¢,9 = ¢g,9 for every geG. Then opr,(g)prg) =
pri(9)pri{9). The elements pr(g) run over the whole set G,;, so
r{g) = prig,), i.e., g, = ¢g.. We have proved:

THEOREM 3.8. A subdirect product of a family of right (left)
reductive semigroups s right (left) reductive.
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Let G be subdirectly irreducible, K its core. Denote the con-
gruence & Né& NEX by 6. Let g, = g.(6). If g, or g, does not belong
to K, then g, = ¢,. Let ¢, 9.€ K. Then

(3.4) (A9 = 9.9 N\ 99, = 99:] .

Let k& be disjunctive and different from g, and g¢,. If xg,y = k, then
x or y is not void, so %gy = xg.y = k. Therefore g, = g.(%&%), l.e.,
g, = ¢g.. Two alternatives are possible: 1) ¢ = 4,. Therefore ¢, or ¢,
is identical, i.e., G is right or left reductive. 2) ¢ # 4. Then there
exist g, # ¢, such that g, = g,(¢). G has no disjunctive elements
different from g¢,, 9,. So ¢, and g, are disjunctive (by Theorem 3.3).
We have proved:

THEOREM 3.9. If a subdirectly irreducible semigroup is neither
right nor left reductive, then it contains exactly two disjunctive
elements g, and g, and these elements satisfy (3.4).

4. Special classes of subdirectly irreducible semigroups. A
homogroup is a semigroup which contains a kernel that is a group
[5,6]. A semigroup is a homogroup if and only if the intersection of
all right, left and two-sided ideals of the semigroup is not empty.
Every semigroup with zero is a homogroup. If K is the kernel of a
homogroup G then the identity of the group K is a central idempotent
of G([12], p. 252). If G is subdirectly irreducible, then this central
idempotent is a zero or an identity of G, by Corollary 3.5.1. In the
second case G = K. So we have:

THEOREM 4.1, Ewvery subdirectly irreducible homogroup without
zero s a group.

It follows that a subdirectly irreducible semigroup which is not a
group does not contain nonzero zeroid elements in the sense of [5].
It follows also that the core of this semigroup is not a group.

A semigroup is called a mnilsemigroup if some power of every
element is equal to zero (the power may be different for different
elements).

LEMMA 4.2, If a nilsemigroup has a core, this core s primi-
tive and coincides with the annihilator of the semigroup.

Proof. Let G be a nilsemigroup and K its core, k, k, be two
nonzero elements of K. Since k, and k&, are 0-neat, there exist z, ¥,
2,9, such that aky =k, and 2.ky, = k. So (x2)"k.(yy)" =k, for



HOMOMORPHISMS AND SUBDIRECT DECOMPOSITIONS OF SEMIGROUPS 537

every n, l.e. (z2x)"= 0 and (yy)* = 0. Hence, z,y, x, y, are void
and k, = k,, i.e., K contains a single nonzero element, say, k. If
GK = GK U {0} is not equal to 0, then GK = K and gk = k for some
geG. So gk =k for every n. But g = 0 for some n. So GK = 0.
Analogously, KG = 0. Hence K is the annihilator, by Theorem 2.2.

By this lemma and Corollary 3.7.1,

THEOREM 4.3. A ntlsemigroup ts subdirectly trreducible if and
only if it contains a disjunctive zero and has the core.

LEMMA 4.4. If a semigroup with a mnontrivial annihilator
contarns a disjunctive element, then this semigroup has a disjunctive

zero.

Proof. If 0 is disjunctive, there is nothing to prove. Let k& be
a nonzero disjunctive element. % is 0-neat, so G has the core. The
core necessarily coincides with the annihilator, so % is annihilating.
Let g, and ¢, be two different elements, Then there exist x and y
such that exactly one of elements zg,y, g,y is equal to k. Let xg.y =
k. If xgy #+ 0, then for some =z, ¥y, z2x9.yy, = k, since k — O-neat.
So x, and y, are not both void. The element % is annihilating, there-
fore xz,xg,yy, = x.ky, = 0. So 0 is disjunctive,

THEOREM 4.5. A ntlsemigroup %s subdirectly irreducible +f and
only if it contains a nonzero disjunctive element.

Proof. Such a semigroup has a core. The semigroup is sub-
directly irreducible, by Lemmas 4.2, 4.4 and Theorem 4.3.

Homomorphic images of nilsemigroups are nilsemigroups, so every
nilsemigroup is decomposable as a subdirect product of a family of
subdirectly irreducible nilsemigroups.

