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0-central groups are introduced as a step In the direction
of determining sufficiency conditions for a group to be the
Frattini subgroup of some unite p-gronp and the related exten-
sion problem. The notion of Φ-centrality arises by uniting the
concept of an E-group with the generalized central series of
Kaloujnine. An E-group is defined as a finite group G such
that Φ(N) ̂  Φ(G) for each subgroup N ^ G. If Sίf is a group
of automorphisms of a group N, N has an i^-central series
N = No > Nt > > Nr = 1 if x~ιxa e N3- for all x e Nj-lf all
a 6 £%f, xa the image of x under the automorphism a e 3ίf y

i = 0,l, •••, r - 1 .
Denote the automorphism group induced OR Φ(G) by trans-

formation of elements of an £rgroup G by 3ίf. Then Φ{£ίf) ~
JP'iΦiG)), J^iβiG)) the inner automorphism group of Φ(G).
Furthermore if G is nilpotent9 then each subgroup N ^ Φ(G),
N invariant under 3ίf \ possess an J^-central series. A class
of niipotent groups N is defined as ^-central provided that N
possesses at least one niipotent group of automorphisms ££'' Φ 1
such that Φ{βίf} — ,J^(N) and N possesses an J^-central
series. Several theorems develop results about (^-central groups
and the associated ^^-central series analogous to those between
niipotent groups and their associated central series. Then it
Is shown that in a p-group, 0-central with respect to a p-group
of automorphism £ίf, a nonabelian subgroup invariant under
£%f cannot have a cyclic center. The paper concludes with
the permissible types of nonabeϊian groups of order p4 that
can be (^-central with respect to a nontrivial group of p-auto-
morphisms.

Only finite groups will he considered and the notation and the
definitions will follow that of the standard references, e.g. [6]. Ad-
ditionally needed definitions and results will be as follows: The group
G is the reduced partial product (or reduced product) of its subgroups
A and B if A is normal in G = AB and B contains no subgroup K
such that G = AK. For a reduced product, AπB £ Φ(B), (see [2]).
If JV is a normal subgroup of G contained in Φ(G), then Φ(G/N) =
Φ(G)/N, (see [5]). An elementary group, i.e., an JSZ-group having the
identity for the Frattini subgroup, splits over each of its normal sub-
groups, (see [1]).

!• For a group G, Φ(G) = Φ, G/Φ = F is Φ-free i.e., Φ(F) is the
identity. The elements of G by transformation of Φ induce auto-
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morphisms Sίf on Φ. Denoting the centralizer of Φ in G by M,
G/M^^f ^ ^f{Φ), Ss/{Φ) the automorphism group of Φ. Then if ^(Φ)
denotes the inner automorphisms of Φ, one has ^(Φ) ^ Φ{£έf) and by
a result of Gaschϋtz [5, Satz 11], ^(Φ) normal in s*f(Φ) implies that

Supposing first that M ^ Φ, there exists a reduced product G — MK
such that M Π K ^ Φ(K) and MΦ(K)/M ~ Φ(G/M) = Φ(βίf). Moreover
M0/0 = A ^ F. Thus A is normal in F and the elements in A corre-
spond to the identity transformation on Φ. Thus F/A = G/MΦ corre-
sponds to a subgroup of outer automorphisms of 0, namely F/A ~
^f/J^(Φ). Since F i s 0-free, there exists a reduced product F = AB
such that Af]B ^ Φ(B) and .F/A ^ B/A n J5. By combining these latter
statements, β^/^(Φ) ~ B/AnB. Moreover Φ(B/AnB) ~ Φ(B)/Af]B ~
Φiβίri^iΦ)) = Φ(&f)I^F(Φ), i.e., (?(5)/inΰ = Φ{^)J^(Φ). However
note that if Φ(K)^Φ(G), then MΦ(K)/M^MΦ(G)/M~^(Φ) ^ <P(<ar).
Thus ^"(Φ) = (^(^r).

