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Earlier there has been described on the bidual (second
conjugate space) of each member of a large class of topological
algebras an Arens multiplication which makes it again into a
topological algebra and which extends the multiplication of
the original algebra. This paper centers around three questions
concerning this Arens multiplication.

In the first place, we characterize those commutative
algebras whose biduals are also commutative. We then discuss
the extent to which the passing of commutativity from the
base algebra to the bidual is preserved under certain opera-
tions of algebra, and we show that if 5 is a compact Hausdorff
space, and if C(S) has the supremum norm, then any multipli-
cation which makes C(S) a commutative Banach algebra renders
its bidual commutative. We also give a constructive proof of
the fact that if G is an infinite locally compact abelian group,
then the bidual of LX{G) is not commutative. In the second
place, we prove that the projection to the base algebra of the
radical in the bidual of a Banach algebra is precisely the
radical of the base algebra. In addition, we determine that
the weak -closed maximal regular ideals in the biduals of a
large class of commutative topological algebras (including
commutative Banach algebras) are the weak*-closures in the
biduals of closed maximal regular ideals in the base algebras.
Furthermore, we show that if T is a locally compact, non-
compact Hausdorff space, then C0(T) is an ideal in its bidual
if and only if T is discrete; nevertheless, C0(T) can always
be embedded in a regular ideal of its bidual. In the third
place, we show that if G is a locally compact abelian group,
then the radical in the bidual of Li(G) is separable if and
only if G is finite.

We now amplify the above statements. The original discussions
on the definition of the Arens multiplication occur in [1, 2], are
extended in [11], In [2] Arens gives a condition, involving weakly
compact sets of the base algebra, which guarantees that the bidual of
a commutative Banach algebra be commutative. He asks if there is
a necessary condition of the same type. Our criterion in Section 3
arises from an attempt to answer his question, and goes as follows.
Let E — (E, o) be a topological algebra whose bidual has an Arens
multiplication, and let E* be the dual of E. For x*eE*, define
Tx*: E->E* by Tx*(x) = x* o χ9 where (x* o χ)y = χ*(χ o y)9 χ,yeE.
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Then !£** is commutative if and only if for each x*eE*, Tx* is a
weakly compact operator. Our related results follow from this
characterization.

The result in Section 4 that the projection to the base algebra of
the radical in the bidual of a Banach algebra is precisely the radical
of the base algebra answers a conjecture of, and partial solution
[4]. In Section 5 we discuss the radical in the bidual of L^G), where
G is an abelian locally compact group. Civin and Yood [4] show that
if G is not discrete, or if G is the group of integers, then the radical
is infinite-dimensional. They conjecture that the radical is infinite-
dimensional for any discrete infinite abelian group. This is proved by
Granirer as a by-product of an analysis of amenable semi-groups [9].
Our proof that the radical is always nonseparable uses a different
approach. We conclude with a list of unresolved questions.

2* Preliminary definitions. Throughout the paper we will
assume that E is a locally convex (linear topological) space. If E is
a topological algebra, then E is assumed to be an associative algebra
such that the multiplication is separately continuous for the topology
on E. For a set S c E, let CS denote the complement of S in E.
The dual E* of a locally convex space E consists of all continuous
linear functions from E into the complex numbers. Its members are
denoted by x*, y*, etc. The topology on £7* is normally the topology
of uniform convergence on the bounded sets of E. The bidual E**
of E is the dual of E*, equipped with the topology of uniform
convergence on bounded sets of E*, and its members are denoted by
&**, y**9 etc. The wesik-(E**) and weak-(i?) topologies on E* are
the topologies of uniform convergence on finite point sets of ϋ7** and
E respectively. It is well-known that if we define the map Π\E—*
E** by Π(x)x* = x*(x), for all x*eE*, then E is embedded in #**,
and Π(E) is weak-(2£) dense in ϋ/**. If F is a subset of the locally
convex space E, then F1 refers to all those elements of £7* which
annihilate F. If E is an algebra, then it can be embedded in an
algebra E+ with identity. Thus E+ is the cartesian product of E
with the complex numbers, under the product topology, where multi-
plication is defined as follows: for x, y in E, and for α, b complex,
we have (x, a) (y, b) — (xy + ay + bx, ab). A continuous, linear map
T from one locally convex space to another is called weakly compact
if the image of any bounded set in the domain is relatively weakly
compact in the range space. The adjoint of T is written Γ*.

If E is a Banach algebra with multiplication o, then there exists
on £7** an Arens multiplication, which we now construct. Although
o will appear in several contexts as a bilinear function, we will always
know on what spaces o operates if we look at the elements to the left
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and to the right of o. First define on (E*, E) the bilinear operation o
by (x* o χ)y = χ*(χ o y)1 for all yeE, where x* e E* and x e E. Then
x* o a? e E*. Next, define on (2?**, 2?*) the operation o by (y** o χ*)χ —
y**(x* o χ)9 for all x e E, where y** e i?** and x* e E*. Then y** o f e
2£*. Finally, define on (E**, £7**) the operation o by 0** o f y =
&**(&** o α*), for all x*eE*, where x**, y**eE**. Then o is a
bilinear operation on £ n with values in Z?**, and o makes i?** into
a Banach algebra [2], However, we can generalize the notion to a
wide class of topological algebras, including those with jointly conti-
nuous multiplication [11], Any topological algebra whose bidual has
this Arens multiplication we call a topological algebra with bidual.