A semigroup G is called nilpotent if G* = 0 for some positive #.
A subdirect product of nilpotent semigroups need not be nilpotent,
but it is easy to prove that a semigroup G is tsomorphic to a sub-
direct product of a family of nilpotent semigroups if and only if
the ideal ) G* (for all positive n) 2s null.

THEOREM 4.6. A nilpotent semigroup is subdirvectly irreducible
of and only +f ©t contarins a disjunctive element.

Proof. By Theorem 4.5, it is sufficient to prove that a nilpotent
semigroup with disjunctive zero is subdirectly irreducible,
If G,= 0 and G** = 0, then G*! is included in the annihilator
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of G. Let %, k, be nonzero annihilating elements. 2zky = 0 means
that @ or y is not void. Therefore, k, = k(%), i.e., k, = k,. So G*
is the annihilator containing exactly two elements. Clearly, G*' is a
core, hence G is subdirectly irreducible, by Theorem 4.3.

COROLLARY 4.6.1. A wnilpotent semigroup s subdirectly irre-
ducible ©of and only if it has a disjunctive zero.

THEOREM 4.7, Let G be a subdirectly irreducible tdempotent
semigroup, K be a core of G. If G is a semigroup without zero,
then one of the following two properties hold:

(1) K s the set of all right zeros of G and a left reductor.

(2) K ts the set of all left zeros of G and a right reductor.

If G has a zero, then the complementation of the zero is a sub-
gsemigroup satisfying (1) or (2).

Proof. Let G have a zero. Then K is 0-simple, hence K is a
completely 0-simple semigroup ([6], Corollary 2.56), Completely 0-simple
idempotent semigroups are rectangular bands with adjoined zeros (cf.
[6], Exercise 2.7.9). Let ¢9.=0, g,# 0, g, 0. Then K¢, K=K
(see the last sentence of §2). Therefore Kg, == 0 and ¢,K + 0, i.e.,
there exist k,, k,€ K such that kg, + 0 and g¢,k, = 0. So kg, -g.k, =
0. This equality contradicts to the fact that K is a rectangular
band with adjoined zero. Hence, g, =0 or g, = 0, i.e., the comple-
mentation of 0 is a subsemigroup. This subsemigroup is subdirectly
irredueible, by Theorem 3.6, K\{0} is the core of this subsemigroup,
so it does not contain zero.

Now let G be a subdirectly irreducible idempotent semigroup
without zero. We have just seen that K is a rectangular band. Define
two equivalences & and ¢ on G. g, = g,(s;) means that ¢, =g, or
that ¢, ¢,¢ K and g¢,9. = ¢, (the last equality implies g,9. — g,). Let
g = 9:(e). If g, = g,, then gg, = gg.(c) and g9 = g.9(e)). If g, # g,
then g,, g€ K and ¢,9, = g.. Therefore gg,99. = ¢9.99.99. = 99,9, = 99.
and gg, = gg,(&). 9.99. = 9.°9.99:9, = ¢,, since K is a rectangular
band and g,99, € K. Hence, ¢.99.9 = 9.99.9.9 = .99 = 9.9 and g.,g =
g.9(c,). So & is a congruence. ¢&, is defined in a dual way (g,9, = ¢,,
if g., g.€ K). Clearly, ¢, N&, = 45, This means that ¢, or ¢, is identical,
i.e., K is a right zero semigroup or a left zero semigroup. Let K be
a right zero semigroup, i.e., kk,—k, for k,k,€ K. Then gk =
gk-k =k for every k€ K and ge G, i.e., K is a set of right zeros of
G. If g is a right zero, then ¢ = KgC K, i.e., K is the set of all
right zeros. Define g, = g,(¢) if and only if kg, = kg, for all ke K.
¢ is a congruence, since K is an ideal. Clearly, ¢ Ne¥ = 4,4, 50 € = dg.
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This means that K is a left reductor.
Semigroups satisfying (2) were considered by E. S. Ljapin [11].

5. Commutative subdirectly irreducible semigroups. Com-
mutative subdirectly irreducible rings have been described in [13].
We shall consider now commutative subdirectly irreducible semigroups.
We distinguish three kinds of such semigroups.

Semigroups of the first kind are subdirectly irreducible abelian
groups (with or without adjoined zero).

THEOREM b.1. An abelian group is subdirectly trreducible f
and only if it ts a subgroup of p=-group (i.e., if it ©s a P°-group
or a cyclic group of order p*, where p is a prime).

