ON THE FUNCTIONAL EQUATION

\[F(mn)F((m, n)) = F(m)F(n)f((m, n)) \]

JAMES E. SHOCKLEY
ON THE FUNCTIONAL EQUATION
\[F(mn)F((m, n)) = F(m)F(n)f((m, n)) \]

JAMES E. SHOCKLEY

Let \(f \) be a multiplicative arithmetic function, \(f(1) = 1. \) Necessary and sufficient conditions on \(f \) will be found so that the functional equation
\[F(mn)F((m, n)) = F(m)F(n)f((m, n)) \]
will have a solution \(F \) with \(F(1) \neq 0 \) and all solution \(F \) will be determined. It will be shown that two different types of solutions may exist and that one of these requires that \(f \) have a property similar to complete multiplicativity.

The special case of the equation
\[F(mn)F((m, n)) = F(m)F(n)f((m, n)) \]
with \(f \) completely multiplicative and \(F(1) \neq 0 \) was solved completely by Apostol and Zuckerman [1]. Specialized results were also given for the case \(F(1) = 0 \), but this case was not solved in general.

We note that if \(f(1) = 0 \) then \(f \) is identically zero and is thus completely multiplicative. This case was solved completely in [1] and will not be considered here. Thus in the sequel we will assume that \(f \) is multiplicative and is not identically zero (which implies that \(f(1) = 1 \)).

1. If \(F \) is a solution of (1) with \(F(1) \neq 0 \) then any constant multiple of \(F \) is also a solution. Thus we may reduce the problem of solving (1) with \(F(1) \neq 0 \) to that of solving
\[F(mn)F((m, n)) = F(m)F(n)f((m, n)) \]

The proof of Theorem 1 is essentially the same as that of Theorem 2 of [1] and will be omitted.

THEOREM 1. \(F \) is a solution of (2) if, and only if, \(F \) is a non-zero multiplicative function and for each prime \(p \)
\[F(p^{a+b})F(p^{a}) = F(p^{a})F(p^{a})f(p^{a}) \text{ if } b \geq a \geq 1. \]

The problem is thus reduced to that of determining the form of \(F \) on the powers of each prime \(p \).

THEOREM 2. Let \(F \) be a solution of (2). If \(F(p^{n}) \neq 0 \) for some
\[m \geq 1 \text{ then } F(p^{km+n}) = F(p^{m+n})f(p^m)^{k-1} (k = 2, 3, \ldots), (n = 0, 1, 2, \ldots). \]

The proof follows easily from (3) by induction on \(k \).

COROLLARY 2.1. Let \(F \) be a solution of (2). If \(F(p^m) \neq 0 \) and \(f(p^m) = 0 \) for some \(m \geq 1 \), then \(F(p^n) = 0 \) for \(n \geq 2m \).

COROLLARY 2.2. Let \(F \) be a solution of (2). If \(F(p^m) \neq 0 \) and \(f(p^m) = 0 \) for some \(m \geq 1 \), then \(F(p^{km}) \neq 0 \) for \(k = 2, 3, \ldots \).

THEOREM 3. Let \(F \) be a solution of (2). If \(F(p^m) \neq 0 \) and \(f(p^m) \neq 0 \) for some \(m \geq 1 \), then \(f(p^n) = 0 \) whenever \(F(p^n) \neq 0 \). If, for some \(m \geq 1 \), \(F(p^m) \neq 0 \) and \(f(p^m) = 0 \) then \(f(p^n) = 0 \) whenever \(F(p^n) \neq 0 \).

Proof. To prove the first proposition we observe that if \(F(p^n) \neq 0 \) and \(f(p^n) = 0 \) then \(F(p^t) = 0 \) for \(t \geq 2n \) which contradicts Corollary 2.2. The proof of the second proposition is similar.

We are now in a position to determine the form of the solution \(F \) on the powers of \(p \) if \(F(p^m) \neq 0 \) and \(f(p^m) = 0 \).

THEOREM 4. Let \(m \) be a positive integer such that \(f(p^m) = 0 \). Let \(m_1 = m, m_2, \ldots, m_k \), be the integers \(t \) on the interval \([m, 2m)\) for which \(f(p^t) = 0 \). The function \(F \) is a solution of (3) with \(m \) the smallest positive integer such that \(F(p^m) \neq 0 \) if, and only if, \(F(p^m) \neq 0 \) and \(F(p^n) = 0 \) whenever \(n \neq m \).

Proof. If \(F \) is a solution of (3) and \(m \) is the smallest positive integer such that \(F(p^m) \neq 0 \) then by Corollary 2.1 we see that \(F(p^n) = 0 \) for \(n \geq 2m \) and by Theorem 3 we see that \(F(p^n) = 0 \) if \(n \neq m \), \(m < n < 2m \). To prove the converse we substitute in (3).

