THE SUM OF TWO INDEPENDENT EXPONENTIAL-TYPE RANDOM VARIABLES

Edward Martin Bolger
Let X_1, X_2 be nondegenerate, independent, exponential-type random variables (r.v.) with probability density functions, (p.d.f.) $f_1(x_1; \theta)$, $f_2(x_2; \theta)$, (not necessarily with respect to the same measure), where $f_i(x_i; \theta) = \exp \{x_i p_i(\theta) + q_i(\theta)\}$ for $\theta \in (a, b)$ and $p_i(\theta)$ is an analytic function of θ (for $\text{Re } \theta \in (a, b)$) with $p'_i(\theta)$ never equal to zero on (a, b). If X_1, X_2 are neither both normal nor both Poisson type r.v.'s, then $X_1 + X_2$ is an exponential-type r.v. if and only if $p'_1(\theta) = p'_2(\theta)$.

2. Lemmas. It follows from Patil's result ([3]) that a r.v. X is of exponential type if and only if the cumulants, $\lambda_j(\theta)$, exist and satisfy

$$\lambda_j(\theta) = p'(\theta)\lambda_{j+1}(\theta)$$

for $j = 1, 2, 3, \ldots$.

Lehmann ([2], p. 52) has shown that $q(\theta)$ and hence also $\lambda_j(\theta)$ are analytic functions of $p(\theta)$. Then $\lambda_j(\theta)$ is an analytic function of θ for $\text{Re } \theta \in (a, b)$.

Let $\lambda_{j,i}(\theta)$ be the j^{th} cumulant of X_i and $\lambda_j(\theta)$ the j^{th} cumulant of Y. Then

$$\lambda_j(\theta) = \lambda_{j,1}(\theta) + \lambda_{j,2}(\theta)$$

(3)

$$\lambda'_{j,i}(\theta) = p'_i(\theta)\lambda_{j+1,i}(\theta)$$

for $j = 1, 2, 3, \ldots$.

Let $h_j(\theta) = \lambda_{j,1}(\theta)\lambda_{j,2}(\theta) - \lambda_{j,1}(\theta)\lambda_{j,2}(\theta)$ and $c(\theta) = \lambda_{2,3}(\theta)\lambda_{2,1}(\theta)$.

Lemma 1. If $h_3(\theta) \equiv 0$ and if $c'(\theta) \equiv 0$, then either X_1 and X_2 are both normal or $p'_1(\theta) \equiv p'_2(\theta)$.

Proof. Since $h_3(\theta) \equiv 0$,

$$\lambda_{3,2}(\theta) = c(\theta)\lambda_{3,1}(\theta) .$$

Since $c'(\theta) \equiv 0$,

$$\lambda'_{2,2}(\theta) = c(\theta)\lambda'_{2,1}(\theta) .$$

From (3), (4) and (5) it follows that

$$p'_1(\theta)\lambda_{3,2}(\theta) = c(\theta)p'_1(\theta)\lambda_{3,1}(\theta) = p'_1(\theta)\lambda_{3,2}(\theta) .$$
If \(\lambda_{s,1}(\theta) \equiv 0 \), then \(\lambda_{s,1}(\theta) \equiv 0 \) and \(X_1, X_2 \) are both normal. If there is a point \(\theta_0 \) such that \(\lambda_{s,1}(\theta) \neq 0 \), then there is a neighborhood, \(N(\theta_0) \), in which \(\lambda_{s,1}(\theta) \neq 0 \). For \(\theta \in N(\theta_0) \), \(p_1'(\theta) = p_1'(\theta) \). By analyticity, \(p_1'(\theta) = p_1'(\theta) \) for \(\theta \in (a, b) \).

LEMMA 2. If \(h_j(\theta) \equiv 0 \) for \(j > 2 \) and if \(c'(\theta) \neq 0 \), then \(X_i \) and \(X_2 \) are Poisson type r.v.'s.