Now suppose that M ^Φ. Then Φ{GjM) = Φ(G)/M = Φ(3ίf). Since
Λί = ^, Z the center of 0, and Φ/Z ~ ^(Φ) again it follows that

LEMMA 1. A necessary condition that a group N be the Frattini
subgroup of an E-group G is that s$f(N) contains a subgroup
such that Φ{3ff) =

COROLLARY 1.1. A necessary and sufficient condition that the
centralizer of Φ in an E-group G be the center of Φ is that

G/Φ =

Using the notation of the above, G/MΦ ~ Ztf/JFiΦ) ^ T ^ F.
However G/Φ = F elementary implies F = ST, SΓ\T =1, S normal in
F and F/S = T. Then:

THEOREM 1. Necessary conditions that a nilpotent group N be
the Frattini subgroup of an E-group G is that Ssf(N) contains a
subgroup 3ίf such that

(1) Φ{Sίf) = ~r(N), and
(2) there exists an extension of N to a group M such that

M/N ~

A sufficiency condition may well be lacking since M/N elementary
only implies that Φ(M) ̂  N; equality is not implied.

Let K denote a normal subgroup of an i?-group G such that
Φ < K ^ G and that M is the G-centralizer of K. lίM^Φ but MΦ < K
properly, MΦ/Φ £ ^(K). On the other hand K < MΦ implies MΦ/M ^
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= Φ/Kf)M=(Kf)M)Φ/Kf)M=^(K). Thus
^ the group of automorphisms of K induced by transformation

of elements in G. Summarizing:

THEOREM 2. If K is a subgroup normal in an E-group G,
Φ < K <; G, and M is the G-centralizer of K, then Φ(£ίf) = ^(K),
Sίf the group of automorphisms of K induced by transformation of
elements of G, if and only if K S MΦ, i.e., K— ΦZ, Z the center
of K.

On the other hand if K is a subgroup of Φ, the following decom-
position of Φ is obtained:

THEOREM 3. If a subgroup K of Φ normal in an E-group G has
an automorphism group £ίf induced by transformation of elements
of G with Φ{£ίf) = ^(K), then Φ = KB, B the centralizer of K in
Φ, and Kf)B Φ 1 unless K — 1. 3fΓ denotes the automorphism group
of B induced by transformation of elements of G, then Φ{J%") =

Proof. Denote the G-centralizer of K by M. Then G/M = J T and
MK/M = K/Z = ^(K), Z the center of K. Since the homomorphic
image of an i£-group is an j^-group, then ^f is an E-growp and
Sίfj^iK) is an elementary group. Hence G/KM is an elementary
group which implies that Φ ̂  KM since G is an ^-group. B = M f]Φ
is normal in G and it follows that Φ — KB. Since K is nilpotent, the
center of K exists properly unless G is an elementary group.

Symmetrically K is contained in the G-centralizer J of B. Then
as above JB/J is mapped into Φ(jyΓ) and since G/JB is elementary,
the mapping is onto, i.e., JB/J = Φ{^T) ~ B/Jf]B ^

REMARK 1. Note that in Theorem 3, each subgroup K contained
in the center of Φ and normal in G satisfies the condition Φ(βίf) — ^(K)
and so Sίf is an elementary group.

For normal subgroups N of a nilpotent group G, transformation by
elements of G on N induce a group of automorphisms £ίf for which
a series of subgroups exist, N = iV0 > JVΊ > > Nr — 1, such that
αrV G Ni9 a e βέf, x e N^. Following Kaloujnine [8], N is said to have
an £ί?'-central series. In general jEZ-groups do not have this property
on the normal subgroups except in the trivial case of S$f the identity
mapping. If N is nilpotent and ^(N) 5s §ίf then the series can be
refined to a series for which | N^JNi \ is a prime integer.

A group N does not necessarily have an ^g^-central series for each
subgroup Sίf g Jϊf(N) even if N is nilpotent. For example if N is
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the quaternion group and £ίf is J^(JV), N has only one proper charac-
teristic subgroup.

