THE LACK OF SELF-ADJOINTNESS IN THREE-POINT BOUNDARY VALUE PROBLEMS

John William Neuberger
Suppose that $a < c < b$, $C_{[a,b]}$ is the set of all real-valued continuous functions on $[a, b]$, each of p and q is in $C_{[a,b]}$, $p(x) > 0$ for all x in $[a, b]$ and each of P, Q and S is a real 2×2 matrix. The assumption is made that the only member f of $C_{[a,b]}$ so that $(pf')' - qf = 0$ and

\[
\begin{bmatrix}
 f(a) \\
 p(a)f'(a)
\end{bmatrix} + Q
\begin{bmatrix}
 f(c) \\
 p(c)f'(c)
\end{bmatrix} + S
\begin{bmatrix}
 f(b) \\
 p(b)f'(b)
\end{bmatrix} = 0
\]

is the zero function. It follows that there is a real-valued continuous function K_{12} on $[a, b] \times [a, b]$ such that if g is in $C_{[a,b]}$, then the only element f of $C_{[a,b]}$ so that $(pf')' - qf = g$ and (J) holds is given by

\[
f(x) = \int_a^b K_{12}(x, t)g(t)dt \quad \text{for all } x \in [a, b].
\]

In this note it is shown that if in addition it is specified that Q is not the zero 2×2 matrix, then K_{12} is not symmetric, i.e., it is not true that $K_{12}(x, t) = K_{12}(t, x)$ for all x, t in $[a, b]$.

The union of (a, c) and (c, b) is denoted by R. The symbol j denotes the identity function on $[a, b]$, i.e., $j(x) = x$ for all x in $[a, b]$. If V is a function from $[a, b] \times [a, b]$ and x is in $[a, b]$, then $V(j, x)$ is the function h such that $h(t) = V(t, x)$ for all t in $[a, b]$. If each of f and $(pf')' - qf$ is in $C_{[a,b]}$, then $(pf')' - qf$ is denoted by L_f.

Given an element g of $C_{[a,b]}$, one has the problem of determining a function f so that

\[
\begin{cases}
 Lf = g \\
 (J) \quad \text{holds}.
\end{cases}
\]

Denote \[
\begin{bmatrix}
 0 & 1/p \\
 \int_a^t q & 0
\end{bmatrix}
\]
by $F(t)$ and
\[
\begin{bmatrix}
 0 \\
 \int_a^t q
\end{bmatrix}
\]
by $G(t)$ for all t in $[a, b]$. Then problem $(*)$ may be reformulated as follows: find a function Y from $[a, b]$ to E_2 such that

\[
Y(t) = Y(x) + G(t) - G(x) + \int_x^t dF \cdot Y \quad \text{for all } t, x \in [a, b]
\]

This completes the proof of the theorem.
\[
\int_a^b dH \cdot Y = N \quad \text{where}
\]
\[
H(x) = \begin{cases} 0 & \text{if } x = a \\ P & \text{if } a < x \leq c \\ P + Q & \text{if } c < x < b \\ P + Q + S & \text{if } x = b. \end{cases}
\]

The assumption is made for the rest of this paper that only the function \(Y\) which is constant at \(N\) satisfies (**) if \(G\) is constant at \(N\). It follows that for each continuous function \(G\) from \([a, b]\) to \(E_t\), (**) has exactly one solution.

Consider the function \(M\) from \([a, b] \times [a, b]\) to the set of \(2 \times 2\) matrices which has the following property:

\[
M(t, x) = I + \int_a^t dF \cdot M(j, x) \quad \text{for all } t, x \in [a, b]
\]

where \(I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\). Using Theorem B of [2], one has that the unique solution \(Y\) of (**) is given by

\[
Y(t) = \int_a^b K(t, j)dG \quad \text{for all } t \in [a, b]
\]

where

\[
K(t, x) = \begin{cases} \left[\int_a^b dH \cdot M(j, t)\right]^{-1} \int_a^b dH \cdot M(j, x) + M(t, x) & \text{if } a \leq x \leq t \\ \left[\int_a^b dH \cdot M(j, t)\right]^{-1} \int_a^b dH \cdot M(j, x) & \text{if } t < x \leq b. \end{cases}
\]

That \(\left[\int_a^b dH \cdot M(j, t)\right]^{-1}\) exists for all \(t \in [a, b]\) follows from the assumption that was made above.

