FRATTINI SUBGROUPS AND Φ-CENTRAL GROUPS

HOMER FRANKLIN BECHTELL, JR.
0-central groups are introduced as a step in the direction of determining sufficiency conditions for a group to be the Frattini subgroup of some finite p-group and the related extension problem. The notion of ϕ-centrality arises by uniting the concept of an E-group with the generalized central series of Kaloujnine. An E-group is defined as a finite group G such that $\phi(N) \leq \phi(G)$ for each subgroup $N \leq G$. If H is a group of automorphisms of a group N, N has an H-central series $N = N_0 > N_1 > \cdots > N_r = 1$ if $x^{-1}x^a \in N_j$ for all $x \in N_{j-1}$, all $a \in H$, x^a the image of x under the automorphism $a \in H$, $j = 0, 1, \cdots, r - 1$.

Denote the automorphism group induced on $\phi(G)$ by transformation of elements of an E-group G by H. Then $\phi(H) = \mathcal{I}(\phi(G))$, $\mathcal{I}(\phi(G))$ the inner automorphism group of $\phi(G)$. Furthermore if G is nilpotent, then each subgroup $N \leq \phi(G)$, N invariant under H, possess an H-central series. A class of nilpotent groups N is defined as ϕ-central provided that N possesses at least one nilpotent group of automorphisms $H \neq 1$ such that $\phi(H) = \mathcal{I}(N)$ and N possesses an H-central series. Several theorems develop results about ϕ-central groups and the associated H-central series analogous to those between nilpotent groups and their associated central series. Then it is shown that in a p-group, ϕ-central with respect to a p-group of automorphism H, a nonabelian subgroup invariant under H cannot have a cyclic center. The paper concludes with the permissible types of nonabelian groups of order p^4 that can be ϕ-central with respect to a nontrivial group of p-automorphisms.

Only finite groups will be considered and the notation and the definitions will follow that of the standard references, e.g. [6]. Additionally needed definitions and results will be as follows: The group G is the reduced partial product (or reduced product) of its subgroups A and B if A is normal in $G = AB$ and B contains no subgroup K such that $G = AK$. For a reduced product, $A \cap B \leq \phi(B)$, (see [2]). If N is a normal subgroup of G contained in $\phi(G)$, then $\phi(G/N) \cong \phi(G)/N$, (see [5]). An elementary group, i.e., an E-group having the identity for the Frattini subgroup, splits over each of its normal subgroups, (see [1]).

1. For a group G, $\phi(G) = \phi$, $G/\phi = F$ is ϕ-free i.e., $\phi(F)$ is the identity. The elements of G by transformation of ϕ induce auto-
morphisms \mathcal{H} on Φ. Denoting the centralizer of Φ in G by M, $G/M \cong \mathcal{H} \leq \mathcal{A}(\Phi)$, $\mathcal{A}(\Phi)$ the automorphism group of Φ. Then if $\mathcal{F}(\Phi)$ denotes the inner automorphisms of Φ, one has $\mathcal{F}(\Phi) \leq \Phi(\mathcal{H})$ and by a result of Gaschütz [5, Satz 11], $\mathcal{F}(\Phi)$ normal in $\mathcal{A}(\Phi)$ implies that $\mathcal{F}(\Phi) \leq \Phi(\mathcal{A}(\Phi))$.