Proof. Since \(h_j(\theta) \equiv 0 \),

(6) \[\lambda_{j+1,1}(\theta) = c(\theta)\lambda_{j,1}(\theta) . \]

Differentiating (6) and using (3), we get

\[c(\theta)\lambda_{j+1,1}(\theta) + c'(\theta)\lambda_{j,1}(\theta) = p_2'(\theta)\lambda_{j+1,1}(\theta) . \]

Then,

(7) \[c(\theta)p_1'(\theta)\lambda_{j+1,1}(\theta) + c'(\theta)\lambda_{j,1}(\theta) = p_2'(\theta)c(\theta)\lambda_{j+1,1}(\theta) . \]

In particular,

(8) \[c(\theta)p_1'(\theta)\lambda_{2,1}(\theta) + c'(\theta)\lambda_{2,1}(\theta) = p_2'(\theta)c(\theta)\lambda_{3,1}(\theta) . \]

Multiplying (7) by \(\lambda_{2,1}(\theta) \) and (8) by \(\lambda_{j+1,1}(\theta) \), we find that

(9) \[c'(\theta)[\lambda_{2,1}(\theta)\lambda_{j+1,1}(\theta) - \lambda_{3,1}(\theta)\lambda_{j,1}(\theta)] = 0 \quad \text{for } j \geq 2 . \]

Since \(c'(\theta) \neq 0 \), there is a sub-interval \(M \) of \((a, b) \) in which \(c'(\theta) \neq 0 \). For \(\theta \in M \),

\[\lambda_{s,1}(\theta)\lambda_{j+1,1}(\theta) - \lambda_{s,1}(\theta)\lambda_{j,1}(\theta) = 0 , \]

or

(10) \[\lambda_{j+1,1}(\theta) = \frac{\lambda_{s,1}(\theta)}{\lambda_{s,1}(\theta)} \lambda_{j,1}(\theta) . \]

By analyticity, (10) is true for all \(\theta \in (a, b) \). Now let \(\alpha(\theta) = \lambda_{s,1}(\theta)/\lambda_{s,1}(\theta) \).

Then, by (3),

\[p_1'(\theta)\lambda_{4,1}(\theta) = \lambda_{4,1}(\theta) = \alpha'(\theta)\lambda_{s,1}(\theta) + \alpha(\theta)\lambda_{s,1}(\theta) \]
\[= \alpha'(\theta)\lambda_{s,1}(\theta) + \alpha(\theta)p_1'(\theta)\lambda_{s,1}(\theta) . \]

Since \(\lambda_{4,1}(\theta) = \alpha(\theta)\lambda_{s,1}(\theta) \), it follows that

\[\alpha'(\theta)\lambda_{s,1}(\theta) = 0 . \]

So \(\alpha'(\theta) = 0 \) and \(\alpha(\theta) = d \). Then (10) becomes

(11) \[\lambda_{j+1,1}(\theta) = d\lambda_{j,1}(\theta) \quad \text{for } j \geq 2 . \]
This implies

\[(12) \quad \lambda_{j,1}(\theta) = d^{i-\varepsilon}\lambda_{x,1}(\theta) \quad \text{for} \quad j \geq 2.\]

By (6),

\[(13) \quad \lambda_{j,2}(\theta) = d^{i-\varepsilon}c(\theta)\lambda_{x,1}(\theta) \quad \text{for} \quad j \geq 2.\]

Now,

\[
\begin{align*}
p'_i(\theta) &= \lambda'_{j,1}(\theta)/\lambda_{x,1}(\theta), \\
p'_i(\theta) &= \lambda'_{j,2}(\theta)/\lambda_{x,1}(\theta) = \lambda'_{j,1}(\theta)/d\lambda_{x,1}(\theta).
\end{align*}
\]

So

\[(14) \quad \lambda_{1,1}(\theta) = d^{-i}\lambda_{x,1}(\theta) + k_1.\]

Similarly,

\[(15) \quad \lambda_{1,2}(\theta) = d^{-i}c(\theta)\lambda_{x,1}(\theta) + k_2.\]

Using (12), (13), (14) and (15), we find that

\[
\begin{align*}
\log M_i(t; \theta) &= k_i t + d^{\varepsilon} \lambda_{x,1}(\theta)(e^{dt} - 1) \\
\log M_i(t; \theta) &= k_i t + d^{\varepsilon}c(\theta)\lambda_{x,1}(\theta)(e^{dt} - 1),
\end{align*}
\]

where \(M_i(t; \theta)\) is the moment generating function corresponding to \(f_i(x_i; \theta)\).