Some straightforward calculation gives that

\[
K(t, x) = \begin{cases} (M(t, b)U(x)M(b, x) + M(t, x) & \text{if } a \leq x \leq t \\ M(t, b)U(x)M(b, x) & \text{if } t < x \leq b \end{cases}
\]

where

\[
U(x) = \begin{bmatrix} u_{11}(x) & u_{12}(x) \\ u_{21}(x) & u_{22}(x) \end{bmatrix} = -\left[\int_a^b dH \cdot M(j, b)\right]^{-1} \int_a^b dH \cdot M(j, b)
\]

for all \(x \in [a, b]\).

Note that \(Y = \begin{bmatrix} f \\ Pf' \end{bmatrix}\) where \(f\) is the unique solution to (*). Denote \(K\) by \(\begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix}\). It follows that
THE LACK OF SELF-ADJOINTNESS IN THREE-POINT BOUNDARY

\[f(t) = \int_{a}^{b} K_{12}(t, j) g dj \text{ for all } t \text{ in } [a, b]. \]

THEOREM A. If \(Q \) is not the 0-matrix (i.e., (*) is a three-point problem) then it is not true that \(K_{12}(t, x) = K_{12}(x, t) \) for all \(x \) and \(t \) in \(R \).

Proof. Denote \(M \) by \(\begin{bmatrix} A & B \\ C & D \end{bmatrix} \). From [2] one has the following identities:

\[
B(t, x) = A(t, b)B(b, x) + B(t, b)D(b, x) \quad \text{if } x \text{ and } t \text{ are in } [a, b] \\
(\text{since } M(t, b)M(b, x) = M(t, x) \text{ for all } t, x \text{ in } [a, b]), \\
A(t, x)D(t, x) - B(t, x)C(t, x) = 1 \quad \text{(i.e., } \det M(t, x) = 1) , \\
A(t, x) = D(x, t) , \\
B(t, x) = -B(x, t) , \quad \text{and} \\
C(t, x) = -C(x, t) \quad \text{if } x \text{ and } t \text{ are in } [a, b]. \\
\]

Note that \(LA(j, x) = LB(j, x) = 0 \) if \(x \) is in \([a, b] \).

Suppose that \(K_{12}(t, x) = K_{12}(x, t) \) for all \(x \) and \(t \) in \(R \).

If \(a < x < t < b \), then

\[
K_{12}(t, x) = [A(t, b)u_{11}(x) + B(t, b)u_{21}(x)]B(b, x) \\
+ [A(t, b)u_{12}(x) + B(t, b)u_{22}(x)]D(b, x) + B(t, x)
\]

and

\[
K_{12}(x, t) = [A(x, b)u_{11}(t) + B(x, b)u_{21}(t)]B(b, t) \\
+ [A(x, b)u_{12}(t) + B(x, b)u_{22}(t)]D(b, t) .
\]

Using the identities listed above,

\[
A(t, b)[-u_{11}(x)B(x, b) + u_{12}(x)A(x, b) - B(x, b)] \\
+ B(t, b)[-u_{21}(x)B(x, b) + u_{22}(x)A(x, b) + A(x, b)] \\
= A(t, b)[u_{12}(t)A(x, b) + u_{22}(t)B(x, b)] \\
- B(t, b)[u_{11}(t)A(x, b) + u_{21}(t)B(x, b)] .
\]

An examination of this expression yields the fact that it remains true if \(x \) and \(t \) are interchanged or \(x \) is set equal to \(t \).

Denote by \(x \) a number in \(R \). Since \(u_{11}, u_{11}, u_{22}, u_{22} \) are constant on \((a, c) \) and \((c, b) \) and \(A(j, b) \) and \(B(j, c) \) are independent solutions \(v \) of \(L v = 0 \), it follows that

\[-u_{11}(x)B(x, b) + u_{12}(x)A(x, b) - B(x, b) = u_{12}(t)A(x, b) + u_{22}(t)B(x, b) \]
and
\[-u_{21}(x)B(x, b) + u_{22}(x)A(x, b) + A(x, b) = -u_{11}(t)A(x, b) -u_{12}(t)B(x, b)\]
for all \(x\) and \(t\) in \(R\).