Combining Lemma 1 with the above one has:

THEOREM 4. A necessary condition that a group N be the Frattini
subgroup of a nilpotent group G is that j%f(N) contains a nilpotent
subgroup £ίf such that

(1) Φ(Sίf) = J?(N) and
( 2) N possesses an έ%?7-central series.

The dihedral group N of order eight has an ^%^-central series for
£ίf = J^(N), however | Φ(βίf) \ = 2 and | J^{N) | = 4. There are
Abelian groups which trivially satisfy (1) but not (2). So both con-
ditions are necessary.

A (^-central group N will be defined as a nilpotent group possessing
at least one nilpotent group of automorphisms έ%f Φ 1 such that

(1) Φ{βe?) = ^(N) and
(2) N possesses an .^-central series.
0-eentral groups have the following properties:

THEOREM 5.

(1) If N is Φ-central with respect to an automorphism group
£ίf \ M a subgroup of N invariant under β^, and S a subgroup of
N/M invariant under £ίf*, έ%f* the group of automorphisms induced
on N/M by έ%f', then there exists a subgroup K of N containing M,
invariant under £ίf\ with K/M = S. Moreover βέf* = £{fl^£, ^£
the set of all a e <§ίf such that x~xxa e M.

(2) If N is Φ-central with respect to an automorphism group
Sίf and M is a member of the Sίf7-central series, then N/M is Φ-
central with respect to £έf*, §ίf* the group of automorphisms induced
on N/M by

Proof. The proof of (1) relies on the fact that the groups con-
sidered are nilpotent and J?(N) ^ 24f. The only additional comment
necessary for (2) is that under a homomorphic mapping of a nilpotent
group the Prattini subgroup goes onto the Frattini subgroup of the
image (see [2]).

THEOREM 6. Let N be a group Φ-central under an automorphism
group έ%f. If M is a subgroup of N invariant under Sίf then

(1) M possesses an £ίf-central series,
(2) M possesses a proper subgroup of fixed points under £ίf,

and
( 3) M can be included as a member of an Sίf7-central series of N.
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Proof. As Kaloujnine [8] has introduced, a descending Sίf'-central
chain can be defined by N = No ^ Nx ^ ^ Nά ^ for Nj =
[iSΓ î, <^r], [iSΓ î, ̂ T] the set of a r V for all a? e Nd_u a e &?. A series
occurs if for some integer r, Nr = l. Analogous to the corresponding
proofs for nilpotent groups, a group possessing an ^'-central series,
possesses a descending .^"-central series, M possesses a proper subgroup
of fixed points under, §ίf (the set corresponds to a generalized center
of N relative to Sίf) and M can be included as a member of an £ίf-
central series of N. However M may not necessarily be a (^-central
group.

Even though the notion of 0-centrality is derived from the properties
of the Frattini subgroup of a nilpotent group, it is not a sufficient
condition for group extension purposes e.g., consider the extension of
cyclic group of order three to the symmetric group on three symbols.

Since Φ{K) for a nilpotent group K is the direct product of the
Frattini subgroup of the Sylow p-subgroups of K (see Gaschϋtz [5,
Satz 6]), then the determination of the nilpotent groups N which can
be the Frattini subgroup of some nilpotent group G reduces to the
consideration of G as a p-group. The next section discusses several
properties of ^-central p-groups.

2* Only p-groups and their p-groups of automorphisms will be
considered.

LEMMA 2. (Blackburn [3].) If M is a group invariant under a
group of automorphisms £έf and N is a subgroup of M of order p2

invariant under £ί?', then 3$f possesses a subgroup ^// of index at
most p under which N is a fixed-point set.

Proof. έ%f is homomorphic to a p-group of J^(ΛΓ) and
p(p — 1) since β^ is a p-group. The kernel has index at most p.

LEMMA 3. A group N, Φ-central under the automorphism group
, can contain no nonabelian subgroup M of order p* and invariant

under

Proof. If M is invariant under ^g ,̂ then M contains a subgroup
K of order p2 invariant under Sίf by Theorem 6. By Lemma 2, §ίf
possesses a subgroup ^£ of index at most p under which K is a fixed-
point set. Since Sίf contains jr(N), K S Z(N), Z(N) the center of N.
Consequently K S Z(M), M must be Abelian, and so a contradiction.