2. The case \(F(p^m) \neq 0 \) and \(f(p^m) \neq 0 \). We will first show that in this case \(f \) cannot be defined arbitrarily on the powers of \(p \) if a solution of (2) is to exist.

THEOREM 5. Let \(F \) be a solution of (2). If \(F(p^m) \neq 0 \) and \(f(p^m) \neq 0 \) for some positive integer \(m \), then

\[f(p^{mk}) = f(p^m)^k \quad (k = 1, 2, \ldots). \]

Proof. From Corollary 2.2 and Theorem 3 we see that \(F(p^{km}) \neq 0 \) and that \(f(p^{km}) \neq 0 \) for \(k = 1, 2, \ldots \). Taking \(a = b = km \) in (3) and using Theorem 2 we obtain

\[F(p^{km+n}) = F(p^{km})f(p^{km}) = F(p^m)f(p^m)^{k-1}f(p^{km}). \]
If we now take $n = 0$ and replace k by $2k$ in Theorem 2 we obtain

$$F(p^{2km}) = F(p^m)f(p^m)^{2k - 1}.$$

Comparing the last two equations we see that $f(p^m)^k = f(p^{km}).$

Theorem 6. Let F be a solution of (2). Suppose $f(p^m) \neq 0$ and $F(p^m) \neq 0$ for some $m \geq 1$, and let d be the smallest positive integer such that $F(p^{m+d}) \neq 0$. Then $d | m$. Furthermore, if n is a positive integer then $F(p^{m+n}) \neq 0$ if and only if $n = 0 \pmod{d}$.

Proof. (A) Such an integer d must exist by Corollary 2.2. Suppose $d \nmid m$. Let t be the smallest positive integer such that $td > m$. We can write $m < td = m + j < m + d$. From Theorem 2

$$F(p^{(m+d)}) = F(p^{(m+j)m}) = F(p^m+j)f(p^m)^j = 0,$$

since $0 < j < d$; similarly, by Theorem 2 and 3 we have

$$F(p^{(m+d)}) = F(p^{m+d})f(p^{m+d})^{i-1} \neq 0,$$

which is impossible. Thus $d | m$.

(B) If $n \equiv 0 \pmod{d}$ there exist positive integers K and L such that $Km < Ln = Km + j < Km + d$. By considering $F(p^m)$ we obtain a contradiction similar to that in part (A) if we assume $F(p^{m+n}) \neq 0$.

(C) Suppose $n \equiv 0 \pmod{d}$, say $n = kd$. Applying Theorem 2 twice we see that

$$F(p^{km+n}) = F(p^{km+kd}) = F(p^{m+kd})f(p^{m+kd})^{k-1} \neq 0$$

and

$$F(p^{km+n}) = F(p^{m+n})f(p^m)^{k-1}.$$

Thus

$$F(p^{m+n}) = F(p^{m+kd}) = \frac{F(p^{m+kd})f(p^{m+kd})^{k-1}}{f(p^m)^{k-1}} \neq 0.$$

We now extend the result of Theorem 5 to completely characterize the solutions of (2) with $f(p^m) \neq 0$ and $F(p^m) \neq 0$.

Theorem 7. Let F and f be multiplicative functions. Suppose p is a prime, that m and d are the smallest positive integers such that $F(p^m) \neq 0$, $f(p^m) \neq 0$ and $F(p^{m+d}) \neq 0$. Then F is a solution of (3) if, and only if,

$$d | m,$$

$$f(p^{m+kd}) = f(p^m)^{k+kd/m} \quad (k = 1, 2, 3, \ldots).$$
(7) \[F(p^{m+kd}) = F(p^m)f(p^m)^{kd/m} = \frac{F(p^m)}{f(p^m)} f(p^{m+kd}) , \]

(8) \[F(p^n) = 0 \text{ if } 0 < n < m \text{ or } n \equiv 0 \pmod{d} . \]

Proof. (5) and (8) were established in Theorem 6. To prove (6) we let \(k_1 = 2k, k_2 = 2, m_1 = m + d, m_2 = m + kd, n_2 = 2km - 2m, \) so that \(k_1m_1 = k_2m_2 + n_2. \) From Theorem 2 we obtain

(9) \[F(p^{k_1m_1}) = F(p^{m+d})f(p^{m+d})^{2k-1} . \]

