FUNCTIONS ANALYTIC IN A FINITE DISK AND HAVING ASYMPTOTICALLY PRESCRIBED CHARACTERISTIC

Daniel Francis Shea, Jr.
FUNCTIONS ANALYTIC IN A FINITE DISK
AND HAVING ASYMPTOTICALLY
PRESCRIBED CHARACTERISTIC

D. F. SHEA

Let \(f(z) \) be analytic in the region \(|z| < R (R \leq +\infty)\). Then in the interval \(0 \leq r < R\), Nevanlinna's characteristic

\[
T(r, f) = \frac{1}{2\pi} \int_0^{2\pi} \log |f(re^{i\theta})| \, d\theta
\]

is known to be nonnegative, nondecreasing and convex in \(\log r\); however, it is not known whether these properties characterize completely \(T(r, f)\).

Recently, A. Edrei and W. H. J. Fuchs have investigated one aspect of this question; they have shown that if \(A(r) \) is an arbitrary convex function of \(\log r\) defined for \(r_0 \leq r < +\infty\) and such that \(\log r = o(A(r))\) as \(r \to +\infty\), then it is possible to find an entire function \(f(z)\) such that

\[
(A) \quad T(r, f) \sim A(r) \quad (r \to +\infty),
\]

except possibly for values of \(r\) belonging to an exceptional set of finite measure. In this note I establish an analogue of this result for the case of functions regular in a disk of finite radius \(R\).

The proof of (A) in the case \(R < +\infty\), as well as in the case \(R = +\infty\), depends on the construction of certain infinite products which have applications to other problems of the same nature. To illustrate this fact, I use these products to find, very simply, examples of functions \(F(z)\) which are bounded on \(|z| < 1\) and such that the derivatives \(F'(z)\) have unbounded characteristic.

The main result of this note is given by the following Theorem 1. The notion of order which appears in the statement of the theorem is the one introduced by R. Nevanlinna [9]: if \(A(r)\) is a positive non-decreasing function defined in \(0 \leq r < R (\leq +\infty)\), the order \(\lambda\) of \(A(r)\) is

\[
\lambda = \limsup_{r \to R-} \frac{\log A(r)}{\log \left(\frac{R}{R - r}\right)}.
\]

Received February 18, 1965. This research was supported by the United States Air Force through the Air Force Office of Scientific Research of the Air Research and Development Command, under Contract No. AF 49 (638)-571.
THEOREM 1. Let \(\Lambda(r) \) be a given convex function defined for
\(0 \leq r < R \) \((< + \infty)\) and satisfying
\[
\lim_{r \to R^-} \frac{\Lambda(r)}{- \log (R - r)} = + \infty.
\]

Then there exists a function \(f(z) \) regular in \(|z| < R \) and such that
(i) if \(\Lambda(r) \) is of finite order,
\[
T(r, f) \sim \Lambda(r) \quad (r \to R^-);
\]
(ii) if \(\Lambda(r) \) has infinite order, (2) still holds provided \(r \) avoids
an exceptional set \(E \) of intervals in \([0, R)\). The set \(E \) satisfies
\[
(3) \quad \text{means} \ E(r, R) = 0 \left(\frac{R - r}{\Lambda(r)} \right)^{\tau} \quad (r \to R^-),
\]
where \(E(r, R) \) denotes the intersection of \(E \) with \((r, R)\) and \(\tau(\geq 1) \) is
a given constant.

We have assumed convexity instead of logarithmic convexity
because, for functions defined on a finite interval, these two notions
are asymptotically equivalent.

In a paper as yet unpublished, J. Clunie has improved the results
of [2] by eliminating the need for any exceptional sets. It seems
that, with a few modifications, his ingenious argument would lead to
an improvement of Theorem 1 which, in addition to removing the
exceptional set \(E \), would also replace the condition (1) by the simpler
\[
\lim_{r \to R^-} \Lambda(r) = + \infty.
\]

The construction given here of a function \(f(z) \) satisfying (2) may
be of interest because of its relative simplicity, and also because with
minor modifications, given in § 5 of this note, it yields a very simple
solution of a problem of Bloch and Nevanlinna.