This concludes the proof of Lemma 2.

3. The sum of two independent exponential-type random variables.

Theorem 1. If \(X_1, X_2\) are neither both normal nor both Poisson type r.v.'s, then \(X_1 + X_2\) is an exponential-type r.v. if and only if \(p'_i(\theta) = p'_2(\theta)\).

Proof. If \(p'_i(\theta) = p'_2(\theta)\), then if follows from (2) and (3) that

\[
\begin{align*}
\lambda_{j+1}(\theta) &= \lambda_{j+1,1}(\theta) + \lambda_{j+1,2}(\theta) \\
&= [p'_i(\theta)]^{-1}\lambda'_{j,1}(\theta) + [p'_2(\theta)]^{-1}\lambda'_{j,2}(\theta) \\
&= [p'_i(\theta)]^{-1}\lambda'_{j}(\theta).
\end{align*}
\]

Conversely, assume \(X_1 + X_2\) is an exponential-type r.v.. Then, using (1), (2), and (3), we find that

\[(16) \quad p'_i(\theta)[\lambda_{j,1}(\theta) + \lambda_{j,2}(\theta)] = p'_i(\theta)\lambda_{j,1}(\theta) + p'_2(\theta)\lambda_{j,2}(\theta).\]

In particular,
Multiplying (16) by \(\lambda_{j,1}(\theta) \) and (17) by \(\lambda_{j,2}(\theta) \) and then subtracting, we get

\[
[p'(\theta) - p'_i(\theta)]h_j(\theta) = 0 \quad \text{for } j \geq 2.
\]

Now, if for some \(j_0 \geq 2, \ h_{j_0}(\theta) \neq 0 \), then there is a subinterval, \(M \), of \((a, b) \) in which \(h_{j_0}(\theta) \neq 0 \). Then, for \(\theta \in M, \ p_i(\theta) = p'(\theta) \). By analyticity, \(p'_i(\theta) = p'(\theta) \) for all \(\theta \in (a, b) \). Substitution in (16) yields \(p'_i(\theta) = p'(\theta) \) for \(\theta \in (a, b) \). If, on the other hand, \(h_{j}(\theta) \equiv 0 \), for \(j \geq 2 \), the result follows from Lemmas 1 and 2 since we assumed that \(X_1, X_2 \) are neither both normal nor both Poisson type r.v.’s.

It should be noted that Girshick and Savage [1] proved that if \(X_1 \) and \(X_2 \) are independent identically distributed r.v.’s such that their sum is of exponential-type, then \(X_1 \) and \(X_2 \) are also of exponential-type.

The following theorem gives necessary and sufficient conditions for the sum of two Poisson-type r.v.’s to be exponential-type.

Theorem 2. If \(\log M_i(t; \theta) = C_i t + A_i(\theta)[V^{*i} - 1] \), then \(X_1 + X_2 \) is an exponential-type r.v. if and only if either \(b_1 = b_2 \) or \(p'_i(\theta) = p'_i(\theta) \).