Standard references for algebraic and topological problems are [19]
and [14], and for group algebras [20].

3* Commutativity in the bidual of a topological algebra
with biduaL As we mentioned in Section 2, any topological algebra
whose bidual has the Arens multiplication we call a topological algebra
with bidual. In order to simplify the terminology, we make the fol-
lowing.

DEFINITION 3.1. A topological algebra with bidual is bicom-
mutatίve if and only if the bidual is commutative.

Now we give a necessary and sufficient condition that a com-
mutative topological algebra with bidual be bicommutative. Our
Theorem 3.4 is related to a question of Arens [2, p. 845], and might
be the appropriate answer to his question. The inspiration for our
proof comes from Theorem 4.2 of [12].

LEMMA 3.2. Let E and F be locally convex spaces, and let T:
E—+F be a continuous, linear map. Then T is a weakly compact
map if and only if T* is continuous with respect to the weak-(F)
and weak-{E**) topologies on F* and E* respectively.

Proof. This is part of Lemma 1.1 of [10].

Next, let x*eE*, and define the operator TX*:E->E* by the
equation

(Tx*(x))y = (x* o χ)y9 for all x and y in E.

Then Tx*{x) — x* o χ9 and Tx* is a continuous, linear map. Note that
for each T/** G j?**, T£(y**) = y** ° #*, and for each #** and y** in
E**, (T£*(x**))y** = x**(T**(y**)) = (&** o ̂ /**)x*. We can state and
prove:
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LEMMA 3.3. Let E be a commutative topological algebra with
bidual. Then E** is commutative if and only if for every x*eE*,
T** is continuous with respect to the weak-(E*) and the weak (E**)
topologies on E** and E* respectively.

Proof. Assume that i?** is commutative. Let x**eE** and
x* e E*. If (y**)λeΛ is a net which converges to y** in the weak-(£/*)
topology, then

(x** o yt*)x* = yt*(x** o x*) > ?/**(x** o x*) = (a;** o y**)χ* ,
Λ

whence x**(T**(yϊ*)) >x**(T**(y**)), and Tx** is continuous in the
Λ

appropriate topologies. Conversely, assume that for each x*eE*, T£
is continuous for the weak-(l?*) and the weak-(J5**) topologies on i?**
and 2?* respectively. Let x** and y** be in i?**. Assume that (yλ)λeΛ

is a net in E such that (Π(yλ))λeΛ converges to ?/** in the weak-(2?*)
topology. Then

o x*) =

But by hypothesis,

(x** o Π(yk))x* = x**(T**(Πyλ)) > x**(T£(y**)) = (x** o τ/**)χ* .

Since E is commutative by assumption, it is easy to show that
Π(V\) ° ^** = ^** ° Π(Vλ), for each λ. Consequently x** o ̂ /̂ ^ =
/̂** o ^ * ( so that JE?** is commutative.

THEOREM 3.4. Let E be a commutative topological algebra with
bidual. Then E is bicommutative if and only if for each x*eE*,
Tx* is a weakly compact operator from E to E*.

Proof. The theorem follows directly from Lemmas 3.2 and 3.3.

We now give some reduction theory for commutativity in the
biduals, and then exhibit a few examples. Let E be a topological
algebra with bidual. Let V be a neighborhood of 0 in E, and let pv

be the Minkowski functional on F[13, p. 15]. Let Ev be the normed
algebra E/PΫ^O), clothed in the quotient topology arising from the
semi-normed topology induced by pv on E. If there is a subbasis
(^λ)λe^ of neighborhoods of 0 in E such that each EVκ is a normed
algebra, then E is called a locally multiplicatively-convex algebra,
and such algebras are topological algebras with biduals [11].

THEOREM 3.5. If E is a locally multiplicatively-convex algebra
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such that for each λ e A, EVλ is bicommutative, then E is bicommut-
ative.

Proof. Let x* e E*. Then there is a Vλ such that x* is bounded
on F λ , and hence x* can be identified with an element of E^λ. If B
is bounded in E, then B is bounded (by identification) in EVλ, so
(x* o B) is weak-(E£*) compact in E?k. But the topology on E£κ is
stronger than the restricted topology of £ * , which means that x * o β
is weak^i?**) compact in i?*, and E is bicommutative, by Theorem
3.4.

By using Theorem 17.13 of [13] it is easy to show that the
Cartesian product of bicommutative algebras is again bicommutative.
On the other hand, we have:

THEOREM 3.6. If E is a bicommutative algebra, and if F is
a subalgebra with the restriction topology, then F is bicommutative.

Proof. Let xfeF*, and let B be an arbitrary bounded set in F.
We must show that x% o B is a weak-(i^**) compact set in F*. First
extend x | to x% in E* by the Hahn-Banach theorem. Since B is
bounded in E, the hypothesis tells us that x% o B is weak^i?**)
compact in E*. Furthermore, there is a linear isomorphism between
(a?| o B) + E1 and x% o B, where x% is just the function x% restricted
to F. By Theorem 17.13 of [13], we have that (x* o B) + FL is a
weak-fT?*/^71)* compact set. However, the topology on ί1* is no
stronger than the quotient topology of E* on E*/FL, so that x% o B
is therefore weak-^**) compact. Consequently F is bicommutative.