Supposing first that $M \not\leq \Phi$, there exists a reduced product $G = MK$ such that $M \cap K \leq \Phi(K)$ and $M\Phi(K)/M \cong \Phi(G/M) \cong \Phi(\mathcal{H})$. Moreover $M\Phi/\Phi \cong A \leq F$. Thus A is normal in F and the elements in A correspond to the identity transformation on Φ. Thus $F/A \cong G/M\Phi$ corresponds to a subgroup of outer automorphisms of Φ, namely $F/A \cong \mathcal{H}/\mathcal{F}(\Phi)$. Since F is Φ-free, there exists a reduced product $F = AB$ such that $A \cap B \leq \Phi(B)$ and $F/A \cong B/A \cap B$. By combining these latter statements, $\mathcal{H}/\mathcal{F}(\Phi) \cong B/A \cap B$. Moreover $\Phi(B/A \cap B) \cong \Phi(B)/A \cap B \cong \Phi(\mathcal{H}/\mathcal{F}(\Phi)) = \Phi(\mathcal{H})/\mathcal{F}(\Phi)$, i.e., $\Phi(B)/A \cap B \cong \Phi(\mathcal{H})/\mathcal{F}(\Phi)$. However note that if $\Phi(K) \leq \Phi(G)$, then $M\Phi(K)/M \leq M\Phi(G)/M \cong \mathcal{F}(\Phi) \leq \Phi(\mathcal{H})$. Thus $\mathcal{F}(\Phi) = \Phi(\mathcal{H})$.

Now suppose that $M \leq \Phi$. Then $\Phi(G/M) \cong \Phi(G)/M \cong \Phi(\mathcal{H})$. Since $M = Z$, Z the center of Φ, and $\Phi/Z \cong \mathcal{F}(\Phi)$ again it follows that $\mathcal{F}(\Phi) = \Phi(\mathcal{H})$.

Lemma 1. A necessary condition that a group N be the Frattini subgroup of an E-group G is that $\mathcal{A}(N)$ contains a subgroup \mathcal{H} such that $\Phi(\mathcal{H}) = \mathcal{F}(\Phi)$.

Corollary 1.1. A necessary and sufficient condition that the centralizer of Φ in an E-group G be the center of Φ is that $G/\Phi \cong \mathcal{H}/\mathcal{F}(\Phi)$.

Using the notation of the above, $G/M\Phi \cong \mathcal{H}/\mathcal{F}(\Phi) \cong T \leq F$. However $G/\Phi \cong F$ elementary implies $F = ST$, $S \cap T = 1$, S normal in F and $F/S = T$. Then:

Theorem 1. Necessary conditions that a nilpotent group N be the Frattini subgroup of an E-group G is that $\mathcal{A}(N)$ contains a subgroup \mathcal{H} such that

\begin{enumerate}
 \item $\Phi(\mathcal{H}) = \mathcal{F}(N)$, and
 \item there exists an extension of N to a group M such that $M/N \cong \mathcal{H}/\mathcal{F}(N)$.
\end{enumerate}

A sufficiency condition may well be lacking since M/N elementary only implies that $\Phi(M) \leq N$; equality is not implied.

Let K denote a normal subgroup of an E-group G such that $\Phi < K \leq G$ and that M is the G-centralizer of K. If $M \not\leq \Phi$ but $M\Phi < K$ properly, $M\Phi/\Phi \not\cong \mathcal{F}(K)$. On the other hand $K < M\Phi$ implies $M\Phi/M \cong$
\[\Phi/M \cap \Phi \cong \Phi/K \cap M \cong (K \cap M)\Phi/K \cap M \cong \mathcal{H}(K). \] Thus \(\Phi(G/M) \cong \Phi(\mathcal{H}) = \mathcal{H}(K) \), \(\mathcal{H} \) the group of automorphisms of \(K \) induced by transformation of elements in \(G \). Summarizing:

Theorem 2. If \(K \) is a subgroup normal in an \(E \)-group \(G \), \(\Phi < K \leq G \), and \(M \) is the \(G \)-centralizer of \(K \), then \(\Phi(\mathcal{H}) = \mathcal{H}(K) \), \(\mathcal{H} \) the group of automorphisms of \(K \) induced by transformation of elements of \(G \), if and only if \(K \leq M\Phi \), i.e., \(K = \Phi Z \), \(Z \) the center of \(K \).

