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In this paper we will characterize those Banach algebras
A which are isometric and isomorphic to the group algebra of
some (possibly nonabelian) compact group. The central idea of
this characterization is to study the group G/{A) of translation
operators which act on A; here a translation is any linear
isometric map of A onto A such that T(xy)=(Tx)y for all
x,yeA.

We first give a simple characterization of an intermediate
class of Banach algebra which includes all group algebras of
compact groups and many other closely related algebras. This
is the class of QCG algebras: those A isometric and isomorphic
to an algebra of the form A=φ(Lι(H)) c M(H)/N, where H is a
compact group, N a weak * closed two-sided ideal in M(H) =
C(H)*9 and φ: M(H)->M(H)/N is the canonical homomorphism
(M(H)IN is given the quotient norm). This characterization
involves the following axiom on A.

Axiom (CA) If 11 a | | ^ 1 then La (Lα: x —> ax) is a strong
operator limit of convex sums of translations.

Any QCG algebra has a great number of finite dimensional
two-sided ideals; those QCG algebras A which are group alge-
bras are singled out by studying the representations gotten
by letting G/(A) act on these ideals. Examples are given of
QCG algebras which are not the group algebra of any com-
pact group.

In this discussion we assume a knowledge of topological groups

as in Weil [16], Chevalley [6], and Pontryagin [13], and of related
Banach algebras as found in Loomis [11] and Rickart [14]. All groups
will be either compact or locally compact Hausdorff topological groups.
If H is such a group, C0(H) is the sup norm algebra of continuous
functions vanishing at infinity, and M(H) = C0(fί)* is the convolution
algebra of bounded regular Borel measures with

for μ, \eM(H) and ψeC0(H). As usual, the group algebra L\H) is
the two-sided ideal in M(H) consisting of all measures which are
absolutely continuous with respect to left (or right) Haar measure on H.

In principle one would expect a characterization of group algebras
to be possible, in view of the following result presented in Wendel [17].
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244 F. P. GREENLEAF

THEOREM 1.1.1. Two locally compact groups G and H have
isometric and isomorphic group algebras <=> G is topologically
isomorphic to H.

However, examples of nonisomorphic finite groups with isomorphic
group algebras are easy to construct (the algebras cannot be isometri-
cally isomorphic); thus, any characterization of group algebras as
Banach algebras must rest, in part, on properties which are preserved
by isometric isomorphisms but not necessarily under topological iso-
morphisms. Notice that the translation operators may differ on Banach
algebras which are only topologically isomorphic. It is interesting that
Wendel makes no use of the natural involution on a group algebra in
[17], which suggests that it should be possible to solve the character-
ization problem without using the additional symmetry provided by an
involution.

In order to analyze the characterization problem it has been neces-
sary to introduce auxiliary conditions, such as axioms on the trans-
lations, which, while ultimately determined by the norm properties of
the algebra, are not easily derived as consequences of a few relations
on the algebra and its norm. This is an unfortunate concession to
the difficulty of the characterization problem; however, the more direct
program has never been carried to a successful conclusion, except in
the case of finite or discrete groups. The solutions in these cases will
be reviewed later; unfortunately, they cannot be generalized. Recently
Rieffel [15] has succeeded in characterizing the group algebras of locally
compact αbeliαn groups using auxiliary concepts quite unrelated to the
translations studied here.

1*2* Special notation* If X, Y are Banach spaces we denote
the strong operator topology on the bounded linear operators B(X, Y)
by (so), and the weak * topology of X* by (σ) ~ σ(X*, X). If H is
a locally compact group we can define strong operator topologies (so)s
and (so)r in M(H) by letting M(H) act on the two-sided ideal Lι(H)
by left or right convolution. We will always set Σx = {x e X; \\x|| ^ 1}
and let g^ denote the extreme points in Σx. If X is just a vector
space and E a subset, its linear span is l.s.fjδ'] and its convex span is
co[E], If (X, τ) is a topological vector space, write <to[E; (τ)] for the
(τ) closed convex span of E c X. We indicate (τ) convergence of a net

{XjijeJ} to xeX by writing Xj-^—>x or x <—— x5, interchangeably.
If X, Y are isometric, isomorphic normed algebras, we will often write
this asl-y.

1*3* Properties of group algebras and their translations*
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DEFINITION 1.3.1. If A is a normed algebra, any bounded linear
operator T on A with the property T(xy) = (Tx)y (T(xy) = x(Ty)) for
x, y e A is called a left (right) multiplier of A. The algebra of all
left multipliers on A is denoted by Ay and obviously contains, as a
left ideal, the algebra of inner left multipliers: A/ = {La: ae A}
which arise in the left regular representation of A. Similarly define
A? and the left ideal Ar of inner right multipliers on A. The left
(right) translations of A are the groups of all isometric onto left
(right) multipliers of A respectively. We denote these groups by G/
(Gr) and define G = G/ Π Gr.

Since the commutation relation T(xy) — (Tx)y is preserved under uni-
form convergence in B(A, A), Ay is a Banach algebra under the operator
norm if A itself is a Banach algebra. Similar comments hold for A?.

DEFINITION 1.3.2. An element xe A in a normed algebra A is
left almost invariant if the orbit of x under the action of G/ lies in
a finite dimensional subspace of A. Define right almost invariance
of x e A similarly and denote the subalgebras of left (right) almost
invariant elements in A by J^(A) (s*fr(A)). Then write J^(A) —
S^f/(A) Π S*fr(A) for the algebra of two-sided almost invariant elements.