Proof. A subdirectly irreducible abelian group G has a least non-
unit subgroup A, by Theorem 3.2, Since A does not contain any
proper nonunit subgroup, it is a cyclic group of a prime order p. If
¢ = 1 and [g¢] is the cyclic subgroup of G generated by ¢, then A C [g],
so ¢ is an element of a finite order pm. Therefore the group [¢] has
a subgroup of order m. In the same manner we prove that m = 1 or
m is a multiple of p. So ¢ is an element of order p”, i.e., G is a
p-group. It is well-known ([10], §25, p. 164) that every directly
irreducible p-group is a p=-group or cyclic. So G coincides with one
of the groups listed in Theorem 5.1. Clearly, these groups possess
least nonunit subgroups and are subdirectly irreducible.

Thus, the concepts of direct and subdirect irreducibility are identical
for periodic Abelian groups. However, these concepts differ in the
general case. E.g., a directly irreducible Abelian torsion-free group is
not subdirectly irreducible.

Semigroups of the first kind are exactly subdirectly irreducible
commutative semigroups with globally tdempotent cores. The comple-
mentation of zero in a commutative semigroup with globally idempotent
core is a subsemigroup (otherwise the core is nilpotent). And a sub-
directly irreducible commutative semigroup without zero and with
globally idempotent core is a group, by Theorem 4.1,

Semigroups of the second kind are subdirectly irreducible com-
mutative semigroups having nontrivial annihilator. By Theorem 2.2,
the core of such a semigroup is primitive and coincides with the an-
nihilator. By Lemma 4.4,

THEOREM 5.2. A commutative semigroup with a nontrivial anni-
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hilator is subdirectly irreducible if and only if it contains a nonzero
disjunctive element,

COROLLARY 5.2,1. A commutative semigroup is a semigroup of
the second kind if and only if contains a nonzero annthilating dis-
Junctive element.

COROLLARY 5.2.2. Subdirectly irreducible commutative nilsemi-
groups are semigroups of the second kind.

Subdirectly irreducible commutative semigroups different from the
semigroups of the first two kinds are semigroups of the third kind.
Hence, semigroups of the third kind are subdirectly irreducible com-
mutative semigroups with a nilpotent core and trivial annihilator.

A divisor of zero is called nontrivial if it is different from zero.
The set of all nondivisors of zero of a commutative semigroup is either
empty or forms a subsemigroup.

THEOREM 5.3. A commutative semigroup is a semigroup of the
third kind 1f and only 1f it contains an identity, a nontrivial
divisor of zero and a monzero disjunctive element, and the set of all
nondivisors of zero forms a subdirectly trreducible group.

Proof. Let G be a semigroup of the third kind with a core K,
F Dbe the set of all elements annihilating the core, i.e., fe F— Kf = 0.
Since K* =0, KC F. C(Clearly, F is an ideal. G is not of the second
kind, so K is not the annihilator. Therefore G = F. Let A be the
complementation of F in G, K, be the set K\{0}, F,;, be the set F\K,
So {{0}, K,, F,, A} is a partition of G (F, may be empty). If ac A,
then aK = 0, l.e., aK = K, because aK is an ideal of G. The set of
all g such that ag = 0 forms an ideal. K is not included in this ideal,
therefore this ideal is null, i.e., @ is not a divisor of zero. Since
elements of F' are divisors of zero, A is the set of all nondivisors of
zero. (G has the trivial annihilator, so for every ke K, K = GK =
Akl U {0}, i.e., there exists such an element ec A that ek =Fk. By
Theorem 3.5, ¢ is an identity of G. Let ac A and ke K,. Then
Aak = K,, so there exists a,€ A such that ¢,k = k. By Theorem 3.5,
a,a = e, 80 a, is the inverse of ¢ and A is a subgroup of G. Let
ak = akc for ke K, a,,a,€ A. Then k = a;*ak, ar'a, = ¢ and a, = a,.
Ak = K,, therefore the sets A and K, have the same cardinality.

Let ¢ be a congruence on a group A generated by subsemigroup
a. Define a binary relation &, by the formula: g, = g.(¢,) — g, € g.a.
It is easy to verify that ¢, is a congruence on G that induces on A
the congruence &, Let (¢;) be a family of congruences on A with
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identical intersection and (g,) be the family of corresponding congru-
ences on G. If k, k,e K, then k, — ak, for some ac A, Therefore
k, = ky(e,) means that k, € k,a; or that there exists a;eqa; such that
ky = ky;, or that k.a = k.a;, or a = a;, oraca;. Sok; = k(N (&) —
acN(a)—a=1<k =k, Therefore ¢ N (M (s,)) = 4s and, since
G is subdirectly irreducible, there exists ¢ such that &, = 4, and
€; = 4,. Hence, A is subdirectly irreducible.