Proof. If \(X_1 + X_2 \) is an exponential-type r.v., then, as in the proof of the preceding theorem,

\[
[p'(\theta) - p'_i(\theta)]h_j(\theta) = 0 \quad \text{for } j \geq 2.
\]

Equivalently,

\[
[\lambda_{j,1}(\theta)\lambda_{j,2}(\theta) - \lambda_{j,2}(\theta)\lambda_{j,1}(\theta)]
= p'_i(\theta)[p'(\theta)]^{-1}[\lambda_{j,1}(\theta)\lambda_{j,2}(\theta) - \lambda_{j,2}(\theta)\lambda_{j,1}(\theta)] \quad \text{for } j \geq 2.
\]

Since, for \(j \geq 2, \lambda_{j,i}(\theta) = b_{i}A_i(\theta), \) (19) becomes

\[
[b_{i}b_{i}^2 - b_{i}b_{i}^2]A_i(\theta)A_2(\theta) = p'_i(\theta)[p'(\theta)]^{-1}[b_{i}b_{i}^2 - b_{i}b_{i}^2]A_i(\theta)A_2(\theta).
\]

But \(A_i(\theta)A_2(\theta) > 0 \), so that

\[
[b_{i}b_{i}^2 - b_{i}b_{i}^2] = p'_i(\theta)[p'(\theta)]^{-1}[b_{i}b_{i}^2 - b_{i}b_{i}^2].
\]

Now, if \(b_{i}b_{i}^2 = b_{i}b_{i}^2 \) for all \(j \geq 2, \) then \(b_{i}b_{i}^2 = b_{i}b_{i}^2 \), so that \(b_1 = b_2 \). On the other hand, if, for some \(j_0, b_{i_0}b_{i_0}^2 - b_{i_0}b_{i_0}^2 \neq 0, \) then \(p'_i(\theta) = p'(\theta) \) and it follows that \(p'_i(\theta) = p'_i(\theta) \).

Conversely, if \(p'_i(\theta) = p'(\theta) \), then \(X_1 + X_2 \) is an exponential-type r.v. since (1) is satisfied. If \(b_1 = b_2 \), let
\[p'(\theta) = [A'_1(\theta) + A'_2(\theta)]/b_1[A_1(\theta) + A_2(\theta)] . \]

It is easy to see that (1) is again satisfied.

The author wishes to thank William L. Harkness for his help in the preparation of this paper.

REFERENCES

Received August 17, 1964, and in revised form February 26, 1965.

BUCKNELL UNIVERSITY
Edward Joseph Barbeau, *Semi-algebras that are lower semi-lattices* 1
Steven Fredrick Bauman, *The Klein group as an automorphism group without fixed point* ... 9
Homer Franklin Bechtell, Jr., *Frattini subgroups and Φ-central groups* 15
Edward Kenneth Blum, *A convergent gradient procedure in prehilbert spaces* ... 25
Edward Martin Bolger, *The sum of two independent exponential-type random variables* .. 31
David Wilson Bressler and A. P. Morse, *Images of measurable sets* 37
Dennison Robert Brown and J. G. LaTorre, *A characterization of uniquely divisible commutative semigroups* 57
Selwyn Ross Caradus, *Operators of Riesz type* 61
Jeffrey Davis and Isidore Isaac Hirschman, Jr., *Toeplitz forms and ultraspherical polynomials* .. 73
Lorraine L. Foster, *On the characteristic roots of the product of certain rational integral matrices of order two* 97
Alfred Gray and S. M. Shah, *Asymptotic values of a holomorphic function with respect to its maximum term* 111
Sidney (Denny) L. Gulick, *Commutativity and ideals in the biduals of topological algebras* .. 121
G. J. Kurowski, *Further results in the theory of monodiffric functions* 139
Lawrence S. Levy, *Commutative rings whose homomorphic images are self-injective* .. 149
Calvin T. Long, *On real numbers having normality of order k* 155
Bertram Mond, *An inequality for operators in a Hilbert space* 161
John William Neuberger, *The lack of self-adjointness in three-point boundary value problems* ... 165
C. A. Persinger, *Subsets of n-books in E^3* 169
Oscar S. Rothaus and John Griggs Thompson, *A combinatorial problem in the symmetric group* ... 175
Rodolfo DeSapio, *Unknotting spheres via Smale* 179
James E. Shockley, *On the functional equation*
\[
F(mn)F((m, n)) = F(m)F(n)f((m, n))
\] .. 185
Kenneth Edward Whipple, *Cauchy sequences in Moore spaces* 191