From Theorem 2 and equations (3) and (4) we obtain

\[
F(p^{k_2m_2+n_2}) = F(p^{(2k-1)m+kd})f(p^{m+kd}) \\
= F(p^{m+kd})f(p^m)^{2k-2}f(p^{m+kd}) \\
= \frac{F(p^{m+kd})f(p^m)^{2k-2}}{f(p^m)^{k-1}} f(p^m)^{2k-2}f(p^{m+kd}) .
\]

Equating the last expression with (9) we obtain

(10) \[f(p^{m+kd}) = \frac{f(p^{m+kd})^k}{f(p^m)^{k-1}} . \]

For the special case \(k = m/d \) we obtain from Theorem 5 and (10)

\[f(p^{zm}) = f(p^m)^z = \frac{f(p^{m+d})^{m/d}}{f(p^m)^{m/d-1}} , \]

so that \(f(p^{m+d}) = f(p^m)^{1+d/m} . \)

Substituting this in (10) we obtain (6).

To prove (7) we apply Theorem 2 twice obtaining

\[
F(p^{(m+kd)m/d}) = F(p^{m+kd})f(p^{m+kd})^{m/d-1} \\
= F(p^{m/d+k}) = F(p^m)f(p^m)^{m/d-1} .
\]

From this relation, along with (6) used twice we find

\[
F(p^{m+kd}) = \frac{F(p^m)f(p^m)^{m/d+k-1}}{f(p^{m+kd})^{m/d-1}} = \frac{F(p^m)f(p^m)^{m/d+k-1}}{f(p^m)^{m/d+k-1-kd/m}} \\
= F(p^m)f(p^m)^{kd/m} .
\]

The other part of (7) follows from (6).

To prove the converse we substitute in (3).

3. Summary. We have reduced the problem of solving (2) to that of finding a multiplicative function \(F' \) (not identically zero) that satisfies (3) for the powers of each prime \(p. \) Such a function \(F' \) will exist if, and only if, one of the following holds for \(f \) and \(F \) on the
powers of p:

1. There is a positive integer m such that $f(p^m) = 0$ and $F(p^n) = 0$ except possibly for the integers n in the interval $[m, 2m)$ for which $f(p^n) = 0$.

2. There is a positive integer m, a positive divisor d of m and a complex number C such that

$$f(p^{m+kd}) = f(p^{m+kd/m})
eq 0 \quad (k = 0, 1, 2, \cdots)$$

and F has the defining properties

$$F(p^{m+kd}) = Cf(p^{m+kd}) \quad (k = 0, 1, 2, \cdots)$$

$$F(p^n) = 0 \text{ if } n \neq m + kd \text{ for some nonnegative integer } k.$$

References

Received October 23, 1964, and in revised form February 24, 1965.

University of Wyoming
Edward Joseph Barbeau, "Semi-algebras that are lower semi-lattices" ... 1
Steven Fredrick Bauman, "The Klein group as an automorphism group without fixed point" ... 9
Homer Franklin Bechtell, Jr., "Frattini subgroups and Φ-central groups" ... 15
Edward Kenneth Blum, "A convergent gradient procedure in prehilbert spaces" ... 25
Edward Martin Bolger, "The sum of two independent exponential-type random variables" ... 31
David Wilson Bressler and A. P. Morse, "Images of measurable sets" ... 37
Dennison Robert Brown and J. G. LaTorre, "A characterization of uniquely divisible commutative semigroups" ... 57
Selwyn Ross Caradus, "Operators of Riesz type" ... 61
Jeffrey Davis and Isidore Isaac Hirschman, Jr., "Toeplitz forms and ultraspherical polynomials" ... 73
Lorraine L. Foster, "On the characteristic roots of the product of certain rational integral matrices of order two" ... 97
Alfred Gray and S. M. Shah, "Asymptotic values of a holomorphic function with respect to its maximum term" ... 111
Sidney (Denny) L. Gulick, "Commutativity and ideals in the biduals of topological algebras" ... 121
G. J. Kurowski, "Further results in the theory of monodiffric functions" ... 139
Lawrence S. Levy, "Commutative rings whose homomorphic images are self-injective" ... 149
Calvin T. Long, "On real numbers having normality of order k" ... 155
Bertram Mond, "An inequality for operators in a Hilbert space" ... 161
John William Neuberger, "The lack of self-adjointness in three-point boundary value problems" ... 165
C. A. Persinger, "Subsets of n-books in E^3" ... 169
Oscar S. Rothaus and John Griggs Thompson, "A combinatorial problem in the symmetric group" ... 175
Rodolfo DeSapio, "Unknotting spheres via Smale" ... 179
James E. Shockley, "On the functional equation F(mn)F((m, n)) = F(m)F(n)f((m, n))" ... 185
Kenneth Edward Whipple, "Cauchy sequences in Moore spaces" ... 191