In any normed algebra A a left approximate identity is any net
{ed; j G J} such that || eάa — a || —> 0 for any ae A; right approximate
identities are defined similarly. An approximate identity is minimal if
SUP{||^II : i e J}< oo and ||e, ||—*1; we always have liminf {||βy|| :je J } ^
1 for an approximate identity. If A has a two-sided minimal approxi-
mate identity then ||Lα | | = | |α | | = ||i?α | | for aeA and the left regular
representation is an isometric isomorphism so that A ~ A/; we will
frequently identify A with its inner left multipliers. Notice that
R: A —• Ar c A? is an isometric anti-isomόrphism in this context. If
A has a unit / of norm one, then we actually have A/ = Ay, and
Ar = AT.

If £f is a locally compact group the relation between A — L1(H)f

its algebra of multipliers A^y and the associated group G/ of trans-
lations has been described in Wendel [18]. We define the homomorphism
L: M(H) -> A"} by taking L(μ) = Lμ where Lμ(f) = μ*f; similarly
define anti-homomorphism R: M(H) —> AΓ by taking JB(/ )̂ = i2μ where
Rμ,(f) = /*/ί. These operators include the usual left and right trans-
lation operators L(aδh) and R(aδh), where | α | = 1 and δh is the point
mass of norm one at he H. Since there is a two-sided approximate
identity of norm one {fjijeJ} in U(H) we conclude that | |Z/J| =

\\μ\\ — \\Rμ.\\ so L and ϋ? are isometric; in fact we have /,-—^->δe

which => μ*f3 -?->μ in M(jff), hence we have
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with similar arguments for | | i ? μ | | = \\μ\\.

THEOREM 1.3.3. Let H be a locally compact group and A =U{H).
Then A^ = {Lμ:μe M(H)} and \\Lμ\\ = \\ μ\\ for all μe M(H) so that
A1^ can be realized (isometrically and isomorphically) as M(H). In
this realization, G/ — {L(a3h): | a | = 1, h e H}; furthermore, if G/
is given the (so) topology, G/ is topologically isomorphic to the direct
product S x H (S is the circle group) under the map π: (a, h) —•>
L(aδk). In fact we have an internal direct product factorization of
G/ ~ SI x Γ, where I is the identity operator, SI = {al: | a | = 1},
and Γ — {L(δh) h e H} (both Γ and SI are (so) closed normal sub-
groups). The convex span co \G/\ is dense in the unit ball ΣA™ in

the (so) topology.

Similar results hold for the right multipliers A?, which are realized
as M(H) except for the anti-multiplicativity of R: μ—> Rμ. These
facts were either proved by Wendel or follow easily from his results.
Notice that G/ coincides with the usual group of translation operators.
In this example, as in any normed algebra, the existence of a minimal
two-sided approximate identity implies that each F e A7^ is a (so) limit
of inner left multipliers, since \\F(eόa) — F(a) || = || LFβ*{a) — F(a) || —> 0.

We will make use of the following properties of a group algebra
A of a compact group. There is a two-sided minimal approximate
identity in A; in fact, since the group is compact, we can find such
approximate identities in the center of A (this is proved in the appendix
A.I.3). A is a semi-simple algebra (see Rickart [14], Section 2.3 and
A.3); indeed, compactness of the group insures that A is a dual Banach
algebra with finite dimensional minimal two-sided ideals. Finally, A
has at least one nonzero multiplicative linear functional.

REMARK. Dual algebras are defined as in Kaplansky [10]. Later
we will use the fact that in a dual algebra with a central minimal
approximate identity all the minimal two-sided ideals are finite di-
mensional; this is proved in the appendix (A.2.1).

The following relations between the group algebra A of a compact
group and its group G/ of left translations will be used as axioms in
our program of characterizing group algebras. Each has a left and
right handed version.
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Axiom (W/) A closed subspace of A is a left ideal <=> the sub-
space is G/ invariant.

This property, first proved by Wiener for the group algebra
Jj1(—oof oo), on a normed algebra insures existence of enough trans-
lations to distinguish closed left ideals from other closed subspaces in
A.

Axiom (AI/) The left almost invariant elements s//(A) are norm
dense in A.

The two-sided version of this axiom says that Jϊf(A) is norm dense
in A. In a compact group algebra A the subalgebras of left, right,
and two-sided almost invariant elements coincide and are isomorphic
to a direct sum of (possibly infinitely many) full finite dimensional
matrix algebras over the complex numbers (see Loomis [11], 39D for
a detailed study). This axiom limits the size of G/ (if G/ is large it
is difficult for a e A to be left almost invariant); for example if J?1 is
the real line and A=CQ(R1), then G/ is identified with all continuous
unimodular functions on R1 and f(x) = 0 is the only almost invariant
element in A.

These axioms will eventually be replaced in our discussion by
requiring that the algebra A under consideration be a dual Banach
algebra with central minimal approximate identity. The following
convex approximation property; implicit in Wendel [18], cannot be
replaced by such conditions and is really the axiom on which our
characterization rests. Clearly it is suggested by the Krein-Milman
Theorem; these approximation properties in the (so) topology are also
discussed in Section 1 of Greenleaf [8],

Axiom (CA/) Every inner left multiplier La, for | | α | | ^ 1 in A,
is the strong operator limit of convex sums of left translations.