We next consider those locally convex spaces E and closed subspace
F such that any B bounded in E/F is contained in the image of a
bounded set in E under the canonical map φ from E to E/F. Included
are the quotient spaces of all Banach spaces.

THEOREM 3.7. If E is a bicommutative topological algebra and
has the property just described, and if F is a closed ideal in E,
then G = E/F is bicommutative.

Proof. Any y*eG* corresponds to x*eF± by the equation
y*(u + F) = x*(u), for all u e E. Then [y* o (x + F)] (z + F) =
(#* o #)#, so that 2/* o (sc + -F) is identified with #* o ̂ , where ^* e F1.
Now define Γ,*: E-+E* by Γβ*(a;) = α;* o χy and Γ̂ *: G -> G* by
T r (x + F ) = 2/* o (a? + F). Then T,.* and Ty* are continuous functions.
Let R be a closed, bounded set in G, and let S be the bounded set in
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E, guaranteed by hypothesis to exist, such that φ(S) 3 R. By
identification in E*, TX*(S) 2 Ty*(R) and TX*(S) is weak-(#**) compact,
by hypothesis. Thus Ty*(R) is weak-(i£**) compact too. But then by
Theorem 17.13 of [13], Ύjβ) is weak-(G**) compact, so that Ty. is
weakly compact. Since y* e G* was arbitrary, we have shown that
G is bicommutative.

EXAMPLE 3.8. Let S be a compact, Hausdorff space and let C(S)
be the Banach space of continuous, complex-valued functions on S,
with supremum norm and any multiplication which makes C(S) a
commutative Banach algebra. As a Banach space C*(S) is weakly
sequentially complete [7, IV. 13.22], so that by Theorem VI. 7.6 of
[7], if x*eC*(S), then Tx* is a weakly compact operator. Therefore
C(S) is bicommutative. We can apply Theorem 3.5 to show that if T
is a completely regular space with S^ a collection of compact subsets
of T which generates T is the sense of Michael (see [16, p. 76]), if
C(T) has the topology of uniform convergence on elements of S^,
and finally if the multiplication on C(T) is separately continuous and
commutative, then C(T) is bicommutative. We remark that Arens
[1, p. 17] proved this for (real-valued) functions on a compact
Hausdorff space, under pointwise multiplication.

If G is an infinite abelian locally compact group, then L^G) is not
bicommutative [5, p. 535] and [4, Theorems 3.1, 3.12], We next see
how our criterion can be used to show that LJfi) is not bicommutative.
First, however, we need a lemma due to M. Rajagopalan [21]:

LEMMA 3.9. If G is a locally compact abelian group which is
extremally disconnected, then G is discrete.

Proof. If G is extremally disconnected, then G is an F space
[8, pp. 22 and 215]. On the other hand, since G is extremally
disconnected, there exists a compact open subgroup H of G, and H
contains a compact metric subgroup K which is infinite if H is
infinite [20, pp. 42 and 45], But then K is a compact metric subspace
of an F space, and thus has the discrete topology [8, p. 215], Since
K is compact and discrete, K is finite, whence H is finite. But then
H is finite and open in G, which means that H, and hence G, has the
discrete topology.

EXAMPLE 3.10. Let G be a nondiscrete locally compact abelian
group. Then LJfi) is not bicommutative.

Proof. By the lemma above, G is not extremally disconnected,
so in G there are two disjoint open sets S and T such that S Π T Φ 0 .
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Without loss of generality assume that S has finite Haar measure.
Let seSπT. Let (Uλ)λeΛ be a neighborhood system of 0 in G, Uλ

compact, and let μ be Haar measure on G. Note that for each λ,
μ(s + UλΓ\S) Φ 0. For each λ e Λ, let Wλ be a neighborhood of 0
with the following properties: Wλ ϋ J7λ, s + Wλ Π S = s + Uλf] S, and
M * + WλΓ\S)^ (1/2) μ(Wλ). In addition, let us define bλ = μ(Wλ),
for each λ e A. For each x*eL?(G), let h^eLJfi) correspond to &*.
We then define x* by fex* - χszL^G) and xλ = (l/h)χWλ e LX{G), for
all Xe A. Note that || xλ || = 1. Furthermore, for each teG,

* ^ + r)xλ(r)dμ(r)

= (l/δλ)ί hxi(t + r)dμ(r)

If ί e CS, then since G is regular, there is a TΓλo such that t + Wλo Π
S=Φ. Pick λ ^ λ o such that UλlS WλQ. Then (ί + I 7 λ l ) n S = ^ ,
so that if λ ^ Xu then 0 g λx.OίBλ(t) = (l/6λ) μ[(t + Wλ) ί l S ] g
(l/δλ) μ[(t + 27λi)nS] = 0. Thus on OS, {hx*OX))λeΛ converges pointwise
to 0. On the other hand, hx*OXλ(s) = (l/bk) μ(s + Wλί]S) ^ 1/2, for all
XeA. For each XeA, let s λ e s + TFλΠCS, so that sλ >s in the

topology of G. Because of our preceding arguments, for any fixed
λ0 and any arbitrary Xu there is a λ ^ λL such that | hx*OXχ(sλ) —
^*5o*λ(

s) I = 1/2. But this means that {hx*OXλ}λeΛ is not weakly sequential-
ly compact [7, Theorem IV. 6.14], Consequently by the Eberlein-
Smulian theorem it is not relatively weakly compact, whence TX*Q is
not a weakly compact operator, and L^G) is not bicommutative.

