A COMBINATORIAL PROBLEM IN THE SYMMETRIC GROUP

Oscar S. Rothaus and John Griggs Thompson
A COMBINATORIAL PROBLEM IN THE
SYMMETRIC GROUP

OSCAR ROTAUS AND JOHN G. THOMPSON

If \(G \) is a group and \(T \) is a nonempty subset of \(G \), we say that \(T \) divides \(G \) if and only if \(G \) contains a subset \(S \) such that every element of \(G \) has a unique representation as \(ts \) with \(t \) in \(T \), \(s \) in \(S \), in which case we write \(T \cdot S = G \). We study the case where \(G \) is \(\Sigma_n \), the symmetric group on \(n \) symbols and \(T \) is the set consisting of the identity and all transpositions in \(\Sigma_n \).

The problem may be given a combinatorial setting as follows: For \(x, y \) in \(\Sigma_n \), let \(d(x, y) \) be the minimum number of transpositions needed to write \(xy^{-1} \). One verifies that \(d \) converts \(\Sigma_n \) into a metric space, and that \(T \) divides \(\Sigma_n \) if and only if \(\Sigma_n \) can be covered by disjoint closed spheres of radius one.

We use the irreducible characters of \(\Sigma_n \), together with judiciously selected permutation representations of \(\Sigma_n \), to prove the following result.

Theorem. If \(1 + (n(n - 1))/2 \) is divisible by a prime exceeding \(\sqrt{n} + 2 \), then \(T \) does not divide \(\Sigma_n \).

The proof depends on properties of \(\Sigma_n \) (see [1] and [2], pp. 190–193). If \(\lambda_1, \lambda_2, \cdots, \lambda_s \) are the parts of the partition \(\sigma \) in decreasing order and \(\mu_1, \cdots, \mu_t \) are the parts of the partition \(\tau \) in decreasing order, we write \(\sigma > \tau \) provided the first nonvanishing difference \(\lambda_i - \mu_i \) is positive. We say that \(\sigma \) dominates \(\tau \) provided \(\lambda_i - \mu_i \geq 0 \) for \(i = 1, 2, \cdots, s \). Let \(\sigma' \) be the conjugate partition to \(\sigma \) with parts \(\lambda'_1 \geq \lambda'_2 \geq \cdots \geq \lambda'_s \), and set

\[
\pi(\sigma) = \sum_{i=1}^{s} \frac{\lambda_i(\lambda_i - 1)}{2} - \sum_{i=1}^{t} \frac{\lambda'_i(\lambda'_i - 1)}{2}.
\]

The function \(\pi \) has a simple interpretation. Namely, in the dot diagram of \(\sigma \), the number of unordered pairs of dots in a common row minus the number of unordered pairs of dots in a common column equals \(\pi(\sigma) \). However, it will become apparent that \(\pi(\sigma) \) has a group theoretic interpretation too.

Lemma 1. If \(\sigma \) dominates \(\tau \), and \(\sigma \neq \tau \) then \(\pi(\sigma) > \pi(\tau) \).

Proof. Let the parts of \(\sigma \) be \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_s \) and those of \(\tau \) be \(\mu_1 \geq \mu_2 \geq \cdots \geq \mu_t \). By the hypotheses, we may suppose that \(\lambda_1 = \mu_t \), \(\lambda_2 = \mu_t \), \cdots, \(\lambda_{r-1} = \mu_{r-1} \), \(\lambda_r > \mu_r \) and \(\lambda_{r+1} = \mu_{r+1} \), \cdots, \(\lambda_s \geq \mu_t \), for some
integer \(r \) less than \(s \). A straightforward computation shows that \(\pi(\tau) \) increases if \(\mu_r \) is increased by 1 and \(\mu_t \) is decreased by 1. With this observation made, the result is clear.

For any subset \(A \) of \(\Sigma_n \), \(\hat{A} \) denotes the sum of the elements of \(A \) in the group algebra of \(\Sigma_n \) (over the rationals), while

\[
\hat{A} = \sum_{a \in A} sg(a) \cdot a.
\]

Lemma 2. If \(R = R_\sigma \) is the irreducible representation of \(\Sigma_n \) associated to the partition \(\sigma \), then \(R(\hat{T}) \) is singular if and only if \(\pi(\sigma) = 1 \).