I would like to thank Professor Edrei for suggesting the problem
of finding an analogue for the disk of the results in [2]. I am also
indebted to Professor Edrei and Dr. G. T. Cargo for their helpful
remarks about the Bloch-Nevanlinna problem, and to Dr. Clunie for
allowing me to see the manuscript of his paper.

1. Preliminaries. It is clearly no restriction to assume \(R = 1 \)
and to consider only functions \(\Lambda(r) \) of the special form
\[
(1.1) \quad \Lambda(r) = \int_0^r \phi(t)dt \quad (\phi(0) = 0),
\]
where \(\phi(t) \) is continuous, strictly increasing and unbounded. This is justified by the elementary remark that any \(\Lambda(r) \) satisfying the conditions of Theorem 1 is asymptotically equivalent, as \(r \to 1^- \), to a function of the form (1.1) [cf. for example 12, p. 69].

We shall need:

Lemma 1. Let \(A(r) \) and \(G(r) \) be positive, continuous, increasing, unbounded functions defined for \(r^* \leq r < 1 \) \((r^* \geq 0) \) and such that

\[
\lim_{r \to 1^-} \frac{A(r)}{G(r)} = + \infty .
\]

Then the function

\[
\beta(r) = \inf_{r \leq t < 1} \frac{A(t)}{G(t)}
\]

has the following properties on the interval \(r^* \leq r < 1 \):

(i) it is positive, nondecreasing, continuous and unbounded;

(ii) the function

\[
B(r) = \frac{A(r)}{\beta(r)}
\]

is unbounded and strictly increasing.

Proof. The properties (i) as well as the inequality

\[
B(r) \leq \frac{A(r)}{G(r)}
\]

follow at once from the definition (1.3).

From (1.5) we deduce that \(B(r) \) is unbounded. To verify that it is increasing, let \(r, r' \) satisfy

\[
r^* \leq r < r' < 1 .
\]

By definition, for some \(t_1 \) such that \(r \leq t_1 < 1 \) we have

\[
G(t_1) = \frac{A(t_1)}{\beta(r)}.
\]

If \(t_1 < r' \), the relations (1.6) and (1.5) (with \(r \) replaced by \(r' \)) imply

\[
\frac{A(r)}{\beta(r)} \leq G(t_1) < G(r') \leq \frac{A(r')}{\beta(r')} ,
\]

and hence

\[
B(r) < B(r') .
\]
If \(r' \leq t_1 \), then by the definition (1.3) and (1.6),

\[
\beta(r') \leq \frac{A(t_1)}{G(t_1)} = \beta(r),
\]

which implies \(\beta(r') = \beta(r) \). Thus (1.7) follows from the inequality \(A(r) < A(r') \). This completes the proof of Lemma 1.

In the sequel, we shall use the symbol \(K \) to denote a positive constant depending on one or more parameters. Since most of the inequalities in §§ 2-5 are valid only for values of certain parameters \(t, r, p, \cdots \) sufficiently close to some limit, it is convenient to indicate this fact by writing, immediately after the relevant inequality,

\((t_0 \leq t < 1), (r_0 \leq r < 1), (p \geq p_0), \cdots \). The quantities \(K, t_0, r_0, p_0, \cdots \) are not necessarily the same each time they occur.

We assume that the reader is familiar with the fundamental concepts of Nevanlinna’s theory of meromorphic functions, and in particular with the symbols: \(\log, n(r, f), N(r, f) \).