EXAMPLE 3.11. Let G be a discrete locally compact abelian group
with an element g of infinite order. Then L^G) is not bicommutative.

Proof. Let hx* be the characteristic function of the set (kg)ΐ=0, and
let xm be the characteristic function of the point mg, for m — 1, 2, .
Then

(1 if k ^ — m
hx*0XJkg) - Σ α j t t - % = j

TO * = o (0 if A < — m

Thus for any m, limA;__oofea.*0a.w(/bβf) = 0. On the other hand, if we
fix fcj, , kr < 0, and if — m < inf (fĉ  , fcr), then hx*ox fag) = 1
for i = 1, , r. Consequently (hx*oxj2=i is not weakly sequentially
compact [7, Theorem IV. 6.14], and hence LX(G) is not bicommutative.

For the infinite discrete locally compact abelian groups without
any elements of infinite order, one can use the analysis of Section 5
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to show that if e* is the function identically 1 on G, then Te* will
not be weakly compact.

We also observe that one can easily show that 4 is bicommutative
under coordinate-wise multiplication or any inferior multiplication
which makes 4 into a topological algebra with bidual.

Finally, we should like to say a word about the question posed
by Arens. He gives a condition [2], involving weakly compact sets
of the base algebra, which guarantees that a commutative Banach
algebra be bicommutative. The condition is: for every ε > 0 there
exists a weakly compact subset Bs of the unit ball S such that for
any x e S there is a bx e Bs for which if y is any element of the
Banach algebra, then || (x — bx)y || ^ ε|| y ||. Then Arens seeks a
necessary condition also involving weakly compact sets of the base
algebra. Although with his sufficient condition he can prove that c0

(the sequences converging to 0, with supremum norm and pointwise
multiplication) is bicommutative, it appears to us that this condition
is very restrictive and that there may exist no satisfactory necessary
condition involving weakly compact sets in the base algebra. For we
are able to show that if S is a nonfinite, compact Hausdorίf space,
and if C(S) is the Banach algebra of continuous, complex-valued
functions on S, under pointwise multiplication and supremum norm,
then C(S) does not fulfill the Arens condition. The proof goes as
follows. Let s e S be a fixed element such that there is a nonfinite
net (sλ)λ€Λ converging to s. Note that x e C(S) implies that limλα?(sλ) =
x(s), and for any finite collection sλl, , sλ%, there is an xoeC(S)
such that xo(s) — 0 and xQ(sλi) — 1, i — 1, 2, , n. If B is any
subset in C(S) with the property % that if xeC(S) and | | g | | ^ 1, then
there is a bxeB such that || x — bx || ^ 1/4, this means that for our
x0 we can find a bXQ e B such that | 6β0(sλί) | ^ 3/4, i — 1, 2, , n, and
I bxo(s) I ^ 1/4. Thus I δ,0(βλ4) - bXQ(s) I ̂  1/2, i - 1, 2, . •, n. But then
B cannot be weakly compact [7, Theorem IV. 6.14], and Arens'
criterion is not fulfilled. However C(S) is bicommutative.

4. Ideals and the Radical in the BiduaL Let E be a complete
commutative topological algebra with bidual and continuous quasi-inver-
sion. If E is a locally multiplicatively-convex algebra, then it has these
properties [11 and 16]. We give a characterization of the weak-(i?*)
closed maximal regular ideals in i£**. Lemma 4.2 and Theorem 4.3
generalize Theorem 5.3 of [4] and Corollary 5.4 of [3] respectively.

LEMMA 4.1. Let M be a closed maximal regular ideal of Ey

and let y be a right identity for E modulo M. Let M+ be the closed
algebra in E+ generated by (M, 0) and (y, — 1). Then M+ is a
closed maximal regular ideal in E+, and M+f]E — M.
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Proof. Compare with [15, pp. 59, 60], The proof is easy. The
elements of M+ are of the form (m + ay, — α), where me M and a
is complex. Furthermore, (0, 1) is not in M+, and M+ has the other
properties mentioned.

LEMMA 4.2. Let ME be a closed maximal regular ideal of E.
Then the weak-(E*) closure M of Π(ME) is a closed maximal regular
two-sided ideal in E**.

Proof. We use here the continuity of quasi-inversion. For it
guarantees that ME correspond to a complex-valued homomorphism on
E, so that if y is the identity for E modulo MEf then the linear space
spanned by ME and y is dense in E. We next recall that the second
adjoint of a continuous homomorphism is a weak-(i?*) continuous
homomorphism [11, Remark 3.11], We can then use verbatim the
argument of Theorem 5.3 of [4] to conclude the proof.