Here is another formulation of this axiom.

LEMMA 1.3.4. If A is a normed algebra with minimal two-sided
approximate identity, then (CA/) holds <=* the convex span co[G^(A)]
is (so) dense in the unit ball ΣΛ™.

Proof. Since || La \\ = \\a || for ae A (use the approximate identity)
the implication (<=) is clear. Conversely if the (so) closure of co[G/]
includes {Lz: a ^ l } , which is (so) dense in ΣΛ™> due to minimality of
our approximate identity, it follows that co[G^ : (so)] — ΣA™.
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REMARK. When H is compact we will sacrifice grammar for
conciseness and refer to UiH) as a "compact group algebra".

1 4* QCG algebras and their significance. If A is a Banach
algebra, we will show axiom (A2» insures that ((?/, (so)) is a compact
topological group; since (AI/) holds in any semi-simple dual Banach
algebra with finite dimensional minimal two-sided, this is not an
uncommon state of affairs. It is then natural to try to represent A
in terms of L\G/) or M{G/). If A has a minimal two-sided approxi-
mate identity, satisfies axiom (AI/), and has the convex approximation
property: Axiom (CA/), then we will show that A^ ~ M(G/)jNr

where N is a {σ) closed two-sided ideal, and that A ~ φ{U{G/)) c
M(G/)IN in this representation, where φ:M(G/)~*M{G/)IN is the
canonical homomorphism and M{G/)jN is given the quotient norm.
This gives half of the characterization of QCG algebras.

DEFINITION 1.4.1. Let H be a compact group, NaM(H) any
(σ) closed two-sided ideal, and φ: M(H) -> M(H)/N the canonical
homomorphism. If M(H)/N is given the quotient norm, then A —
φ{L\H)) is a Banach algebra; an abstract Banach algebra is called a
QCG algebra if it is isometric and isomorphic to an algebra of this
type for some compact group H and some (σ) closed two-sided ideal
N(zM(H).

If A is a QCG algebra, we will see that most properties of
compact group algebras also hold for A. On the other hand we will
exhibit QCG algebras which satisfy all properties set forth in Section
1.3 and still fail to be group algebras. The QCG algebras are plentiful
and their many similarities with group algebras may account for some
of the difficulty of the group algebra characterization problem.

1.5. The finite characterization problem. The characterization
problem for finite groups is solved below. Here A = L\H) = M(H),
there exists a unit of norm one, and there is no difficulty introducing
the correct topology on GXA). With a little effort the first charac-
terization can be adapted to identify the group algebra of any discrete
group; we leave this to the reader.

THEOREM 1.5.1. A finite dimensional normed algebra A with
identity of norm one is a group algebra <=>

(1) The extreme points ξ?Λ in ΣΔ form a group.
(2) The algebra has a nonzero multiplicative linear functional.
(3) If {gx gn} are pair wise linearly independent points in

&A, then || Σ?= 1 a{g, \\ = Σ?«i | a, \.
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Proof. It suffices to prove («=). Notice Ay ~ A under the left
regular representation. For any normed algebra A, G/(A) = gfκ» if

the extreme points gV^ form a group (see A.3.1 for verification) so

we identify G/ = ^A. If Ψ is the functional in (2) and Γ =
{#G G/\ Ψ(g) = 1}, then f is a normal subgroup in G ,̂ as is SI =
{al: I a | = 1}, and we have an internal direct product factorization
Gs = SI x Γ. Give Γ the discrete topology and define T: M(Γ) —> A
such that T(Σ?=iαA4) = Σ?=iα*^< (notice that the γ e Γ are pairwise linearly
independent, and (3) ==> the elements of Γ are linearly independent; hence
Γ is finite). This is an isometric onto mapping; in fact, || Σ?=iαAi II —
Σ?=i I «* I = II ΣUiOWi || from (3), and clearly

ΣΛ = cofgrj - eo[T(ϊ?MiΓ))] = T(co[ξ?mn]) = T{Σmn)

from finite dimensionality. Direct computation shows that T(μ*X) —
T(μ) T(λ).

COROLLARY 1.5.2. A finite dimensional algebra A can be given a
group algebra norm <=> it has at least one linear basis J^ — {%i, *', %n}
which forms a group under multiplication. If <%? is any such basis
the {unique) group algebra norm associated with it is such that
S^ = {ax : I a \ — 1, x e £f} coincides with the extreme points g^,
and ΣΛ = co[Sj^] in A.

Proof. If x = ΣUiCCiXi in A, take || x \\ = Σ** 11 ai l

2* Characterization of QCG algebras*

2*1 • Concrete representation theorems for Banach algebras*

First we display various conditions which insure that ((?/, (so)) is a
compact topological group.

THEOREM 2.1.1. If A is a Banach algebra and the left almost
invariant elements are norm dense in A then (G/(A), (so)) is a
compact topological group. A similar result holds for (Gr(A), (so))
if axiom (AIr) holds.

Proof. We present the left-handed case. For a Banach algebra
A, (G/(A), (so)) is always a Hausdorff topological group (see verification
in appendix (A.3.1)). The rest of the proof is given in two lemmas.