COROLLARY 3.1. (Hobby [7].) No nonabelian p-group of order p*
can be the Frattini subgroup of a p-group.
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Proof. Denote the induced group of automorphisms on Φ(G) by the
elements of a p-group G by έ%f. Then Φ(G) is (^-central under

COROLLARY 3.2. Each Frattini subgroup of order greater than
pz of a p-group G contains an Abelian subgroup N of order pz and
normal in G.

LEMMA 4. Let N be a group Φ-central under an automorphism
group £ίf '. A noncyclic Abelian subgroup M of N, invariant under
£$f and having order pz contains an elementary Abelian subgroup K
of order p2, invariant under £$f and a fixed-point set for

Proof. If M is invariant under £ίf and elementary Abelian, M
contains an elementary Abelian subgroup K of order p2 and invariant
under §{f by Theorem 6. On the other hand if M is invariant under
3$f and of the form {x, y \ xp2 = xp — 1}, the characteristic subgroup
K = {xp, y} in M has order p2 and is invariant under £έf. In either
case K is invariant under a subgroup ^ of index at most p by Lemma
2. The result follows since Φ(£ϊf) =

COROLLARY 4.1. A noncyclic Abelian normal subgroup M of a p-
group G, \M\ = pz, and M ̂  Φ{G), contains an elementary Abelian
subgroup N of order p2, normal in G, and contained in the center
of Φ(G).

THEOREM 7. Let N denote a group Φ-central under an auto-
morphism group £$f. Each nonabelian subgroup M of N, invariant
under J%f, contains an elementary Abelian subgroup K of order p2

which is invariant under έ%f and is a fixed-point set under

Proof. Suppose M is a nonabelian subgroup of least order for which
the theorem is not valid. By Lemma 3, \M\ ^ p\ Since Φ{M) Φ 1,
denote by P the cyclic subgroup of order p, consisting of fixed-points
under £έf and contained in Φ(M). One such subgroup always exists
by Theorem 6. Then MJP ^ N/P, both are invariant under ^T*, and
N/P is 0-central under J^*, Jg^* the induced automorphisms on N/P
by Sίf.

If M/P is Abelian, then M/P not cyclic implies that the elements
of order p in M/P form a characteristic subgroup K/P, invariant under
Sίf*, which is elementary Abelian and | K/P\ ^ p2. Thus K/P contains
a subgroup L/P of order p2 and invariant under Jg^*. This implies
that L is a noncyclic commutative subgroup invariant under £%f by
Lemma 3.

For M/P nonabelian, M/P contains an elementary Abelian subgroup
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L/P of order p2 invariant under Jg^* by the induction hypothesis.
Again Lemma 3 implies that L of order p3 is a noncyclic commutative
subgroup invariant under Sίf'.

By Lemma 4, K exists for L and hence for M in both cases.

COROLLARY 7.1. A nonabelian subgroup invariant under £έf of
a group N, Φ-central under an automorphism group Sίf', cannot have
a cyclic center.

COROLLARY 7.2. A nonabelian normal {characteristic) subgroup
of a p-group G that is contained in Φ(G) cannot have a cyclic center.

REMARK 2. Corollary 7.2 is stronger than the results of Hobby
[7, Theorem 1, Remark 1] and includes a theorem of Burnside [2] that
no nonabelian group whose center is cyclic can be the derived group
of a p-group. Together with Lemma 5, the results, as necessary
conditions, prove useful in determining whether or not a p-group could
be the Frattini subgroup of a given p-group.

LEMMA 5. Let N denote a group Φ-central under an automorphism
group £έf. An Abelian subgroup M ̂ N of type (2,1) and invariant
under £έf, is contained in the center of N.