THEOREM 4.3. Let Ebea complete commutative topological algebra
with bidual and continuous quasi-inversion. Let Mbe a closed maximal
regular ideal of i?**. Then M is weak-(E*) closed if and only if
M is the weak-(E*) closure of some closed maximal regular ideal
ME of E.

Proof. Lemma 4.2 shows that the image of the weak-(£7*) closure
of a closed maximal regular ideal in E is a weak-(i£*) closed
maximal regular ideal of £7**. Henceforth we take all closures in
the weak-(i?*) topology. Now assume that I is a weak-(2?*) closed
maximal regular ideal in £7**. Note that since M is weak^i?*) closed
and proper and since Π(E) — E**y we have M£ Π(E). For the
moment, assume that E has an identity element. Let ME c E be
defined by the equation Π(ME) = M Π Π(E). Then ME is a closed
maximal regular ideal in E. By Lemma 4.2, Π(ME) is a maximal
regular ideal of E**. But M a Π(MB) and M is weak-(#*) closed,
which means that M a Π(MB). The maximality of Π(ME) yields the
equation M — Π(ME). This disposes of the cases in which E has an
identity element. We can therefore assume that E does not have an
identity element. Via Lemma 4.1, embed I in a weak-(i?+*) closed
maximal regular ideal N of E**+ = E+**. Using the preceding
argument, we find a closed maximal regular ideal NE+ in E+ whose
weak-(£7+;iί) closure in E+** is N. However, NB+ corresponds to a
continuous homomorphism from E+ to the complex numbers. The
restriction of this homomorphism to E'is a continuous homomorphism
on E with kernel NB+ Π E. Call this kernel MB. To show that MB

is proper in E, we note that M = N f] E**aE**, so that MB g #**,
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whence ME = NE+ ΠE c E. Then ME is a closed maximal regular
ideal in E. Also, Π(ME) = Π(NE+f]E) s NnΠ(E) = Λf. However,
Π(ME) is a maximal regular ideal in 25**, by Lemma 4.2, and since
Af is weak-(2£*) closed, we have the equality M= Π(ME).

We now turn our attention to the radical in the bidual of an
arbitrary Banach algebra. Later we will see that we are unduly
restricting ourselves.

LEMMA 4.4. Let RE and RE+ denote the radicals of E and E+

respectively. Then by identification, RE = RE+ Π E.

Proof. By Lemma 4.1, RE Ξ2 RE+f]E. On the other hand let x
be a fixed element in RE. This is equivalent to the statement that if
yeE and if b is any complex number, then (b + y)x is quasi-regular
in E. Consider (x, 0) e E+. To show that (x, 0) e RE+ it suffices to
show that for any (y, a) e E+ and any complex number c, [c + (y, a)]
(x, 0) is quasi-regular in E+. But if we let b = a + c, then
[c + (#, a)] (x, 0) = ((6 + y)x, 0), which is quasi-regular in (E, 0), and
hence in E+. Thus (α, 0) 6 RE+ and we have RE = RE+f]E.

LEMMA 4.5. Let E have an identity element. Let RE and R be
the radicals of E and E** respectively. Then RΓ)Π(E) = Π(RE).

Proof. Note that neither E nor i?** is a radical algebra, since
each has an identity element [4, Lemma 5.4], Half the argument is
already proved, since Lemma 5.7 of [4] shows that Rf]Π(E) gΞ Π(RE).
On the other hand, let M be a maximal regular left ideal in i?**. If
M^Π(E), then Mf)Π(E) a Π(RE). But if (MΓiΠ(E))(zΠ(E)
properly, then define ME in E by the equation Π(ME) — Mf)Π(E),
and note that ME is once again a maximal regular left ideal in E.
Consequently Mf] Π{E) = /7(ikί̂ ) a /7(^). Therefore, RΓ\Π(E) =
Π P n #(#)] : Λf a maximal regular left ideal in E**} S Π(RE).
Therefore RnΠ(E) = /7(i2 )̂, which completes the proof.

THEOREM 4.6. Leέ J57 be any Banach algebra. Let RE and R be
the radicals of E and ϋ/** respectively. Then RftΠ(E) = Π(RE)a

Proof. Let RE+, RE+**, and RE**+ be the radicals of E+, 1?+**,
and JE

r**+ respectively. Because £7+** and E**+ are naturally
algebraically and topologically isomorphic, we can identify RE+** with
RE**+. By Lemma 4.4, RE**+f]E** = R and also RE+Γ)E=RE. By
Lemma 4.5, Π(RE+) = RE+**f)Π(E+). Using our identifications, we
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obtain Π{RE) = Π(RS+) Π Π(E)=[RE+**n Π{E+)} n Π(E)=RE**+ f] Π(E)=
RΠΠ(E), which means that Rί)Π(E) =

Theorem 4.6 answers a conjecture of Civin and Yood [4, p. 866],
We remark that the only property of Banach algebras we specifically
needed was that the radical in i?** was the intersection of the closed
regular maximal left ideals of £***, which happens also if £7** is a
commutative, complete locally multiplicatively-convex algebra [16, p.
58], The operator theory used in Lemma 5.7 of [4] is valid more
generally.