Now let G be a commutative semigroup satisfying the conditions
of our theorem. G has a trivial annihilator and contains a nontrivial
divisor of zero. Hence, G is not a semigroup of the first or the
second kind. It is sufficient to prove the subdireet irreducibility of G,

Let A be the set of all nondivisors of zero, &, be a nonzero dis-
junctive element and K the core of G (K exists since G has a nonzero
disjunctive element). If ¢ is a nontrivial divisor of zero, then gg, = 0
for some g, # 0. For every ke K there exist xz and y such that
xgy = k, so gk = 299,y = 0 and k is an annihilating element for the
set F=G\4, i.e.,, FK=0. If A is one-element, then the set of all
divisors of zero, i.e., the complementation of A, is a semigroup satis-
fying all conditions of Theorem 5.2, i.e., G — H* where H is a semi-
group of the second kind. G is subdirectly irreducible, by Theorem 3.6.

Let A have more than one element. Since A is subdirectly irre-
ducible, it has a least nonunit subsemigroup a. Let ¢ be a nonidentical
congruence on G. k, does not form an e-class, so there exists g # k,
such that %k, = g(¢). If g¢ K, then for some x,y xgy = k,, whence
zky = kd€). « and y are not both void. If xye€ A, then g = (xy)~'k, € K.
So xyc A and xkyy = 0. Therefore %, = 0(c) and ak, = 0(¢) for every
aca, ie.,

(5.1) ak, X ak,C e .

If ge K,, then since K= Gk, = Ak, U {0}, g — ak, for some a,c A.
In this case the set of all ae A such that ak, = k(c) forms a nonunit
subgroup of A (this subgroup contains a,# 1). So a is included in
this subgroup and (5.1) is valid. Hence, (5.1) is always valid. Let
¢, be the intersection of all nonidentical congruences on G. By formula
(56.1), ak, is not divisible by ¢, so ¢, is not identical and G is sub-
directly irreducible, by Theorem 3.2.

COROLLARY 5.3.1. A semigroup G ts of the second kind if and
only if G' is a semigroup of the third kind in which all elements
different from identity are divisors of zero.

The “if” part has just been proved and the “only if” part follows
from Theorems 3.6 and 5.2,
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COROLLARY 5.3.2. FEwery semigroup of the third kind has the
following structure: it ts the union of four mutually disjoint sets
{0}, K,, F,, A, where F, may be empty, K, and A are not empty. 0
s a zero, A 1is the set of all nondivisors of zero; A forms a sub-
directly irreducible Abelian group; K = K, U {0} s the nilpotent core
and KF =0, where FF= F)\K. Sets A and K, are of the same
cardinality and K, is the set of all disjunctive elements of a semi-
group (if A is one-element, then 0 s also disjunctive). AF,= F|
and F is an tdeal of the semigroup. For every ac A and ke KaK, =
K, Ak = K.

The greater portion of these propositions has been proved above.
It follows from the formula A, = K, that K, is the set of all disjunec-
tive elements,

Note t_}}at semigroups of the third kind are a particular case of
Rauter’s “Ubergruppen” [15].

A semigroup is called pertodic if each of its elements generates a
finite subsemigroup. Using the terminology of [4], we may say that
semigroups of the third kind are extensions by semigroups of the first
kind of semigroups all whose elements are divisors of zero. Periodic
semigroups of the third kind are extensions by Abelian groups with
zero of nilsemigroups. Finite commutative nilsemigroups are nilpotent,
so subdirectly irreducible finite commutative semigroups are cyelic
groups (possibly, with zero), finite nilpotent semigroups and extensions
of nilpotent semigroups by ecyelic groups with zero.

Though all subdirectly irreducible Abelian groups are periodic,
this is not true for semigroups. We possess examples of nonperiodic
semigroups of the second and of the third kinds.

6. Homomorphically simple semigroups. A semigroup is called
homomorphically simple (or, h-stmple) if it has only two congruences:
identical and universal. Clearly, such semigroups are subdirectly irre-
ducible. They have no proper nonnull ideals.

A subset B of a set A is proper, if B+ @ and B # A.