2. Construction of a function \(f(z) \) with \(N(r, 1/f) \sim \mathcal{A}(r) \). Let \(\mathcal{A}(r) \) be any given function of the form (1.1) such that the growth condition (1) is satisfied. Denote the order of \(\mathcal{A}(r) \) by \(\lambda \), and choose a constant \(A \) such that, if \(\lambda \) is finite,

\[
A > \lambda + 2.
\]

If \(\lambda = + \infty \), we consider the arbitrary number \(\tau(\geq 1) \) which appears in (3) and require that \(A \) satisfy

\[
A > 6\tau.
\]

Then define a function \(G(r) \) on \(0 \leq r < 1 \) by

\[
G(r) = \max \left\{ \sqrt{\mathcal{A}(r)}, A \log \frac{1}{1 - r} \right\}.
\]

By (1), \(\mathcal{A}(r) \) and \(G(r) \) satisfy the hypotheses of Lemma 1, and hence there exists a continuous, nondecreasing, unbounded function \(\beta(r) \) such that, on some interval \(r^* \leq r < 1 \),

\[
\beta(r) \leq \sqrt{\mathcal{A}(r)} ,
\]

\[
\beta(r) \leq \frac{\mathcal{A}(r)}{-A \log (1 - r)} ,
\]

and such that the function

\[
B(r) = \frac{\mathcal{A}(r)}{\beta(r)}
\]
is continuous, increasing, and unbounded.

Let \(\alpha \) be any constant such that \(0 < \alpha \leq 1 \) and

\[
\alpha B(r^*) \sqrt{\beta(r^*)} < 1 ,
\]

and observe that the equations

\[
(2.6) \quad k = \alpha B(r_k) \sqrt{\beta(r_k)} \quad (k = 1, 2, \cdots)
\]

define uniquely an increasing sequence \(\{r_k\} \), with \(\lim_{k \to \infty} r_k = 1 \).

Next, put

\[
s_k = \exp \left(\frac{k}{\alpha \sqrt{\beta(r_k)}} \right) = \exp \left(B(r_k) \right) \quad (k \geq 1)
\]

and note that \(s_k \) increases to \(+ \infty\) with \(k \), while the terms \(s_k \) form a monotone sequence converging to 1.

Denote by \([x]\) the greatest integer in \(x \), and define new sequences \(\{q_k\} \) and \(\{Q_k\} \) by

\[
q_k = \lceil 3k s_1, s_2, \cdots, s_k \rceil \quad (k \geq 1), \quad Q_k = q_1 + q_2 + \cdots + q_k \quad (k \geq 1).
\]

The following relations are elementary consequences of the above definitions and will be taken for granted.

\[
(2.7) \quad q_k > s_k = e^{B(r)} \quad (k \geq 1),
\]

\[
(2.8) \quad q_{k+1} > q_k \quad (k \geq 1),
\]

\[
(2.9) \quad \lim_{k \to \infty} \frac{q_{k+1}}{q_k} = 1 ,
\]

\[
(2.10) \quad \lim_{k \to \infty} \frac{q_k}{Q_k} = 0 .
\]

Finally, we define a sequence \(\{t_k\} \) by the conditions

\[
(2.11) \quad \phi(t_k) = Q_k \quad (k = 1, 2, \cdots),
\]

it is clear that this sequence exists and is uniquely defined, with \(0 < t_1 < t_2 < \cdots < 1 \) and \(\lim_{k \to \infty} t_k = 1 \).

We consider now the formal product

\[
(2.12) \quad \prod_{k=1}^{\infty} \left(1 + \left\{ \frac{z}{t_k} \right\}^{q_k} \right) = f(z)
\]

and establish some of its simple properties.

If \(\rho \) is any number in \(t_1 \leq \rho < 1 \), we can define an integer \(p = p(\rho) \) by
Then if \(|z| = r < \rho\), we have in view of (2.8)

\[
(2.14) \quad \sum_{k=p}^{\infty} \left| z^{q_k} \right| < \sum_{k=p}^{\infty} \left(\frac{r}{\rho} \right)^{q_k} \leq \left(\frac{r}{\rho} \right)^{q_p} \frac{\rho}{\rho - r}.
\]

These inequalities imply that the product (2.12) converges uniformly for \(|z| \leq \rho_0(< \rho)\), and hence \(f(z)\) is regular for \(|z| < 1\).