LEMMA 2.1.2. If A is a Banach algebra, let Oa — {g(a): g e G/}
for ae A, and consider the conditions:

(1) (G/(A), (so)) is compact
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( 2 ) Oa has compact norm closure in A for any ae A.
( 3 ) The right multiplication Ra is a compact operator for any

ae A.
Then (2) => (1), and if A, has a minimal two-sided approximate
identity we also have (3)=* (2).

Proof. If {e5 :jeJ} is the approximate identity, then F e 4 } = *
|| F{e3)a — F(a) || —» 0, so that Oa c ΣΛ*(a) c ΣA α, which is norm
compact; hence (3)=>(2). For (2)=>(1) we consider the product space
Q — Π{(Oa)~ : ae A} with the Cartesian product topology (hence Q is
compact). Define maps τ and ω mapping G/ into Q by requiring that
π*(τ{g)) = g(a>) and πa(ω(g)) = g~\a) in Oα for geG/,aeA (πa is the
projection of Q onto (Oα)~). If {gά:jeJ} is a net in G/ there must
exist a subnet {g3\k): A: G K) such that both {r(flri(fc)): k e K} and
{ω(gj{k)) :keK) are convergent in Q. This happens =̂> we have
II 9j(k)(a) - πβ(a?) || = || πa(τ(gj{k))) - τa{x) 11 —̂  0 and || ^ ^ ( α ) - πa(y) || =
\\πa(ω(gj{k))) — πa(y)\\—>0 for α e i , where x and |/ in Q are the
respective limits of these nets.

Define maps ^ ( α ) = πa(x) = lim{gj{k)(a) :keK} and /t«,(α) = πa(y) =
lim {^^(A;)"1^): fc G if} for all α e i . We assert that #«,, fe^ are isometries
in Ay, it suffices to prove this for g^. Linearity of g^ is easy to
check; furthermore, g^ab) = lim{gj{k){ab): ke K} = lim {#i(fc){α) 6} =
lim {flri(*,(α)} 6 - flr^α) δ, and || ^ ( α ) || = lim {|| ^ (fc)(α) || : k e K) = || a \\.
The maps g^, h^ are onto if g^^h^ = h^og^ = I (identity map on A)1

and this follows since || g^h^a)) — a \\ = || gooih^a)) — g^h^a)) \\ +

ll0;<*>(Mα)) - ^ί*)^*)" 1^)) II = II ̂ ( M ^ ) ) - ft(*i(Mfl)) II + II Mα) -
gj{k)~

ι{a) || —• 0 for α e i , with a similar argument for h^g^ — /. Thus

~~^ ôo i n Gι a n d w e have demonstrated (2) => (1).

LEMMA 2.1.3. If A is a Banach algebra such that S$f/{A) is
norm dense in A, then the norm closure (Oa)~ of Oa = {g(a): g e G/}
is always norm compact in A. A similar right-handed result holds.

Proof. If ae Jzf/, clearly (Oα)~ is norm compact. If ae A select
{an: n = ly2- -}(ZJ#s such t h a t \\a - an\\ < lβn and give Q = Π~=1(Oan)-

the product topology (so Q is compact). Define τ: g-+{g(an)}e Q; it is
easy to see that Oa is norm compact <=> corresponding to any net
{ .̂(α) = zj :jeJ} in Oα, there exists a subnet {gjik)(a) ke K} which is
norm convergent in A (its limit is in (Oα)~). There is a subnet {gj{k)}
such that τ(gj{k)) -*xeQ in the product topology; this means that

0;u)(O ^^L xn = πn(x) for n = 1, 2 . .. Now || π»+1(α) - πn(a?) || <-
(I flTi(*)(α»+i) - flry(*)(α ) II = II « +i - α» II ̂  1/2", so {πn(x)} is Cauchy and
converges in norm to some x* e A. This means that
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;j| gj{k)(a) - &* II ^ II 9im(a) ~ #;u)(O 11 + 11 0* *>(«») - αw || + || a?Λ - a*

g 1/2*-1 + || ^ W ( O - xn || + || ^ - x* || for ra = 1, 2 •

clearly then || gj{k)(a) — x* || —> 0 as required.

THEOREM 2.1.4. Let A be a Banach algebra with minimal two-
sided approximate identity, and assume that A satisfies axioms (AI/)
and (CA/). Then there exists a compact topological group H and
(σ) closed two-sided ideal NaM(H) such that A™ is isometric and
isomorphic to M(H)/N and A is isometric and isomorphic to the algebra
φ(U(H)) in M(H)/N, where φ: M(H) —> M(H)/N is the canonical homo-
morphism and M(H)/N is given the quotient norm.

Proof. From 2.1.1, (G/, (so)) is compact. Because the functions
g —>g(a) are (so) continuous on G/ for α e i , we can define the vector

valued integrals Tμ(a) — \ g(a)dμ(g) such that

<Tμ(a), α*> = [ <β(a), a*ydμ(g)

for μ e M(G/), aeA,a*e A*. As indicated in Bourbaki [5], p. 80-82,
each functional on A* defined by this relation corresponds to an
element of A. Thus we have defined an operator Tμ: A—>A such that
\\Tμ\\ S \\μ\\. To see that TμeA^, let Rb be the right multiplication
by be A; then

<Tμ(ab), α*> = ί ζg(άb), a*>dμ(g)

ι)6, a*ydμ{g)

\ <flr(α), R?