On the other hand if \(K \) is a subgroup of \(\Phi \), the following decomposition of \(\Phi \) is obtained:

Theorem 3. If a subgroup \(K \) of \(\Phi \) normal in an \(E \)-group \(G \) has an automorphism group \(\mathcal{H} \) induced by transformation of elements of \(G \) with \(\Phi(\mathcal{H}) = \mathcal{H}(K) \), then \(\Phi = KB \), \(B \) the centralizer of \(K \) in \(\Phi \), and \(K \cap B \neq 1 \) unless \(K = 1 \). \(\mathcal{H} \) denotes the automorphism group of \(B \) induced by transformation of elements of \(G \), then \(\Phi(\mathcal{H}) = \mathcal{H}(B) \).

Proof. Denote the \(G \)-centralizer of \(K \) by \(M \). Then \(G/M \cong \mathcal{H} \) and \(MK/M \cong K/Z \cong \mathcal{H}(K) \), \(Z \) the center of \(K \). Since the homomorphic image of an \(E \)-group is an \(E \)-group, then \(\mathcal{H} \) is an \(E \)-group and \(\mathcal{H}/\mathcal{H}(K) \) is an elementary group. Hence \(G/KM \) is an elementary group which implies that \(\Phi \leq KM \) since \(G \) is an \(E \)-group. \(B = M \cap \Phi \) is normal in \(G \) and it follows that \(\Phi = KB \). Since \(K \) is nilpotent, the center of \(K \) exists properly unless \(G \) is an elementary group.

Symmetrically \(K \) is contained in the \(G \)-centralizer \(J \) of \(B \). Then as above \(JB/J \) is mapped into \(\Phi(\mathcal{H}) \) and since \(G/\mathcal{J} \) is elementary, the mapping is onto, i.e., \(JB/J \cong \Phi(\mathcal{H}) \cong B/J \cap B \cong \mathcal{H}(B) \).

Remark 1. Note that in Theorem 3, each subgroup \(K \) contained in the center of \(\Phi \) and normal in \(G \) satisfies the condition \(\Phi(\mathcal{H}) = \mathcal{H}(K) \) and so \(\mathcal{H} \) is an elementary group.

For normal subgroups \(N \) of a nilpotent group \(G \), transformation by elements of \(G \) on \(N \) induce a group of automorphisms \(\mathcal{H} \) for which a series of subgroups exist, \(N = N_0 > N_1 > \cdots > N_r = 1 \), such that \(x^{-a}x^a \in N_i \), \(a \in \mathcal{H} \), \(x \in N_{i-1} \). Following Kaloujnine [8], \(N \) is said to have an \(\mathcal{H} \)-central series. In general \(E \)-groups do not have this property on the normal subgroups except in the trivial case of \(\mathcal{H} \) the identity mapping. If \(N \) is nilpotent and \(\mathcal{H}(N) \leq \mathcal{H} \) then the series can be refined to a series for which \(|N_{i-1}/N_i| \) is a prime integer.

A group \(N \) does not necessarily have an \(\mathcal{H} \)-central series for each subgroup \(\mathcal{H} \leq \mathcal{H}(N) \) even if \(N \) is nilpotent. For example if \(N \) is
the quaternion group and \mathcal{H} is $\mathcal{I}(N)$, N has only one proper characteristic subgroup.

Combining Lemma 1 with the above one has:

Theorem 4. A necessary condition that a group N be the Frattini subgroup of a nilpotent group G is that $\mathcal{I}(N)$ contains a nilpotent subgroup \mathcal{H} such that

1. $\Phi(\mathcal{H}) = \mathcal{I}(N)$ and
2. N possesses an \mathcal{H}-central series.

The dihedral group N of order eight has an \mathcal{H}-central series for $\mathcal{H} = \mathcal{I}(N)$, however $|\Phi(\mathcal{H})| = 2$ and $|\mathcal{I}(N)| = 4$. There are Abelian groups which trivially satisfy (1) but not (2). So both conditions are necessary.

A Φ-central group N will be defined as a nilpotent group possessing at least one nilpotent group of automorphisms $\mathcal{H} \neq 1$ such that

1. $\Phi(\mathcal{H}) = \mathcal{I}(N)$ and
2. N possesses an \mathcal{H}-central series.