Proof. Since \(\hat{T} \) is in the center of the group algebra, \(R(\hat{T}) \) is a scalar matrix, say \((1 + c)I = R(\hat{T}) \). Thus, \(R(\hat{T}) \) is singular if and only if \(c = -1 \). Let \(Y \) be a Young tableau associated to \(\sigma \), that is, the dot diagram of \(\sigma \) with a label on each dot, the labels coming from and exhausting the set \(\{1, 2, \ldots, n\} \). Let \(A \) be the subgroup of \(\Sigma_n \) permuting the columns of \(Y \) and \(B \) the subgroup of \(\Sigma_n \) permuting the rows of \(Y \), and let

\[
E = \frac{\hat{A}}{|A|} \cdot \frac{\hat{B}}{|B|}.
\]

Then \(E \) is a primitive idempotent and has the property that \(R_\tau(E) = 0 \) for \(\tau \neq \sigma \). We have \(R_\tau(E)R_\sigma(\hat{T}) = (1 + c)R_\sigma(E) \). As \(E \) vanishes in each \(R_\tau \) with \(\tau \neq \sigma \), we have trivially, \(R_\tau(E) \cdot R_\tau(\hat{T}) = (1 + c)R_\tau(E) \) for all \(\tau \neq \sigma \). Hence

\[
E \cdot \hat{T} = (1 + c)E.
\]

Let \(T_0 \) be the set of transpositions in \(\Sigma_n \). Then (4) implies

\[
E \cdot T_0 = cE.
\]

Since \(A \cap B = 1 \), to determine \(c \), it suffices to determine the multiplicity (i.e., coefficient) of 1 in \(E \cdot T_0 \). It follows readily that \(c = \Sigma sg(b) \), the summation ranging over all triples \((a, b, t)\) with \(a \) in \(A \), \(b \) in \(B \), \(t \) in \(T_0 \), such that \(abt = 1 \). Since \(abt = 1 \) if and only if \(ab = t \), it is easy to see that whenever \(abt = 1 \), then either \(t \in A \) or \(t \in B \). Hence, \(c = -\pi(\sigma) \), as required.

In the following discussion, \(\sigma, Y, A, B, E \) have the same meaning as above.

We next consider a family of permutation representations of \(\Sigma_n \). Let \(X \) be a Young tableau for the partition \(\tau \) and let \(C \) be the subgroup permuting the columns of \(X \). Then \(P_\tau \) denotes the permutation representation of \(\Sigma_n \) on the cosets of \(C \). Thus, for \(x \) in \(\Sigma_n \),
$P_\tau(x) : Cg \rightarrow Cgx$. It is clear that P_τ depends only on τ and not on X. As is customary, we view P_τ as a representation of the group algebra.

Lemma 3. If $\sigma > \tau$, then R_σ is not a constituent of P_τ.

Proof. Since E is a primitive idempotent, $tr(P_\tau(E))$ is the multiplicity of R_σ in P_τ. Consider a coset Cg. A contribution to $tr(P_\tau(E))$ occurs each time $Cgab = Cg$ with a in A, b in B, the contribution being

$$sg(b) \frac{1}{|A| \cdot |B|}.$$

Thus, from the coset Cg, we get

$$\sum sg(b) \frac{1}{|A| \cdot |B|},$$

the summation being over those pairs (a, b) with a in A, b in B and ab in $g^{-1}Cg$. As $\sigma > \tau$, it is easy to verify that there is a row of Y which has at least two symbols in common with some column of Xg, that is, $B \cap g^{-1}Cg$ contains a transposition $t = t(g)$. This implies that whenever a pair (a, b) occurs in the above summation, so does the pair (a, bt), so $tr(P_\tau(E)) = 0$, as required.

Now let p be a prime divisor of $1 + (n(n - 1))/2$ with $p \geq \sqrt{n} + 2$. Let $n = (p - 1)q + r$ with $0 \leq r < p - 1$. Hence $q < p - 2$. Let τ be the partition of n with r parts equal to $q + 1$ and $p - 1 - r$ parts equal to q. We see that τ' has q parts equal to $p - 1$ and one part equal to r. Hence

$$\pi(\tau) = \frac{(q + 1)q}{2} r + \frac{q(q - 1)}{2} (p - 1 - r)$$

$$- \left\{ \frac{(p - 1)(p - 2)}{2} q + \frac{r(r - 1)}{2} \right\}$$

$$= \frac{q(p - 1)}{2} \left\{ q + 1 - (p - 2) \right\} - \frac{r(r - 1)}{2} - q(p - 1 - r).$$

Since $q + 1 \leq p - 2$, it follows that $\pi(\tau) < -1$.