THEOREM 6.1. A semtgroup is h-simple iof and only if each of
its proper subsets is disjunctive.

Proof. Let G be h-simple, H be a proper subset of G. Clearly,
&y is not universal. So &y — 4, i.e., H is disjunctive. If every
proper subset of a semigroup is disjunctive, then the semigroup is
h-simple, by Theorem 1.2.

THEOREM 6.2. A semigroup with zero is h-simple tf and only
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if each of its elements is disjunctive.

Proof. Every element of an h-simple semigroup is disjunctive, by
Theorem 6.1. If all elements of a semigroup with zero are disjunctive
and ¢ is a nonidentical congruence, then (0> is a nonnull ideal. Every
disjunctive element belongs to the core, so our semigroup has no
proper nonnull ideals, i.e., (0> coincides with the whole semigroup
and ¢ is universal.

It follows from Theorems 2.1 and 6.2;

COROLLARY 6.2.1. A semtgroup with zero ts h-simple if and
only if it ts 0-stmple and contains a disjunctive zero.

This condition is very similar to a somewhat more strong condition
of L. M. Gluskin [8].

THEOREM 6.3. If a semigroup with disjunctive zero has «
globally idempotent core, this core 1s an h-simple semigroup.

Proof. let k,, k, be distinct elements of a core K. Then there
exist x and y such that exactly one of elements zky, xk.y (say, xk,y)
is equal to 0. KzxkyK = K (cf. with the last sentence of § 2).
Therefore kakyk, #+ 0 and kxkyk, =0 for some k, k,e¢ K. Since
kax, yk,e K, 0 is a disjunctive element of a semigroup K. K has no
proper nonnull ideals (otherwise K is nilpotent). Hence, K is h-simple,
by Corollary 6.2.1.

THEOREM 6.4. An h-simple noncommutative semigroup has no
central elements different from zero and identity.

Proof. Let e be a central element of a noncommutative f-simple
semigroup G. Consider the congruence ¢, constructed in the proof of
Theorem 3.5. If g,, = 4,4 then for every g c G g — ge, since g = ge(e,,).
Hence, ¢ is an identity of G.

Now let ¢, be universal. Consider the congruence ¢,: g, = g.(¢,) «—
.6 = g.e. If ¢, is universal, then g.e = g,e for all ¢,, 9.¢G. In par-
ticular, ge = €%, i.e., the principal ideal generated by ¢ is {e, ¢}. G is
not commutative, so this ideal is null, i.e., ¢ is a zero of G. If ¢, =
A4, then ge = g6 — g, = g,. For every g,, g, there exist m and n such
that ¢g.e™ = g.e®. Let m = n. Then g™ " =g, or g, = ¢.. In both
cases ¢.¢, = ¢,0;. But this is impossible (G is not commutative).

H-simple semigroups are examples of semigroups where every con-
gruence is principal. Other examples of such semigroups are groups.

Let H be a subset of a semigroup G saturated for a congruence ¢.
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Then ¢ = C, if and only if the factor-set H/c is a disjunctive set of
a factor-semigroup G/e, When H is an e-class, this was proved in
[21, 23]. We omit the analogous proof for the general case. As a
consequence:

PROPOSITION 6.5. A congruence ¢ on a semigroup G 1is principal
if and only if the factor-semigroup G/e has a disjunctive subset.

It follows that the kernel of a homomorphism of G on a subdirectly
irreducible semigroup is a principal congruence generated by at least
two different subsets of G (these subsets are inverse images of dis-
junctive elements).

Another consequence is:

PROPOSITION 6.6. Every congruence on a semigroup is principal
if and only if every homomorphic image of this semigroup possesses
a disjunctive subset.

7. Completely reductive and f-regular semigroups. A semi-
group is called completely right (left) reductive if all its homomorphie
images are right (left) reductive.

Clearly, every completely right reductive semigroup if right
reductive,

PROPOSITION 7.1. A commutative semigroup is not completely
reductive if and only if it can be homomorphically mapped on a semi-
group of the second kind.

Proof. Semigroups of the second kind are not reductive (they
contain two distinct annihilating elements). On the other hand, if G
has no homomorphic images of the second kind, then every homo-
morphic image of G is decomposable as a subdirect product of a family
of semigroups of the first two kinds. Semigroups of these kinds have
identities and are reduective. G is completely reductive, by Theorem 3.8.

THEOREM 7.2, A commutative semigroup G is completely reduc-
tive 1f and only if it satisfies one of the following equivalent
conditions:

(1) AG = A for every ideal A of G.