Φ-central groups have the following properties:

Theorem 5.

1. If N is Φ-central with respect to an automorphism group \mathcal{H}, M a subgroup of N invariant under \mathcal{H}, and S a subgroup of N/M invariant under \mathcal{H}^*, \mathcal{H}^* the group of automorphisms induced on N/M by \mathcal{H}, then there exists a subgroup K of N containing M, invariant under \mathcal{H}, with $K/M \cong S$. Moreover $\mathcal{H}^* \cong \mathcal{H}/M$, M the set of all $a \in \mathcal{H}$ such that $x^{-1}ax \in M$.

2. If N is Φ-central with respect to an automorphism group \mathcal{H} and M is a member of the \mathcal{H}-central series, then N/M is Φ-central with respect to \mathcal{H}^*, \mathcal{H}^* the group of automorphisms induced on N/M by \mathcal{H}.

Proof. The proof of (1) relies on the fact that the groups considered are nilpotent and $\mathcal{I}(N) \leq \mathcal{H}$. The only additional comment necessary for (2) is that under a homomorphic mapping of a nilpotent group the Frattini subgroup goes onto the Frattini subgroup of the image (see [2]).

Theorem 6. Let N be a group Φ-central under an automorphism group \mathcal{H}. If M is a subgroup of N invariant under \mathcal{H} then

1. M possesses an \mathcal{H}-central series,
2. M possesses a proper subgroup of fixed points under \mathcal{H}, and
3. M can be included as a member of an \mathcal{H}-central series of N.

Proof. As Kaloujnine [8] has introduced, a descending \mathcal{H}-central chain can be defined by $N = N_0 \supseteq N_1 \supseteq \cdots \supseteq N_j \supseteq \cdots$ for $N_j = [N_{j-1}, \mathcal{H}], [N_{j-1}, \mathcal{H}]$ the set of $x^{-1}x^a$ for all $x \in N_{j-1}, a \in \mathcal{H}$. A series occurs if for some integer $r, N_r = 1$. Analogous to the corresponding proofs for nilpotent groups, a group possessing an \mathcal{H}-central series, possesses a descending \mathcal{H}-central series, M possesses a proper subgroup of fixed points under, \mathcal{H} (the set corresponds to a generalized center of N relative to \mathcal{H}) and M can be included as a member of an \mathcal{H}-central series of N. However M may not necessarily be a Φ-central group.

Even though the notion of Φ-centrality is derived from the properties of the Frattini subgroup of a nilpotent group, it is not a sufficient condition for group extension purposes e.g., consider the extension of cyclic group of order three to the symmetric group on three symbols.

Since $\Phi(K)$ for a nilpotent group K is the direct product of the Frattini subgroup of the Sylow p-subgroups of K (see Gaschütz [5, Satz 6]), then the determination of the nilpotent groups N which can be the Frattini subgroup of some nilpotent group G reduces to the consideration of G as a p-group. The next section discusses several properties of Φ-central p-groups.

2. Only p-groups and their p-groups of automorphisms will be considered.

Lemma 2. (Blackburn [3].) If M is a group invariant under a group of automorphisms \mathcal{H} and N is a subgroup of M of order p^2 invariant under \mathcal{H}, then \mathcal{H} possesses a subgroup \mathcal{M} of index at most p under which N is a fixed-point set.

Proof. \mathcal{H} is homomorphic to a p-group of $\mathcal{A}(N)$ and $|\mathcal{A}(N)| = p(p - 1)$ since \mathcal{H} is a p-group. The kernel has index at most p.

Lemma 3. A group N, Φ-central under the automorphism group \mathcal{H}, can contain no nonabelian subgroup M of order p^3 and invariant under \mathcal{H}.

Proof. If M is invariant under \mathcal{H}, then M contains a subgroup K of order p^3 invariant under \mathcal{H} by Theorem 6. By Lemma 2, \mathcal{H} possesses a subgroup \mathcal{M} of index at most p under which K is a fixed-point set. Since \mathcal{H} contains $\mathcal{A}(N)$, $K \leq Z(N)$, $Z(N)$ the center of N. Consequently $K \leq Z(M)$, M must be Abelian, and so a contradiction.