We next give a new proof of Theorem 3.3 of [3], with the aid of:

LEMMA 4.7. Assume that E is a commutative Banach algebra
with an approximate identity but no identity. Let e** be a right
identity in i?**, which exists by Lemma 3.8 of [4]. Let there
exist a bounded (#i)~=i in E* such that e**(#*) = 1 for all n,
but such that \\ x% o x || > 0 for each xe E. Then Π(E) is contained

n

in a left regular ideal of £7**.

Proof. Let y**eE**m Then \\x%oχ\\ >0 implies that

# * * « o x) > 0. Consequently (Π(x) o y**)x; > 0. If (αf-)£i <= E
n n

and (i/f *)Γ-iC:JS?**> then sup, | {[ΣΓ=i ψ{*i) <> y}*)] - e**}xϊ \ ̂  1, since
β**(α;*) = 1 for each n by hypothesis. Therefore β** is not in the
closure of the right ideal generated by Π(E), and thus not in the
closed left ideal, because Π(E) is in the center of £7** [4, Lemma 3.9].
Since i?** has a right identity, this latter ideal is regular.

THEOREM 4.8. Let G be a locally compact, nondiscrete, abelian
group. Then Π(LX(G)) can be embedded in a left regular ideal of
L?*(G).

Proof. (The multiplication in L±(G) is assumed to be convolution.)
Let xeL^G) and τ/**eL1**(G) be arbitrary elements. Let (Fn)Z=1 be
a sequence of measurable neighborhoods of the identity in G such that
μ{Fn) > 0, where μ is Haar measure. For x* e LUG), let hx* be the

n

Lco(G) function corresponding to #*. Also, let xeLx(G). Then the
Fubini theorem yields

h*ox(s) — I hx*(t) x(t — s) dμ(t) , seG .

Let hx*n be the characteristic function of Fni for all n. Then
II KlOx || > 0, since μ(Fn) > 0, by Theorem III. 2.20 of [7] and the

invariance of μ. Now let m r* be the finitely additive measure on G
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which corresponds to i/**eLf*(G). Since the norm of y** is finite,
we have

I y**(xt o x) I S \ II h<ox || d I my~(t) | = \\x* o x \\ \\ y** \\ > 0 .

On the other hand, since e** is a weak-(L?(G)) cluster point of the
elements of an approximate identity, the finitely additive measure
corresponding to it has measure 1 on any set which is a neighborhood
of the identity in G, i.e., e**($ί) = 1 for all n. Therefore the hy-
potheses of Lemma 4.7 are satisfied, and ΠiL^G)) can be embedded in
a left regular ideal of L?*(G).

Let T be a locally compact, Hausdorff space which is not compact.
Let CQ(T) be the Banach algebra under pointwise multiplication and
supremum norm of the continuous, complex-valued functions on T
which vanish at infinity. Then we have:

THEOREM 4.9. Π(CQ(T)) is an ideal in C0**(T) if and only if
T is discrete.

Proof. Let T be discrete. The dual of C0(T) is 4(T) and the
bidual is /J(T). Let yeCQ(T) and let χt be the characteristic func-
tion of ί, for any teT. Then χteQ(T). If heC$*(T), then
(Π(y) o h)t — h(χt o y) = h(t)y(t), so that since h is uniformly bounded
on T, Π(y)oh vanishes at infinity, and therefore Π(y) o he Π(C0(T)).
From Theorem 3.6 and Example 3.8 we find that Π(C0(T)) is an ideal
in C0**(Tr). Next, assume that T is not discrete. We separate the
argument into two parts. First, assume that if V is a compact subset
of T then V carries no atomless regular Borel measure. For such V,
it is known that C*(V) is equivalent to 4(V) [18, p. 214]. It follows
by easy calculation that C*(T) is equivalent to 4(T), so that C0**(Γ)
is equivalent to 4o(T). Let toe T have an infinite neighborhood system
(Uk)λeA. Let h(tλ) = 1, tλe J7λ, ίλ Φ ί0> λ e J , and h(t) = 0, all other
teT. Then he/^T). If yeC0(T) is such that y(t0) = 1, then we
have \imλ(Π(y) o Λ)tλ = limλτ/(ίλμ(ίλ) - 1 and (/7(») o h)t0 - ^(to)Λ(ίo) =
0, so that (Π(y)oh)gΠ(C0(T)), and therefore Π(CQ(T)) is not an
ideal in C0**(Γ). On the other hand assume that there is a compact
subset V in T with an atomless regular Borel measure. This
measure corresponds to an element #*eC*(Tr), since by the Stone-
Weierstrass theorem, C0(T) restricted to V is norm-dense in C(V).
Furthermore we can indeed find aye C0(T) such that || x* o y — x* \\ <;
1/2. For teT, let xf be the point mass at t, and note that x* is not
in the norm closure of the span of (x*)teT9 since x* is atomless. Pick

w **eC?*(T) such that w** vanishes on each ajf, for teT, but such
that w**(x*) = 1. Without loss of generality let || ^** || = || x* || = 1.
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Then

I (w** o χ * ) y I = I w**(x*) + {w**[(x* oy)~ x*]} | ^ 1 - 1/2 = 1/2 ,

so t h a t w** o χ * ^ 0 . If Π(y) o w** = /7(» for some ^ e C 0 ( T ) , then

z(t) = [Π{z)~\xf = [77(2/) o.w**]α* = w**(α>* o 7/) = y(t)w**(x?) - 0 , ί G Γ ,

so £ — 0. On the other hand, x*(z) — [Π(y) © w**]χ* = (ic>** o $*)?/ Φ Q

by the above calculation, whence z Φ 0. This contradiction proves

t h a t in our second case, Π(CQ(T)) is not an ideal in C0**(T).