It is clear from the representation (2.12) that the zeros of \(f(z)\) satisfy

\[
n(t, \frac{1}{f}) = \begin{cases} 0 & (0 \leq t < t_1) \\
Q_k & (t_k \leq t < t_{k+1}; \quad k \geq 1) \end{cases}.
\]

Using (2.9), (2.10) and (2.11), we have

\[
n(t, \frac{1}{f}) \sim \phi(t) \quad (t \to 1^-),
\]

and hence

\[
(2.15) \quad N\left(r, \frac{1}{f} \right) \sim A(r) \quad (r \to 1^-).
\]

We proceed to estimate the maximum modulus of \(f(z)\). Let \(t_1 \leq r < \rho < 1\), \(p = p(\rho)\). Then

\[
(2.16) \quad \log M(r, f) = \sum_{t_k \leq r} \log \left(\frac{r}{t_k} \right)^{q_k} + \sum_{t_k > r} \log \left(1 + \left\{ \frac{t_k}{r} \right\}^{q_k} \right)
\]

\[
\quad + \sum_{r < t_k \leq \rho} \log \left(1 + \left\{ \frac{r}{t_k} \right\}^{q_k} \right) + \sum_{t_k > \rho} \log \left(1 + \left\{ \frac{r}{t_k} \right\}^{q_k} \right)
\]

\[
\quad \leq N\left(r, \frac{1}{f} \right) + p \log 2 + \sum_{t_k > \rho} \log \left(1 + \left\{ \frac{r}{t_k} \right\}^{q_k} \right).
\]

Using \(\log (1 + x) < x\) \((x > 0)\), (2.14) and Jensen’s theorem, we obtain

\[
(2.17) \quad N\left(r, \frac{1}{f} \right) \leq T(r, f)
\]

\[
\quad \leq \log M(r, f) < N\left(r, \frac{1}{f} \right) + p + \left(\frac{r}{\rho} \right)^{q_p} \frac{\rho}{\rho - r}.
\]

3. Proof of Theorem 1 when \(A(r)\) has finite order \(\lambda\). Putting \(\sigma = \lambda + 1/2\), the definition of order implies

\[
(3.1) \quad A(r) < \frac{1}{(1 - r)^{\sigma}} \quad (r_0 \leq r < 1).
\]
Increasing, if necessary, the value of r_0, we may associate with each r in the interval $r_0 \leq r < 1$ an integer p such that

\[(3.2) \quad q_{p-1} \leq \frac{1}{(1-r)^{\lambda+\frac{3}{2}}} < q_p,\]

and then select any p in the interval

\[(3.3) \quad t_p \leq \rho < t_{p+1}.\]

Since (3.3) coincides with (2.13), we see that the estimates following (2.13) will be valid if we can show that $r < \rho$.

By (3.2), (3.3), (2.11) and (1.1), we have

\[
\frac{1}{(1-r)^{\lambda+\frac{3}{2}}} < q_p \leq \phi(\rho) \leq \frac{2}{1-\rho} \int_{t_p}^{(1+\rho)^{1/2}} \phi(t) dt < \frac{2}{1-\rho} A \left(\frac{1+\rho}{2} \right),
\]

so that, by (3.1)

\[
\frac{2^{p+1}}{(1-\rho)^{\lambda+\frac{3}{2}}} < \frac{1}{(1-r)^{\lambda+\frac{3}{2}}}
\]

and hence

\[
\frac{1-r}{1-\rho} > 2 \quad (r_0 \leq r < 1),
\]

\[(3.4) \quad r < \frac{1+r}{2} < \rho < 1.\]

Using (3.2) and (3.4), we have

\[
\left(\frac{r}{\rho} \right)^{q_p} \frac{\rho}{\rho-r} < \exp \left(-q_p \int_0^{(1-r)^{1/2}} \frac{\phi(t) dt}{t} \right) \frac{2}{1-r} \left(\frac{1-r}{2} \right) = o(1) \quad (r \to 1 -).
\]