Corollary 3.1. (Hobby [7].) No nonabelian p-group of order p^3 can be the Frattini subgroup of a p-group.
Proof. Denote the induced group of automorphisms on \(\Phi(G) \) by the elements of a \(p \)-group \(G \) by \(\mathcal{H} \). Then \(\Phi(G) \) is \(\Phi \)-central under \(\mathcal{H} \).

Corollary 3.2. Each Frattini subgroup of order greater than \(p^2 \) of a \(p \)-group \(G \) contains an Abelian subgroup \(N \) of order \(p^2 \) and normal in \(G \).

Lemma 4. Let \(N \) be a group \(\Phi \)-central under an automorphism group \(\mathcal{H} \). A noncyclic Abelian subgroup \(M \) of \(N \), invariant under \(\mathcal{H} \) and having order \(p^2 \) contains an elementary Abelian subgroup \(K \) of order \(p^2 \), invariant under \(\mathcal{H} \) and a fixed-point set for \(\mathcal{I}(N) \).

Proof. If \(M \) is invariant under \(\mathcal{H} \) and elementary Abelian, \(M \) contains an elementary Abelian subgroup \(K \) of order \(p^2 \) and invariant under \(\mathcal{H} \) by Theorem 6. On the other hand if \(M \) is invariant under \(\mathcal{H} \) and of the form \(\{x, y \mid x^{p^2} = y^p = 1\} \), the characteristic subgroup \(K = \{x^p, y\} \) in \(M \) has order \(p^2 \) and is invariant under \(\mathcal{H} \). In either case \(K \) is invariant under a subgroup \(\mathcal{M} \) of index at most \(p \) by Lemma 2. The result follows since \(\Phi(\mathcal{H}) = \mathcal{I}(N) \leq \mathcal{M} \).

Corollary 4.1. A noncyclic Abelian normal subgroup \(M \) of a \(p \)-group \(G \), \(|M| = p^3 \), and \(M \leq \Phi(G) \), contains an elementary Abelian subgroup \(N \) of order \(p^2 \), normal in \(G \), and contained in the center of \(\Phi(G) \).

Theorem 7. Let \(N \) denote a group \(\Phi \)-central under an automorphism group \(\mathcal{H} \). Each nonabelian subgroup \(M \) of \(N \), invariant under \(\mathcal{H} \), contains an elementary Abelian subgroup \(K \) of order \(p^2 \) which is invariant under \(\mathcal{H} \) and is a fixed-point set under \(\mathcal{I}(N) \).

Proof. Suppose \(M \) is a nonabelian subgroup of least order for which the theorem is not valid. By Lemma 3, \(|M| \geq p^4 \). Since \(\Phi(M) \neq 1 \), denote by \(P \) the cyclic subgroup of order \(p \), consisting of fixed-points under \(\mathcal{H} \) and contained in \(\Phi(M) \). One such subgroup always exists by Theorem 6. Then \(M/P \leq N/P \), both are invariant under \(\mathcal{H}^* \), and \(N/P \) is \(\Phi \)-central under \(\mathcal{H}^* \), \(\mathcal{H}^* \) the induced automorphisms on \(N/P \) by \(\mathcal{H} \).

If \(M/P \) is Abelian, then \(M/P \) not cyclic implies that the elements of order \(p \) in \(M/P \) form a characteristic subgroup \(K/P \), invariant under \(\mathcal{H}^* \), which is elementary Abelian and \(|K/P| \geq p^2 \). Thus \(K/P \) contains a subgroup \(L/P \) of order \(p^2 \) and invariant under \(\mathcal{H}^* \). This implies that \(L \) is a noncyclic commutative subgroup invariant under \(\mathcal{H} \) by Lemma 3.