Nevertheless, we do have the following:

THEOREM 4.10. For any locally compact, noncompact Hausdorff
T, Π(CQ(T)) is contained in a proper regular ideal of C0**(TΓ).

Proof. If T is discrete, then the statement follows from Theorem
4.9. In any case, C0(T) has an approximate identity, and therefore
C**(T) has a right identity e** [4, Lemma 3.8], Hence, for each
point mass x*, we have e**(xf) = 1. Pick v** e C0**(T) and xe C0(T).
Then

I ( 7 7 ( a ) o v * * ) x ? \ ^ \ \ v * * \ \ \ \ x ? oχ\\ = \\ v** \\ \ x ( t ) | , t e T .

Since x vanishes at infinity, this means that || Π(x) ov** — e** || ^ 1,
so that e** is far away from linear combination of elements like
Π(x) o^**, and hence is far away from the ideal in C%*(T) generated
by Π(CQ(T))m However, by Theorem 3.6 and Example 3.8, C**(T) is
commutative. Consequently the ideal generated by Π(CQ(T)) is regular.

5* Nonseparability of the radical in L?*(G). In this section
we give a proof that for any abelian locally compact group, the
radical R of Lf *(G) is not only infinite-dimensional, but even non-
separable. That proof we divide into three parts. All measures are
assumed only finitely additive.

LEMMA 5.1. Let G be an infinite discrete ahelian group. Then
there is a bounded, positive translation-invariant measure on G.

Proof. See Day [6] and von Neumann [17].

As we shall see, translation-invariant measures on G give rise to
elements of the radical in Lf*(G). One might hope that we could
produce a great many such positive translation-invariant measures as
we have just done, by merely picking various m's. However, there
seems to be no guarantee by the Kakutani-Markov theorem that the
various resulting fixed points would be different from one another.
So we proceed along a slightly different avenue.
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LEMMA 5.2. If G is not discrete, then R is nonseparable.

Proof. By Lemma 3.9, G cannot be extremally disconnected.
Thus there exist disjoint open sets U, V in G such that V f] V Φ Φ.
Without loss of generality assume that Oe UΠ V. Let (Wλ)keA be a
neighborhood system for 0 consisting of compact sets. Let 2\ =
Wλ ΓΊ U, for each Xe A. By judicious selection we can produce
sequences (^)Γ = 1 cG and (λn)~=1cΛ such that if n Φ m, then
(Wχn + ®n) Π (WXm + xm) = Φ. Let a be an infinite subsequence of
the positive integers, and let

Then || ha — /][«> Ξ> 1, for any function / which is continuous on Gr

by prescription of the Tλ% + xn. Furthermore, if β is a different
infinite subsequence of positive integers, then || ha — hβ \\ — 1, and
II Aα — Λβ —/||oo ^ 1 for any / continuous on G. However, there are
an uncountable number of infinite subsequences of positive integers.
Let D(G) denote the subspace of Lf(G) consisting of continuous,
bounded functions. Then Lf(G)/D(G) with the quotient norm is non-
separable, by our previous statements. Thus its dual, which can be
represented as the subspace [Z^G)]1 of L?*(G), is nonseparable [7,
Lemma II. 3.16). However, any measure in L?*(G) which vanishes
on D{G) is in the radical R of Lf *(G) [4, Theorems 3.10, 3.12, and
Corollary 3.11]. Thus R is nonseparable.

LEMMA 5.3. If G is discrete and has an element of infinite
order, then R is nonseparable provided G is abelian.

Proof. Let g e G have infinite order, and let N — {ng: n an
integer}. Let S be the shift operator on Loo(iV), i.e., (Sx)ng =
x(n — l)g, all nge N and all x e L^N). Then a routine check shows
that (/ — S)LOQ(N) consists of all functions x e L^N) such that
{IΣί=oα(w0)|}?«-~ i s uniformly bounded. Also, (/ - S^L^N) is a
linear space, and if E is an infinite subset of integers, then for any
he {I- S)L.(N), || χE - h \\ ^ 1. Let (/ - S)L4N) have closure taken
in the supremum norm. Let D — Loo(iV)/(J — S)Loo(N)y when D has
the quotient norm. Then as in Lemma 5.2, D is nonseparable, which
means once again that D* is also nonseparable. Also, D* may be
regarded as a subspace of L?*(N). By the definition of (I — S)LOO(N),
if meL?*(N) is such that m annihilates ( I — S)LOO(N), then m is a
translation-invariant measure on N. Thus the elements of D* are
iSΓ-translation-invariant measures. By Lemma 5.1, G has a translation-
invariant measure μ of norm 1. Now if m e ΰ * , and if M is the
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measure defined on G by M(E) = m(Ef]N) for any set E in G, then
μ o M is a translation-invariant measure in Lf*(G), and | |μojkf | | =
| | m | | [5, Theorem 7.2]. Thus distinct measures on N produce
distinct measures on G. Let such invariant measures μ o M be denoted
by Ί;, and pick one specific one v0. Let β be the function identically
1 on G. For any of our v, let av be a complex number such that
(v0 — avv)e — 0. Since v0 — avv is once again translation-invariant, the
left ideal in Lϊ*(G) generated by v0 — aυv consists of the scalar
multiples of v0 — avv, and thus (v0 — aυv) o (v0 — aΌv) — [(v0 — avv) (e)]

(v0 — avv) = 0, so that the ideal is nilpotent [5, Theorem 6.1]. Con-
sequently v0 — avveR [19, Theorem 2.3.5]. The nonseparability of D*
then ensures the nonseparability of R.