Proof. The result holds for N Abelian so consider the case of N
nonabelian. If M — {x,y\ xp2 = yp — 1}, then as in Lemma 4, {xp, y]
is invariant under £%f and is contained in the center of N. Since M
contains only p cyclical subgroups of order p2 and xa Φ xj for an integer
j and a e Sίf, it follows that xa has at most p images under Sίf. There-
fore the subgroup ^ of £ΐf having a; as a fixed point has index at
most p in 3ίf. Since Φ(Sίf) = ̂ (N) ^ ^ T , then x is fixed by ^(N)
i.e., x is in the center of N.

COROLLARY 5.1. An Abelian subgroup M of type (2,1), normal
in a p-group G, and contained in Φ(G) is contained in the center of
Φ{G).

THEOREM 8. The following two types of nonabelian groups of
order p4 cannot be Φ-central groups with respect to a nontrivial p-
group of automorphisms

(1) A = {x, y, z I xp2 = yp = z* = 1, [x, z] = y, [x, y] = [y, z] = 1} .

( 2 ) B = {x,y\xp2 = yp2 = l, [x,y] = x*}.

Proof. Consider (1) and note that each element of order p2 is of
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the form zaxhyc for b Φ 0 (mod p2). Then (zaxbyc)p = ̂ Vc+a&(1+2+"*+(i)~'1)) =

χp*yawp-w = #?>& f0Γ ^ ^ _ l β rphus {xp} = A2* is characteristic in A
of order p. If A was (^-central with respect to an automorphism group
Sίf then A/Ap would be (^-central with respect to the automorphism
group £%f* induced on A/Ap by JT'. This contradicts Lemma 3 if £ίf
is nontrivial and so A cannot be 0-central with respect to a nontrivial
p-group of automorphisms S$f.

Each maximal subgroup in (2) is Abelian, of order p3, and type
(2,1). If B was Φ-central under a nontrivial p-group of automorphisms
Sίf then one of these maximal subgroups, say M, is invariant under
Sίf. By Lemma 5, M is contained in the center of B and thus B is
Abelian. So B cannot be (^-central with respect to a nontrivial p-group
of automorphisms

COROLLARY 8.1. The types (1) and (2) of p-groups of Theorem 8
cannot be Frattini subgroups of p-groups.

REMARK 3. The remaining two types of nonabelian p-groups are
of the forms

( 3 ) {x,y,z\ x"2 = y* = z* = l, [x, z] = x*, [y, x] = [y, z] = 1} a n d

( 4 ) {x,y,z,w\xp = y p = zp == wp = 1, [z, w] = x , [y, w] = [x, w] = l}.

Without attempting a classification it is sufficient to show the existence
of p-groups G having Φ(G) of form (3) or (4). For p > 5, the group
G = {x, y,z,w\ xp2 = y* = zp = w* - 1, [y*, z] = [yp, x] = [x, w] - 1,

lvp, w] = [a?, z] = [z, w] = &*, [«, 2/] - r , [x, y] = «, [w, y] = a?}, | G \ = p 6 ,

and 0(G) is of the form (3). Then for p = 5, G = {%, v, w, .τ, T/, ^ | -ẑ^ =

vp =: wp = xp = yp = zp = 1, [v, w] = [v, a?] = [>, «] = [a?, ̂ /] = 1, [v, y] =

[a?, w ] = [w, 2/] = u, [w, z] - v, [x, z] = w , [y, z] = x},\G\ = p \ a n d Φ(G)
is of type (4).

Groups G of order pQ other than those given in Remark 3 exist
having nonabelian Φ(G). However for all such cases Φ(G) contains a
characteristic subgroup N of order p2 such that G/N is not of form
(3) nor (4) i.e., G cannot be the Frattini subgroup of any p-group.
Remark 3 provides a ready source of examples of p-groups which are
(^-central, or in particular are Frattini subgroups of some p-group.
This offsets the conjecture that such a source consisted of p-groups of
relatively "large" order. The examples raise the following question:
If the group F is the Frattini subgroup of a group G, does there al-
ways exist a group G* such that Φ(G*) = F and the centralizer of
Φ(G*) in G* is the center of Φ(G*)1
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