For \(M/P \) nonabelian, \(M/P \) contains an elementary Abelian subgroup
L/P of order p^2 invariant under \mathcal{H}^* by the induction hypothesis. Again Lemma 3 implies that L of order p^3 is a noncyclic commutative subgroup invariant under \mathcal{H}.

By Lemma 4, K exists for L and hence for M in both cases.

Corollary 7.1. A nonabelian subgroup invariant under \mathcal{H} of a group N, Φ-central under an automorphism group \mathcal{H}, cannot have a cyclic center.

Corollary 7.2. A nonabelian normal (characteristic) subgroup of a p-group G that is contained in $\Phi(G)$ cannot have a cyclic center.

Remark 2. Corollary 7.2 is stronger than the results of Hobby [7, Theorem 1, Remark 1] and includes a theorem of Burnside [2] that no nonabelian group whose center is cyclic can be the derived group of a p-group. Together with Lemma 5, the results, as necessary conditions, prove useful in determining whether or not a p-group could be the Frattini subgroup of a given p-group.

Lemma 5. Let N denote a group Φ-central under an automorphism group \mathcal{H}. An Abelian subgroup $M \leq N$ of type $(2,1)$ and invariant under \mathcal{H}, is contained in the center of N.

Proof. The result holds for N Abelian so consider the case of N nonabelian. If $M = \{x, y \mid x^{p^2} = y^p = 1\}$, then as in Lemma 4, $\{x^p, y\}$ is invariant under \mathcal{H} and is contained in the center of N. Since M contains only p cyclical subgroups of order p^2 and $x^a \neq x^j$ for an integer j and $a \in \mathcal{H}$, it follows that x^a has at most p images under \mathcal{H}. Therefore the subgroup M of \mathcal{H} having x as a fixed point has index at most p in \mathcal{H}. Since $\Phi(\mathcal{H}) = \mathcal{I}(N) \leq \mathcal{H}$, then x is fixed by $\mathcal{I}(N)$ i.e., x is in the center of N.

Corollary 5.1. An Abelian subgroup M of type $(2,1)$, normal in a p-group G, and contained in $\Phi(G)$ is contained in the center of $\Phi(G)$.

Theorem 8. The following two types of nonabelian groups of order p^4 cannot be Φ-central groups with respect to a nontrivial p-group of automorphisms \mathcal{H}:

1) $A = \{x, y, z \mid x^{p^2} = y^p = z^2 = 1, [x, z] = y, [x, y] = [y, z] = 1\}.$

2) $B = \{x, y \mid x^{p^2} = y^{p^2} = 1, [x, y] = x^p\}.$

Proof. Consider (1) and note that each element of order p^2 is of
the form $z^ax^by^c$ for $b \neq 0 \mod p^2$. Then $(z^ax^by^c)^p = x^{pb}y^{pb + ab(1 + 2 + \cdots + (p-1))} = x^{pb}y^{a(p+1)/2} = x^{pb}$ for $(b, p) = 1$. Thus $\{x^p\} = A^p$ is characteristic in A of order p. If A was Φ-central with respect to an automorphism group \mathcal{H} then A/A^p would be Φ-central with respect to the automorphism group \mathcal{H}^* induced on A/A^p by \mathcal{H}. This contradicts Lemma 3 if \mathcal{H} is nontrivial and so A cannot be Φ-central with respect to a nontrivial p-group of automorphisms \mathcal{H}.

Each maximal subgroup in (2) is Abelian, of order p^3, and type (2,1). If B was Φ-central under a nontrivial p-group of automorphisms \mathcal{H} then one of these maximal subgroups, say M, is invariant under \mathcal{H}. By Lemma 5, M is contained in the center of B and thus B is Abelian. So B cannot be Φ-central with respect to a nontrivial p-group of automorphisms \mathcal{H}.

Corollary 8.1. The types (1) and (2) of p-groups of Theorem 8 cannot be Frattini subgroups of p-groups.