= <Tμ(a), Rb*a*> = <RbTμ(a), α*> = <Tμ(a)-b, α*>

as required. Furthermore, T: M(G/) —• Aj> is a homomorphism since

<2yι(5Γλ(α)), α*> = <Γλ(α), (Tμ)*a*>

= ( <ff(α), (Tμ)*a*ytλ.(g)

= \ ζTμg(a),a*>dX(g)

= ( Γ( <Mα),α >ί/ι(Λ)ldλ(flf)

), a*>dμ*X(t) = <Γ(^*λ)α, α*> .= ί
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It N = KerT, then N is a two-sided ideal in M(G/).
The map T: (M(G/), (σ))—>(A™,(so)) is continuous on norm bounded

sets; it suffices to verify this on ΣM{Q/). Let μ3- —σ—> μ in Σma/).
First notice that Ω = co [G/ : (so)] is compact in (A™, (so)), since the
(so) convex closure of an (so) compact set in B(A, A) is again (so)
compact (see A.4.2 in appendix); then TμeΩ whenever μeΣmQ/)9

Indeed, if λ, e co [ WM^/A is a net such that \3 —̂ -> μ, then Tλ,- e ί?

and there is an (so) convergent subnet Txj{k) -^-> Fe Ω. This subnet
is such that

a),a*>< <Tλ,U)(α), α*> =

<#(α), a*ydμ(g) — (Tμ{a), α*> ,

so that Tμ = JP. Hence Γμ is the only (so) limit point in Ω of
since there exists at least one such limit point we conclude that

TXj-^-> Tμ (and in particular TμeΩ). Once we know that TμdeΩ
for all j G J the same limit point argument applies to show that

Tμ5 > Tμ, as required for continuity. In particular, if {μ5: j e J}

is a net in N(λΣM{G/) such that μj-^μe M(G/), then 0 = Γ ^ — -̂> Γ^,
so that μeN. The Krein-Smulian theorem ([7], V.5.7) applies to show
that iV is a (<τ) closed subspace in M(G/).

If ί/0 e G/ we have Γ(^o) = g0, so Γ ( Σ ^ Λ ^ . ) = Σ?=Λί/i. I f

F e ΣA™, there exists a net {I?,. — ̂ joc(j, g)g) in co [G/] such that

Ej-^F; thus, if we define \-= Σa(j, g)δg in ΣmG/), and if we

pick any (σ) convergent subnet Xj{k) —?-> μ, we get μ e ΣM{G/) and

^ < &jUc) — 1 {XjiJc)) > i /^

because T is continuous. Hence F — Tμ and we have T{Σmσ^)) =•
^ 4 ». Another way of viewing this fact is to say that, given any

FeA}, there is some μeM(G/) with \\μ\\ = | | F | | and ϊ7// = F.
In the above representation scheme we actually have T(U(G/))cA/

(inner multipliers). To prove this, recall that A/ is (trivially) a left
ideal in A"} and that / e J^(LX(G/)) => {Tfog = T(f*δg): ge G/} lies
within some finite dimensional subspace X ~ X(f) in A^. If {λy}c co [G^]

is chosen so λ, > La, then Tfo\ά-^-+Tf°La; this means TfoLaeX
for all α e A and clearly TfoLae A/ too. If {βy} is the approximate

identity in A then TfoLej-^>Tf, but r / o L e j G l c i / and the space
X is (so) closed since it is finite dimensional. Hence Tfe A/. If
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fe Lι(G/) we can use the fact that || T | | ^ 1 and S/(U) is norm dense
in L\Gs) to show that Tfe Ay. It is now easy to show T{Lι(G/)) is
norm dense in A/, so that A/ — T(Lι{G/)): if {eό} is the approximate

identity in L\Gy) we have e5 — δe which ==> F5 = T{e3) -ΆI in Aγ,
thus \\Fjia) - α|| = || Teό{a) - a|| — 0 for ae A. But L*§j{a) 6 T{L\Gs)),
because if μ e M(G/) is chosen such that Tμ = Lα we have Z/^u) =
TejoTμ = T(ej*μ). Clearly 11 LΛ j ( β ) - LJ| = 11 Γ β » — <x|| —>0, since
L: A—> Ax is an isometry.

Finally, if φ: M(Gs) —* M(G/)/N is the canonical homomorphism,
consider the mappings displayed in Figure 1 (here A — Toφ~x is
obviously an isomorphism from M(G/)/N onto

M(Gs) -^-> A™y

M{Gs)IN
FIGURE 1

Prom the definition of quotient norm we see that, if FeA^ and if
μeM(G/j is chosen so that | | μ | | = | | i^ | | and Tμ = F, then

Tience, A is an isometric isomorphism. It is clear that A maps φ(U(G/))
isometrically and isomorphically onto A/, which in turn is isometric
and isomorphic to A.

In the above proof we have derived a considerable amount of
information not mentioned explicitly in 2.1.4. In particular we can
take H — (G/, (so)) there. By applying the structure theory of semi-
simple dual algebras, we can obtain the following representation.

THEOREM 2.1.5. Let A he a semi-simple dual Banach algebra
with central minimal approximate identity and assume that A
satisfies axiom (CAy). Then all the conclusions of 2.1.4 are valid.