(2) Ewvery element of G has a unit.

Proof. A semigroup of the second kind does not satisfy (1) if A
is the annihilator, and does not satisfy (2) because it has a nonzero
annihilating element, If G satisfies (1) or (2) then all homomorphie
images of G do. G is ecompletely reductive, by Proposition 7.1,
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Suppose G does not satisfy (2). Let g be an element of G having
no unit., Then AG# A if A=9gGUg. So G does not satisfy (2).
Consider the factor-semigroup G/AG. The subset A/AG of this semi-
group contains more than one element because AG is a proper subset
of A. G/AG is not reductive because it contains different annihilating
elements (all elements of A/AG are annihilating). So G is not com-
pletely reductive.

COROLLARY 7.2.1. A commutative periodic semigroup 1s com-
pletely reductive if and only if it satisfies one of the following
conditions:

(1) The ideal generated by the set of all idempotents coincides
with the semigroup.

(2) Every element has an tdempotent unit.

Proof. Evidently (2) — (1). It is easy to prove (1) — (2), so both
conditions are equivalent, (2) implies complete reductivity, by Theorem
7.2. If G is completely reductive, periodic and commutative and g € G,
then gh = g for some he @G, by condition (2) of Theorem 7.2, So A"
is a unit for g. But k" is idempotent for some n. So (2) holds.

COROLLARY 7.2.2. A finite commutative semigroup s completely
reductive vf and only tf it s globally idempotent, i.e., 1f and only
iof G* = G@.

Proof. If G* -+ G, then G does not satisfy condition (1) of Theo-
rem 7.2 when A =G. If G° =G then every homomorphic image of G
is also globally idempotent. So G cannot be mapped on a semigroup
of the second kind, because finite semigroups of the second kind are
nilpotent. G is completely reductive, by Proposition 7.1.

THEOREM 7.3. The following properties of a semigroup G are
equivalent:

(1) The intersection of any two tdeals of G 1is equal to their
product.

(2) Ewvery tdeal is globally idempotent.

(3) If (9) is the principal ideal generated by an element g e G,
then g€ (9)°.

(4) Every subdirectly irreducible homomorphic image of G has
a globally idempotent core.

(5) Ewvery homomorphic image of G is decomposable as a sub-
direct product of a family of semigroups with globally tdempotent
cores.

Proof. (1)—(2)— () —(4) — (B)—(1). We shall prove those
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implications that are not evident. (1) — (2) because AN A=A for
every ideal A. (3) is preserved under homomorphisms, so (3) — (4)
because elements of a nilpotent core do not satisfy (3). Evidently, a
subdirect product of semigroups with trivial annihilators has a trivial
annihilator. A subdirectly irreducible semigroup with a globally idem-
potent core has a trivial annihilator. If A and B are ideals such that
AN B +# AB, then the factor-semigroup G/AB has a nontrivial anni-
hilator (elements of A > B/AB are annihilating). So (6) — (1).

A semigroup satisfying conditions (1)-(5) of Theorem 7.3 is called
f-regular. f-regular semigroups are an obvious analogue of f-regular
rings that satisfy these conditions also |3].

Evidently, regular semigroups are f-regular, Homomorphic images
of f-regular semigroups are f-regular.

THEOREM 7.4 Commutative f-regular semigroups are regular,

Proof, Let A be a right ideal and B a left ideal of a commuta-
tive f-regular semigroup G. Then A and B are ideals, so A B = AB
Therefore G is regular [9].

COROLLARY 7.4.1. A semigroup is a commutative regular semi-
group if and only if each of its homomorphic tmages ts embeddable
wn o commutative regular semigroup.

Proof. The “only if” part is evident.

Clearly, subdirectly irreducible commutative regular semigroups
are of the first kind (i.e., are periodic groups with or without zeros).
Let G be a subdirectly irreducible semigroup embeddable in a com-
mutative regular semigroup G,. G, is decomposable as a subdirect
product of a family of periodic groups (with or without zeros), This
decomposition induces a decomposition of G. But all decompositions of
G are trivial. So G is embeddable in a periodic group (with or with-
out zero). Hence, G is a group (possibly, with a zero). Therefore G
has a globally idempotent core. Now let G be a semigroup all of
whose homomorphic images are embeddable in commutative regular
semigroups. Since G is a homomorphic image of itself, it is com-
mutative. G satisfies condition (4) of Theorem 7.3, so it is f-regular.
G is a commutative regular semigroup, by Theorem 7.4.
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