Returning to (2.7), and using (2.9) and (3.2), we have

\[
B(r_p) < \log q_p = \log q_{p-1} + o(1)
\]

\[
< (\lambda + 2) \log \frac{1}{1-r} + o(1) \quad (r \to 1 -),
\]

so that by the definition (2.1)

\[(3.6) \quad B(r_p) < A \log \frac{1}{1-r} \quad (r_0 \leq r < 1).\]

Hence (2.4) and (1.4) imply
and this shows that \(r_p < r \). Using (2.6), (3.6) and (2.4), we have

\[
p \leq B(r_p) \sqrt{\beta(r_p)} < A \log \frac{1}{1 - r}
\]

\[
\leq \sqrt{A \Lambda(r)} \log \frac{1}{1 - r} \quad (r_0 \leq r < 1),
\]

so that, in view of the growth condition (1),

(3.7) \(p = o(\Lambda(r)) \) \((r \to 1 -) \).

Theorem 1 then follows, for functions of finite order, on combining (3.5), (3.7) and (2.15) with (2.17). In fact, it is clear from (2.17) that the method yields the additional information

\[
T(r, f) \sim N \left(r, \frac{1}{f} \right) \sim \log M(r, f) \sim \Lambda(r) \quad (r \to 1 -).
\]

4. Remarks on the infinite order case. Since the proof when \(\lambda = + \infty \) proceeds in much the same way as the one given in Section 3 for finite orders, a sketch of the argument used will suffice.

The quantities \(\rho \) and \(p \) given in (2.17) are chosen as follows: For each \(r \) in \(r_0 \leq r < 1 \), \(\rho \) is taken so that

(4.1) \[
\frac{\log \sqrt{\phi(\rho)}}{\sqrt{\phi(\rho)}} = \frac{\rho - r}{\rho}.
\]

It is not hard to see that such a \(\rho = \rho(r) \) exists and is unique. Then let \(p \) be the integer determined by

(4.2) \[
Q_p \leq \phi(\rho) < Q_{p+1}.
\]

The definitions of \(q_p \) and \(Q_p \), together with (4.1) and (4.2), imply

(4.3) \[
\left(\frac{r}{\rho} \right)^{q_p} \frac{\rho}{\rho - r} = o(1) \quad (r \to 1 -).
\]

The exceptional set \(E \) needed when \(\lambda = + \infty \) is defined by

\[
E = \{ r : p(r) > \alpha B(r) \sqrt{\beta(r)}, \quad r^* \leq r < 1 \}.
\]

In view of (2.4)–(2.6), (2.17) and (4.3), \(r \notin E \) implies

\[
N \left(r, \frac{1}{f} \right) \leq T(r, f) \leq \log M(r, f) < N \left(r, \frac{1}{f} \right) + K \sqrt{\Lambda(r)} \log \frac{1}{1 - r},
\]
so that (2.15) and the growth condition (1) gives (2) for these r.

To complete the proof of Theorem 1, it remains only to show that E satisfies (3). This follows upon using (2.2), (2.3), (2.4) and (4.1) to estimate ρ, and then using this estimate and (1.1) to see that $r \in E$ implies

$$A\left(r + \frac{(1 - r)r}{A(r)}\right) > e^{\frac{1}{2} \sqrt{A(r)}} \quad (r_0 \leq r < 1).$$

This relation together with Borel's growth lemma ([1], p. 19) then gives (3).

5. A solution of the Bloch-Nevanlinn problem. If $F(z)$ is meromorphic in $|z| < 1$, does $T(r, F) = O(1)$ imply $T(r, F') = O(1)$?

This problem was posed by Bloch and Nevanlinna [9, p. 138], and was first solved by O. Frostman [4] who showed that the boundedness of $T(r, F)$ does not imply that of $T(r, F')$. Subsequently a number of further solutions have been given (cf. [3], [5], [6], [7], [8], [10], [11]).