Remark 3. The remaining two types of nonabelian p-groups are of the forms

(3) \[\{x, y, z \mid x^{p^2} = y^p = z^p = 1, [x, z] = x^p, [y, x] = [y, z] = 1 \} \]

(4) \[\{x, y, z, w \mid x^p = y^p = z^p = w^p = 1, [z, w] = x, [y, w] = [x, w] = 1 \} . \]

Without attempting a classification it is sufficient to show the existence of p-groups G having $\Phi(G)$ of form (3) or (4). For $p > 5$, the group $G = \{x, y, z, w \mid x^{p^2} = y^2 = z^p = w^p = 1, [y^p, z] = [y^p, x] = [x, w] = 1, [y^p, w] = [x, z] = [z, w] = x, [z, y] = y^p, [x, y] = z, [w, y] = x, |G| = p^6, and $\Phi(G)$ is of the form (3). Then for $p = 5$, $G = \{u, v, w, x, y, z \mid u^p = v^p = w^p = x^p = y^p = z^p = 1, [v, w] = [v, x] = [v, z] = [x, y] = 1, [v, y] = [x, w] = [w, y] = u, [w, z] = v, [x, z] = w, |G| = p^6, and $\Phi(G)$ is of type (4).

Groups G of order p^6 other than those given in Remark 3 exist having nonabelian $\Phi(G)$. However for all such cases $\Phi(G)$ contains a characteristic subgroup N of order p^2 such that G/N is not of form (3) nor (4) i.e., G cannot be the Frattini subgroup of any p-group. Remark 3 provides a ready source of examples of p-groups which are Φ-central, or in particular are Frattini subgroups of some p-group. This offsets the conjecture that such a source consisted of p-groups of relatively "large" order. The examples raise the following question: If the group F is the Frattini subgroup of a group G, does there always exist a group G^* such that $\Phi(G^*) \cong F$ and the centralizer of $\Phi(G^*)$ in G^* is the center of $\Phi(G^*)$?
BIBLIOGRAPHY

Received February 13, 1965.

Bucknell University
Lewisburg, Pennsylvania
Edward Joseph Barbeau, *Semi-algebras that are lower semi-lattices* ... 1
Steven Fredrick Bauman, *The Klein group as an automorphism group without fixed point* ... 9
Homer Franklin Bechtell, Jr., *Frattini subgroups and Φ-central groups* ... 15
Edward Kenneth Blum, *A convergent gradient procedure in prehilbert spaces* .. 25
Edward Martin Bolger, *The sum of two independent exponential-type random variables* 31
David Wilson Bressler and A. P. Morse, *Images of measurable sets* .. 37
Dennison Robert Brown and J. G. LaTorre, *A characterization of uniquely divisible commutative semigroups* .. 57
Selwyn Ross Caradus, *Operators of Riesz type* ... 61
Jeffrey Davis and Isidore Isaac Hirschman, Jr., *Toeplitz forms and ultraspherical polynomials* 73
Lorraine L. Foster, *On the characteristic roots of the product of certain rational integral matrices of order two* .. 97
Alfred Gray and S. M. Shah, *Asymptotic values of a holomorphic function with respect to its maximum term* .. 111
Sidney (Denny) L. Gulick, *Commutativity and ideals in the biduals of topological algebras* 121
G. J. Kurowski, *Further results in the theory of monodiffric functions* ... 139
Lawrence S. Levy, *Commutative rings whose homomorphic images are self-injective* 149
Calvin T. Long, *On real numbers having normality of order k* .. 155
Bertram Mond, *An inequality for operators in a Hilbert space* .. 161
John William Neuberger, *The lack of self-adjointness in three-point boundary value problems* 165
C. A. Persinger, *Subsets of n-books in E³* ... 169
Oscar S. Rothaus and John Griggs Thompson, *A combinatorial problem in the symmetric group* 175
Rodolfo DeSapio, *Unknotting spheres via Smale* ... 179
James E. Shockley, *On the functional equation \(F(mn)F((m, n)) = F(m)F(n)f((m, n)) \)* 185
Kenneth Edward Whipple, *Cauchy sequences in Moore spaces* .. 191