Proof. The discussion of Kaplansky [10] applies, and the existence
of a central minimal approximate identity insures that all minimal
•closed two-sided ideals in A are finite dimensional (see A.2.1). The
linear span of these ideals is norm dense in A (see [10], Theorem 5)
and any finite dimensional two-sided ideal lies in J^(A), so that Stf(A)
is norm dense in A and in particular axiom (AI/) is satisfied.

In later discussions concerning algebras with a nonzero multiplica-
tive linear functional it will be essential to know that, if there exists
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an internal direct product factorization G/ = SI x />, where /> is
some (so) closed normal subgroup of G/, we can reproduce the above
representation theorems using Γ/ instead of G/.

THEOREM 2.1.6. Let Abe a Banach algebra with minimal two-
sided approximate identity and assume that A satisfies axioms (AI/)
and (CA/). Suppose there is an internal direct product factorization
of G/ — SI x Γ/ where SI — {al: | a \ — 1} and Γ/ is some (so) closed
normal subgroup of G/. Then there exists a (σ) closed two-sided
ideal N in M(Γ/) such that Ay is isometric and isomorphic to
M(Γ/)jN and in this realization of Ay we have A/ identified with
the norm closed subalgebra φ(L\Γ/))y where φ: M(Γ/) —-> M(Γ/)/N is
the canonical homomorphism and M(Γ/)jN is given the quotient
norm.

Proof. If we define T: M(Γ/) -> Ay such that

^ . (α), a*>dμ(y)

for α G 4 , α * 6 i * , and μeM(Γ/), the details of the proof are practi-
cally the same as in 2.1.4.

REMARK. If a Banach algebra A has a nonzero multiplicative
functional, we are guaranteed that the sort of internal direct product
factorization discussed in 2.1.6 exists. Furthermore, all such factori-
zations of G/ are essentially the same (Γ/ is unique up to a topological
isomorphism). These facts are discussed in A.3.3. The significance of
such factorizations when A is a group algebra can be seen from 1.3.3.

2*2* Characterization of QCG algebras* We digress to study
QCG algebras and prove the characterization stated in the summary.
It will be convenient to call an algebra A an SMA algebra (sum of
matrix algebras) if it is an internal algebraic direct sum of its nonzero
finite dimensional minimal two-sided ideals. We will deal with algebras
over the complex numbers, so each of these ideals is isomorphic to the
full algebra M(m, C) of complex m x m matrices for some m — 1,2 •;
whenever we speak of a matrix algebra in the remaining discussion,
we will mean an algebra of the form M(m, C) for some m ^ 1. An
idempotent e Φ 0 in an algebra A is a minimal idempotent if eAe is
a division ring, and is a minimal central idempotent if e is central
in A and if eef — e'e = e for any central idempotent e' e A such that
eef Φ 0. It is well known that, if A contains no proper ideal / with
p — (0), then Ae (eA) are minimal left (right) ideals if e is a minimal
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idempotent, and the two-sided ideal eA — Ae is minimal if e is a
minimal central idempotent in A (see Rickart [14], p. 45-46).

THEOREM 2.2.1. Let A be a QCG algebra represented as A ~

φ(L\H)), where H is a compact group, N is a (σ) closed two-sided
ideal in M(H), and φ: M(H) —* M(H)/N is the canonical homomor-
phism. Then A has the following general properties.

(1) A is a semi-simple dual Banach algebra.
(2 ) If {Ea: a e Q} is the set of minimal closed two-sided ideals

in A, these are all finite dimensional and their sum (obviously an
SMA algebra) is a norm dense two-sided ideal in A. Axioms (AI/)
and (AIr) are satisfied.

(3) The sets of almost invariant elements coincide so that
j^(A) = J^(A) = J^(A), and if ^(L1) - {f
N*f — (0)}, then φ is an isomorphism of SzfJJJ-) onto

(4) A has a central minimal approximate identity.
The translations and multipliers of A have the following properties.

(5) A is a two-sided ideal in M(H)/N and A™ is isometric and
isomorphic with M(H)/N under the map L\x-^LX for x e M(H)/N.
Similarly A™ is isometric and linearly anti-isomorphic with M(H)/N
under the right multiplication map R: x~+ Rx for x e M(H)/N.

(6) In this realization of A^ we have G/(A) — φ(^M[H)) ~
&M{H)IN- Similarly Gr(A) ~ φ(^M{H)) — i?M{mιN in this realization
of AT.

(7) The convex span of G/{A) is (so) dense in ΣA™, so axiom

(CA/) is satisfied by A. Similarly axiom (CAr) is satisfied.
(8) The norm closed left (right) ideals in A are precisely the

closed G/(A) invariant (Gr(A) invariant) linear subspaces of A, so
axioms (W/) and (Wr) are satisfied.

( 9 ) The representation map Loφ: (M(H), (σ)) —> (A*, (so)) is con-
tinuous on norm bounded sets, and similarly for Roφ (M(H), (tf))-—•
(A?, (so)).