Using the methods of §§ 2 and 3, we now construct a function $F(z)$ regular and bounded in the unit disk and such that $T(r, F')$ is unbounded. In view of the importance of the Dirichlet integral

$$D[F] = \iint_{|z| < 1} |F'(z)|^2 d\omega$$

it might be of interest to point out that our example is such that, by choosing suitably one of the parameters involved, we can obtain $D[F]$ and $F(z)$ bounded and $T(r, F')$ unbounded.

Let $a(\geq 2)$ be an integer, and put

$$(5.1) \quad Q_m = \sum_{k=1}^{m} a^k = \frac{a}{a - 1} (a^m - 1) \quad (m \geq 1),$$

$$(5.2) \quad t_m = 1 - \gamma \frac{1}{Q_m} \quad (m \geq 1),$$

where γ is a constant in $0 < \gamma < 1$. We shall verify that the product

$$(5.3) \quad f(z) = \prod_{m=1}^{\infty} \left(1 + \left\{z^{t_m}\right\}^{a^{Q_m}}\right)$$

is analytic in the unit disk and satisfies

$$(5.4) \quad \alpha \log \frac{1}{1 - r} < T(r, f) \leq \log M(r, f) < \beta \log \frac{1}{1 - r} \quad (r_0 \leq r < 1),$$

$$A\left(r + \frac{(1 - r)r}{A(r)}\right) > e^{\frac{1}{2} \sqrt{A(r)}} \quad (r_0 \leq r < 1).$$
where α and β are any constants such that

\[(5.5) \quad 0 < \alpha < \frac{\gamma}{\alpha}, \quad \beta > \gamma + \frac{\log 2}{\log \alpha}.\]

If γ and α are chosen so that $\gamma + (\log 2/\log \alpha) < 1$, we can take $\beta < 1$. This implies that the function

\[(5.6) \quad F(z) = \int_0^z f(\zeta) d\zeta\]

is bounded on $|z| < 1$, since by (5.4)

\[|F(z)| \leq \int_0^{|z|} M(r, f) dr = O(1) \quad (|z| \to 1 -).\]

Further, if we take γ and α to permit $\beta < 1/2$, then $F(z)$ has bounded Dirichlet integral:

\[\int_0^{2\pi} \int_0^1 |F'(re^{i\theta})|^2 r \, dr \, d\theta < +\infty.\]

On the other hand, (5.4) shows that

\[T(r, F') > \alpha \log \frac{1}{1 - r} \quad (r_0 \leq r < 1),\]

so that $F''(z)$ has unbounded characteristic on the unit disk.

The regularity of the product (5.3) is an immediate consequence of the definitions (5.1) and (5.2), which imply that the series $\sum |z/t_m|^{\alpha_m}$ converges when $|z| < 1$.

To establish (5.4), let $n(t)$ denote the number of zeros of $f(z)$ in $|z| \leq t$, and put $N(r) = \int_0^r (n(t)/t) dt$. By the definition of $n(t)$, if $t_m \leq t < t_{m+1}$ then

\[n(t) = Q_m \leq \frac{\gamma}{1 - t} < Q_m + a^{m+1} = n(t) \left(1 + \frac{a^{m+1}}{Q_m}\right),\]

so that

\[(5.7) \quad n(t) \leq \frac{\gamma}{1 - t} < n(t)(a + o(1)) \quad (t \to 1 -).\]

Multiplying (5.7) by t^{-1} and integrating from t_1 to r yields

\[(5.8) \quad \frac{\gamma}{a + o(1)} \log \frac{1}{1 - r} < N(r) < (\gamma + o(1)) \log \frac{1}{1 - r} \quad (r \to 1 -).\]

The first of these inequalities, together with Jensen's Theorem and (5.5), implies
The proof of the last inequality in (5.4) is similarly easy. For each \(r \) in \(t_i \leq r < 1 \) we choose the integer \(p = p(r) \) given by

\[
t_p \leq r < t_{p+1}.
\]