LEMMA 5.4. If G is an infinite abelian, discrete and contains no
element of infinite order, then R is nonseparable.

Proof We refine a procedure of Day for creating invariant
measures [5, Lemma 7.4]. Let H— {J7=iHn^Ξ= G where for each n,
Hn is a finite subgroup of G and H% c Hn+1. Let pn be the number
of elements in Hn, and assume without loss of generality that pn+1 ^
10 pn, for all n. Next we collect infinite sequences of positive integers
((nk)~=1)n=i, such that if {nk)™=1 and ( m ^ ^ are two different sequences,
then nkφmjf for all k, j . For any n and k, define the measure mnjc

by

a/pnk if geHnk
m n k \ 9 ) - | 0 ^ j o t h e r g e H

Then mn]ί e Lf(H). Now, for each n, define xn e L^H) as follows:

Then for all k, mnk(xn) ^ .9, whereas if q Φ n, then mq (xn) g .1 for
all j . For each ^, let mn be a weak-(Lf (H)) cluster point of (mnk)^lΛ

Note that mn(xn) ^ .9, while mq(xn) g .1 if q Φ n. Consequently if
q Φ n, then \\mn — mq\\ ^ 1/2, and for each n, \\ mn || 5Ξ 1. Now we
embark on showing that for any n, mn is translation-invariant on H.
Let the shift L r on H be defined for any reHby (Lrx)h — x(rh), all
he H, all x e Loo(ίZr). Then mw is translation-invariant on H if and
only if L*mn = mw, for all r e H. Momentarily, let k be an arbitrary
positive integer, and let r e Hn]c. Then x* e Lf(H) implies that since
Hnk is a group, we have

\±jr mn mn )ju — 2-ι \LIPnk) & \J >ι) JLJ \*-IVnk)
 x V"v — υ
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Thus if r G Hnk then L?mnk — mnje and mnk is translation-invariant on
Hnjc. Next, if reH, then there is a k0 such that r 6 Hnje for all
& Ξ> jfc0. Let a;* e Lf(H). Since m u is a weak-(L?(iί)) cluster point of
(wnjfe)Γ=i, we can extract a subsequence (qi)T=i from (mfe)Γ=i such that
mJJLiX*) — lim^ mH(Lrx*) and m%(#*) = lim^ mff4(α?*). Thus

{Lΐmn)x* = mn(Lrx*) = lim* rag.(Lra;*) = lim* mq.(x*) = mn(x*) ,

so that mΛ is translation-invariant on if. Finally we show that from
the invariant measures (mw)~=1 we can find a nondenumerable collection
of translation-invariant measures on H which are far apart from each
other. To begin with, let An — (J JU IfΛft Π CH»A_i for each w. Note

bthat if m Φ n, then An (Ί Am = φ. Let ^ be an ultrafilter of the
collection of positive integers. For each Fe ^~, let kFe F, and define
mF to be mkF. Note that mF is a translation-invariant measure as
described above. Using the inclusion ordering in filters, we obtain a
generalized sequence (mF)Fe& of translation-invariant measures in the
unit ball of L**(H), so they have a weak-Lf(iϊ) cluster point m^r.
Indeed, m& is a translation-invariant measure [5, p. 520]. If ^\ and

are different ultrafilters, then there is a set Ue j^{ such that
Let AJJ = UΛeσ-Άw. By construction, m^Jji^) ^ .9, while

^ .1, so that || m$ι — m&2 || ^ 1/2. But there are an
uncountable number of ultrafilters on the positive integers. Thus we
can find that many translation-invariant measures on H at least a
distance 1/2 from one another. Now use the argument of the last
portion of Lemma 5.3 to show that R is nonseparable.

THEOREM 5.5. If G is a locally compact abelian group, then R
is separable if and only if G is finite.

Proof. If G is finite, then Lf*(G) is finite-dimensional. Other-
wise, use Lemmas 5.2, 5.3, and 5.4.

6* Unsolved questions*
1. Let S be the unit disk in the complex plane, and let E be the

subspace of C(S) consisting of all functions analytic in the interior of
S. Is E bicommutative under any commutative multiplication which
makes E a Banach algebra?

2. Is Theorem 4.6 true for any topological algebra with bidual?
3. If G is an infinite, discrete, abelian locally compact group,

does the radical in L?*(G) necessarily contain elements which are not
translation-invariant measures?

4. If G is an infinite, nonabelian locally compact group, is the
radical in L?*(G) nonzero?
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We are indebted to W. G. Bade for valuable discussions, and to
the referee for his comments.
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