Proof. Since M(H) * U(H) * M(H) c LX(H), which implies M(H)/N-
φ(U(H))-M(H)INe.φ(U(H)), we conclude that A = φ(U(H)) is a
two-sided ideal in M(H)/N (multiplication is jointly norm continuous).
Thus Lx and Rx are well defined operators (in A" and A? respectively)
for x e M(H)/N. If {/,-: j eJ} is a central minimal approximate identity
in Lι(H) (see A.1.3) then φ(f3) e A, lim sup {|| φfά \\ : je J} g 1, and the
elements φfά are central in A. We have ||/,•*/ — f\\ —*0 for fe U(H),
so that \\φfrφf- <p/||->0 for feU(H) and because φ(Z/(iϊ)) is
norm dense in A it follows that {φf3} is an approximate identity in
A. In particular we must have lim{|| φfi || : je J} — 1, and part (4)
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is proved.
To prove the left-handed form of (9) we consider the {so)/ topology

gotten by letting M(H) act on Lϊ(H) by left convolution. In the
appendix we show that (so)/ coincides with the (σ) topology on norm
bounded sets in M(H) (see A.I.I for a self contained exposition); thus

if μ3 > μ is a norm bounded net, it follows that

\\φ{μj)φf-φ{μ)φf\\ = \\<p(ft*f) - φ(μ*f) || ^ || μ**f - μ*f\\ - 0

for fe L\H). Density of φ(U{H)) in A insures that \\φ{μ3)a — φ(μ)a\\ —>
0 for a e A, as required. A similar argument gives the right-handed
version of (9).

To prove (5) we first observe that φ(ΣmH)) = ΣM(H)Iir; this simple
fact is verified in A.I.2 as part of a general discussion of measure
algebras on compact groups. Now consider the left multiplications
{L.: x € M(H)/N} on A; we will prove that L:M(H)jN—A^ is an
isometric isomorphism. It is clear that L is an isomorphism if we can
show that for x Φ 0 in M(H)/N, there exists be A such that xb Φ 0.
Consider {e3- = φf3) where {f3-: j e J) is the approximate identity in
L\H)) if φμ = x and if xβj = 0 for all jeJ, then μ*fdeN and

μ*f3—^>μ, so that μeN and φμ = x = 0. Next we show L is
isometric. If μeM(H) then

> ; , α " : a e A , a Φ θ )
|| cat || J

^ SUp I l l ^ ) ' α l l : a e φ(L\H)), a Φ θ}

>̂» :jej\
s\\ >\\<pfs

= lim sup{||9>(/i*/,.)||: j e J}

since || β, || = || φf3 \\ — 1. Now observe that

II φ(μ*fs) II - inf {II μ*ft + n \\: ne N} = \\ μ*f3 + n3 \\

for some % e JV, since we have φ(ΣM{H)) = ΣM{H)ίN. Furthermore,

111% II - llj" ΛII I ̂  \\μ*fi + %ll - \\φ(μ*fi)\\ ^ llj"ll

for i e / , so that | |% || g 2 \\μ \\. Hence there is a (σ) convergent

subnet niik) - ^ n0 e N. Now /y -^-> δe in Λf(£Γ), so we have



CHARACTERIZATION OF GROUP ALGEBRAS 257

(multiplication is separately (σ) continuous in (M(H)). These remarks
show that

S limsup{||μ*/ i ( J f e ) + % ( / b ) | | :keK}

^ limsup{\\μ*fd + %\\ : je J}

= lim sup {\\φ(μ*fs) \\ :jeJ} .

Combining this with (*) we get \\φμ\\ — | | ^ μ | | for all μeM(H), as
required. Finally, we must show L is onto (so A^ = {Lx: x e M(H)/N}).
If Fe Aj, ae A, and if e9- — φfh then we have || φfs a — a || —> 0,
which => || Ffo α) ~ .F(α) || = || jP(β, )α - F(α) || -> 0; this means that

LF{ej)-^F. But there exist \όeM{H) with H λ J = \\F(v3) || and

= F(e3), and there is a convergent subnet λ i U ) >μe M(H) since

< co. From (9) it follows that L , λ j ( t ) - ^ L W , which
=> \\F(ej{k))-a-φμ-a\\->0 for αG^L, while || F(^) α - F(α) || -> 0;
thus L w = F, proving (5). The modifications needed to identify A™
with M(H)/N are trivial.

In the above realization of A7^ we will show that

to prove (6). We have <p( ̂ ( ^ c G/ because || Lφ{Sh) \\ = \\ φ(dh) \\ ̂  1,
ll^(3Λ-i)ll = ll^(Vi)ll = h a n d i f α G ^ w e h a v e Lrt*h)Lφ«h~i)(a) =
Lφ^^Lφ^ia) — a so L^^^ = ( I ^ ) ) " " 1 ; hence these are isometric
onto multipliers of ^4. Next observe that WMwiN^φi&MiH))', in fact
if # 6 &M(H)[N, let us select some μeM(H) with <pμ = a? and | |/*| | =
|| $ || = 1. Then if 0 < a < 1 and measures μu μ2 with || /^ || <i 1 are
such that jtί = aμ1 + (1 — a)μ2, this => x — aφ{μ^) + (1 — a)φ(μ2), which
=^ φμx — φμ2. If supp (μ) is not a single point, there exist measurable
sets A, B with \μ\(A)Φ$, \μ\(B)Φ$1 A\jB = supp(μ), and An J5 =
0 . Define λ 4 = (μ \ A)/\ μ \ (A) and λΛ = (μ | J8)/| ̂  | {B), we have ^ =
I μ I (A)λ4 + I μ I (B)λΛ with | ^ | (A) + | ^ | (B) = || ^ || - 1; hence ^ ( λ j -
φ(XB) = a?. In particular, λ^(μ) = (//1 A)/\ μ | (A) is in ®1MnΓiφ'~1(x) if
/̂  e &M{S) n ^"*1(»), (©*(j, = {λ 6 M(H): II λ II = 1}CZΣM{H)) and if A is any
measurable set in supp (μ) such that | μ \ (A) Φ 0.