Estimating the maximum modulus of the product (5.3), we have, as in (2.16),

\[
\log M(r, f) \leq \sum_{m=1}^{p} \log \left(1 + \left\{ \frac{r}{t_m} \right\}^{a_m} \right) + \sum_{m=p+1}^{\infty} \left(\frac{r}{t_m} \right)^{a_m}
\]

\[
< \sum_{m=1}^{p} \log \left(\frac{r}{t_m} \right)^{a_m} + p \log 2 + \sum_{m=p+1}^{\infty} \left(\frac{t_{p+1}}{t_m} \right)^{a_m}.
\]

From (5.2) and (5.9) it is clear that

\[
a^p \leq Q_p \leq \frac{\gamma}{1 - r} < \frac{1}{1 - r},
\]

and hence

\[
p \log a < \log \frac{1}{1 - r}.
\]

Using this with (5.10) and putting \(k = p + 1 \), we obtain

\[
\log M(r, f) < N(r) + \frac{\log 2}{\log a} \log \frac{1}{1 - r} + \sum_{m=k}^{\infty} \left(\frac{t_k}{t_m} \right)^{a_m}
\]

and this together with the second of the inequalities (5.8) implies

\[
\log M(r, f) < \left(\gamma + \frac{\log 2}{\log a} + o(1) \right) \log \frac{1}{1 - r} + \sum_{m=k}^{\infty} \left(\frac{t_k}{t_m} \right)^{a_m}
\]

\[(r \to 1^-) \]

To prove that \(\sum_{m=k}^{\infty} (t_k/t_m)^{a_m} \) is suitably small, use (5.1) and (5.2) to see that

\[
1 - a^{-n} < t_n < 1 - \frac{1}{2} \gamma a^{-n} \quad (n \geq n_0).
\]

Hence

\[
\sum_{m=k}^{\infty} \left(\frac{t_k}{t_m} \right)^{a_m} < K \sum_{m=k}^{\infty} t_m^{a_m} = K \sum_{m=k}^{\infty} (t_k^2)^{a_m-k} \]

\[
< K \sum_{m=k}^{\infty} (t_k^2)^{(m-k)} \quad (k \geq k_0).
\]
By the second inequality in (5.12),

\[t_k < e^{-y/2} \quad (k \geq k_0) \]

and hence

\[(5.13) \quad \sum_{m=k}^{\infty} \left(\frac{t_k}{t_m} \right)^{a_m} < K \sum_{n=0}^{\infty} e^{-(y/2)n} = 0(1) \quad (k \to \infty).\]

Combining (5.11) and (5.13), the derivation of (5.4) is complete.

REFERENCES

SYRACUSE UNIVERSITY, SYRACUSE, NEW YORK
AND IMPERIAL COLLEGE, LONDON
Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced). The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens at the University of California, Los Angeles, California 90024.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

* Paul A. White, Acting Editor until J. Dugundji returns.
Tsuyoshi Andô, *Contractive projections in L_p spaces* 391
Robert F. Brown, *On a homotopy converse to the Lefschetz fixed point theorem* ... 407
Richard Albert Cleveland and Sandra Cleveland, *On the multiplicative extension property* ... 413
Harold H. Johnson, *An algebraic approach to exterior differential systems* ... 423
Alan Cecil Lazer, *The behavior of solutions of the differential equation $y'' + p(x)y' + q(x)y = 0$* .. 435
Judy Parr, *Cohomology of cyclic groups of prime square order* 467
Donald Steven Passman, *Groups whose irreducible representations have degrees dividing p^2* ... 475
Ralph Tyrrell Rockafellar, *Characterization of the subdifferentials of convex functions* .. 497
Donald Erik Sarason, *Invariant subspaces and unstarred operator algebras* .. 511
Donald Erik Sarason, *Weak-star generators of H^∞* 519
Boris M. Schein, *Homomorphisms and subdirect decompositions of semi-groups* ... 529
Daniel Francis Shea, Jr., *Functions analytic in a finite disk and having asymptotically prescribed characteristic* 549
Zvi Ziegler, *Generalized convexity cones* .. 561