Similarly, it follows that
(i) \(-u_{11}(x) - 1 = u_{22}(t)\),
(ii) \(u_{12}(x) = u_{12}(t)\),
(iii) \(u_{21}(x) = u_{21}(t)\) and
(iv) \(u_{22}(x) + 1 = -u_{11}(t)\) for all \(x\) and \(t\) in \(R\).

(ii) and (iii) imply that \(u_{12}\) and \(u_{21}\) are constant on \(R\). (i) and (iv) give the same information so that only (i) need be considered. Denote \(u_{11}(c -)\) by \(c_1\), \(u_{22}(c -)\) by \(c_3\), \(u_{11}(c +)\) by \(c_3\) and \(u_{22}(c +)\) by \(c_4\). Hence (i) gives that \(c_1 + c_2 = -1, c_1 + c_4 = -1, c_3 + c_4 = -1\) and \(c_3 + c_2 = -1\).

But these equations imply that \(c_2 = c_4\) and \(c_1 = c_3\), i.e., that \(u_{11}\) and \(u_{22}\) are constant on \(R\). Hence, \(U\) is constant on \(R\). If \(t\) is in \((a, c)\) and \(x\) is in \((c, b)\), then
\[
\left[\int_a^b dH \cdot M(j, b)\right]^{-1} \int_t^z dH \cdot M(j, b) = U(x) - U(t) = 0
\]
so that
\[
QM(c, b) = \int_t^z dH \cdot M(j, b) = 0,
\]
i.e., \(Q = 0\), a contradiction. Hence the theorem is established.

If \(n\) is an integer greater than 3, this theorem can be extended to \(n\) point boundary value problems. This is the case in which \(H\) is a step function with \(n\) discontinuities (with one at \(a\) and another at \(b\)). What happens when \(H\) has points of change other than discontinuities is not at all clear to this author.

\section*{References}

Received February 1, 1965.

Emory University
Edward Joseph Barbeau, *Semi-algebras that are lower semi-lattices* 1
Steven Fredrick Bauman, *The Klein group as an automorphism group without fixed point* .. 9
Homer Franklin Bechtell, Jr., *Frattini subgroups and Φ-central groups* 15
Edward Kenneth Blum, *A convergent gradient procedure in prehilbert spaces* .. 25
Edward Martin Bolger, *The sum of two independent exponential-type random variables* .. 31
David Wilson Bressler and A. P. Morse, *Images of measurable sets* 37
Dennison Robert Brown and J. G. LaTorre, *A characterization of uniquely divisible commutative semigroups* ... 57
Selwyn Ross Caradus, *Operators of Riesz type* 61
Jeffrey Davis and Isidore Isaac Hirschman, Jr., *Toeplitz forms and ultraspherical polynomials* .. 73
Lorraine L. Foster, *On the characteristic roots of the product of certain rational integral matrices of order two* .. 97
Alfred Gray and S. M. Shah, *Asymptotic values of a holomorphic function with respect to its maximum term* .. 111
Sidney (Denny) L. Gulick, *Commutativity and ideals in the biduals of topological algebras* .. 121
G. J. Kurowski, *Further results in the theory of monodiffric functions* 139
Lawrence S. Levy, *Commutative rings whose homomorphic images are self-injective* .. 149
Calvin T. Long, *On real numbers having normality of order k* 155
Bertram Mond, *An inequality for operators in a Hilbert space* 161
John William Neuberger, *The lack of self-adjointness in three-point boundary value problems* .. 165
C. A. Persinger, *Subsets of n-books in E³* .. 169
Oscar S. Rothaus and John Griggs Thompson, *A combinatorial problem in the symmetric group* .. 175
Rodolfo DeSapio, *Unknotting spheres via Smale* 179
James E. Shockley, *On the functional equation*
\[F(mn)F((m, n)) = F(m)F(n)f((m, n)) \] .. 185
Kenneth Edward Whipple, *Cauchy sequences in Moore spaces* 191