By Lemma 3, if R_σ is a constituent of P_τ, then $\sigma \leq \tau$. The structure of τ now yields that whenever $\sigma \leq \tau$, then τ dominates σ.

By Lemma 1, $\pi(\sigma) \leq \pi(\tau) < -1$, and hence by Lemma 2, $R_\sigma(T)$ is nonsingular. Thus $P_\tau(T)$ is nonsingular.

Let $d = d_\tau$ be the degree of P_τ. Since $d = |\Sigma_n : C|$, we see that d is divisible by the same power of p as $|\Sigma_n|$, since $|C| = (p - 1)!^r!$ is prime to p. Now suppose $T \cdot U = \Sigma_n$. Then $P_\tau(T)P_\tau(U) = P_\tau(\Sigma_n)$.

A COMBINATORIAL PROBLEM IN THE SYMMETRIC GROUP 177
It is clear that $P_\tau(\hat{\Sigma}_n)$ is the matrix with $|C|$ in every entry, so is of rank 1. Since $P_\tau(\hat{T})^{-1}$ is a polynomial in $P_\tau(\hat{T})$, and since $P_\tau(\hat{\Sigma}_n) = P_\tau(\hat{x})P_\tau(\hat{\Sigma}_n)$ for all x in Σ_n, it follows that $P_\tau(\hat{U}) = aP_\tau(\hat{\Sigma}_n)$ for some rational number a. This implies that $a(1 + (n(n - 1))/2) = 1$, so that

$$P_\tau(\hat{U}) = \frac{1}{1 + \frac{n(n - 1)}{2}}P_\tau(\hat{\Sigma}_n)$$

does not have integral entries, which is a contradiction, since $P_\tau(\hat{U})$ is a sum of $|U|$ permutation matrices.

Remark 1. The integers 1, 2, 3, 6, 91, 137, 733 and 907 are the only integers less than 1,000 which fail to satisfy the theorem.

Remark 2. As the referee has noted, essentially the same proof yields: If $(n(n - 1))/2$ is divisible by a prime exceeding $\sqrt{n} + 2$, then T_0 does not divide Σ_n.

References

Edward Joseph Barbeau, *Semi-algebras that are lower semi-lattices* 1
Steven Fredrick Bauman, *The Klein group as an automorphism group without fixed point* .. 9
Homer Franklin Bechtell, Jr., *Frattini subgroups and \(\Phi\)-central groups* 15
Edward Kenneth Blum, *A convergent gradient procedure in prehilbert spaces* .. 25
Edward Martin Bolger, *The sum of two independent exponential-type random variables* .. 31
David Wilson Bressler and A. P. Morse, *Images of measurable sets* 37
Dennison Robert Brown and J. G. LaTorre, *A characterization of uniquely divisible commutative semigroups* .. 57
Selwyn Ross Caradus, *Operators of Riesz type* .. 61
Jeffrey Davis and Isidore Isaac Hirschman, Jr., *Toeplitz forms and ultraspherical polynomials* .. 73
Lorraine L. Foster, *On the characteristic roots of the product of certain rational integral matrices of order two* .. 97
Alfred Gray and S. M. Shah, *Asymptotic values of a holomorphic function with respect to its maximum term* .. 111
Sidney (Denny) L. Gulick, *Commutativity and ideals in the biduals of topological algebras* .. 121
G. J. Kurowski, *Further results in the theory of monodiffric functions* 139
Lawrence S. Levy, *Commutative rings whose homomorphic images are self-injective* .. 149
Calvin T. Long, *On real numbers having normality of order \(k\)* 155
Bertram Mond, *An inequality for operators in a Hilbert space* 161
John William Neuberger, *The lack of self-adjointness in three-point boundary value problems* .. 165
C. A. Persinger, *Subsets of \(n\)-books in \(E^3\)* .. 169
Oscar S. Rothaus and John Griggs Thompson, *A combinatorial problem in the symmetric group* .. 175
Rodolfo DeSapio, *Unknotting spheres via Smale* .. 179
James E. Shockley, *On the functional equation*
\[F(mn)F((m, n)) = F(m)F(n)f((m, n)) \] .. 185
Kenneth Edward Whipple, *Cauchy sequences in Moore spaces* .. 191