Let {^-^i^^} be a base of neighborhoods for some /&oesupp(μ),
with J partially ordered so that jλ > j2 <=> Z75l c UJ2. Define A3 —
supp (μ) Π ETy; we have | μ \ (Ad) > 0 for each jeJ. If | μ \ (h0) Φ 0,
then by taking A = {h0} above, we see that 8fίQ£®M{H)Γ\φ~1{x), so
xeφ( &M{H)), as desired. Otherwise we have | μ \ (h0) = 0 for all
&oesupp(μ) and all μe &(M)EΠφ~1(x), so that these measures are all
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continuous on H. But this means that | μ \ (Aά) —> 0 since JM is a
regular Borel measure. Now form the net {λ, = (μ \ As)/\ μ \ (Ad): jeJ}
in (SM(E)Πφ~~ί(x). The latter set is (σ) compact since φ~\x) is (a)
closed in M(H) and &MiH)Πφ"1(x) = ΣM{H)Πφ~Ί(x); indeed, ||a?|| = 1=*
| | μ | | ^ 1 for any μeφ~\x). Thus there is a (σ) convergent subnet
with limit XQe&M{H)^φ~1(x)1 and from the nature of supp(λj ) it is
clear that we must have supp (λ0) = {h0}, a contradiction. In discussing
the translations of general Banach algebras in the appendix (see A.3.1)
we show that translations are always extreme points in ΣA*\ thus

G/(A)a &M{H)IN here and the proof of (6) is complete. It is well
known that co[^M{E)] is (σ) dense in ΣM{H)1 and we have shown
Loφ(ΣM{H)) = 2 V , thus Lθ(p(co [ ξ?M{H)]) = co [G/{A)\ is (so) dense

in ΣA™ from the continuity of Loφ, The righthanded situation is
treated similarly to prove (7). For (8), notice that existence of a
minimal approximate identity in A implies that any closed left (right)
ideal in A is left (right) translation invariant. Conversely, translation
invariance of a closed subspace E implies X(E)aE for all λeco[G/];

(so)
but if ae ΣA there is a net {λj in co [<?/] such that X3 > La, and
hence La(E) = a-EczE.

We are ready to deal with (2) and (3), which prove axioms (AI/) and
(AIr) for A. Let ̂  — {fβ : β e J} be the minimal central idempotents
in L\H) and set s^ = ̂ f{L\H)). Then the minimal two-sided of
Lι{H) are finite dimensional, are precisely {Fβ — L1*fβ : / β e J?}, and
we have S^f — Yi® {Eβ: fβe <J^} (internal direct sum of ideals). Let

and form the internal direct sums

these are two-sided ideals and S^f— Er 0 E". Notice that minimality
of Fβ as a two-sided ideal implies that either Fβf}N= (0) or FβdN.
The homomorphism φ is faithful in Er and annihilates E", so φ(Er) —

is norm dense on A. We assert that J ^ = φ(E') is precisely
The density of φ{U(H)) in A insures that eβ — φ(fβ) is a

nonzero central idempotent in A for each / β e / ' ; furthermore, if
where F β = U*fβ for some fβe^'y then £;β = φ(Fβ) =

= Aββ = eβA (the last steps, because Eβ is finite dimen-
sional) and Eβ is a nonzero two-sided ideal. It is actually minimal
because Eβ is isomorphic to the (simple) complex matrix algebra
FβdL'iH). It follows that the idempotents J" = {eβ = φ(/ β ): /β e ^ ' }
are minimal central idempotents in A and it is easy to see that there
are no other such idempotents in A because J^J = X, 0 {2£β : /β e ̂ ^'}
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is norm dense in A.
It is obvious from finite dimensionality of each two-sided ideal Eβ

(and existence of an approximate identity in A) that S^aStfiA), since
closed two-sided ideals of A are G/{A) and Gr(A) invariant. On the
other hand, if a e J^(A) then Ea = l.s. [G/{Gr(a))\ = l.s. [Gr{G/{a))\ is a
left and right translation invariant finite dimensional subspace, which
means Ea is a two-sided ideal (see (8)). However, if M is any finite
dimensional two-sided ideal, then M ΠEβ = Meβ = eβM and this can be
nonzero for only finitely many of the Eβ (recall EaEβ = EβEa — (0)
unless a = β). Let Ex = Σ θ {Eβ Π Ea: eβ e ^}. Then this sum is
finite and Ex is a two-sided ideal of A lying within Ea; if £Ί = 25̂
then clearly Eaaj^0 and we conclude Eaaszfo for each α 6 j / ( i ) ,
which means that Stf(A) c ja*ζ. But if JEΊ ^ Ea there exists some
nonzero xe Ea such that α?ββ = 0 for all eβe ^f, so that x J^o — (0);
however, norm density of J^ζ in A gives us x A — (0) which contra-
dicts the existence of an approximate identity in A. Notice that, in
proving (2) and (3), we have also demonstrated that s^(A) is an SMA
algebra norm dense in A.

Only (1) is left to prove. If x e A then the norm closures of xA
and Ax both contain x since there is a two-sided approximate identity,
and A contains a norm dense subalgebra which is a dual algebra (all
SMA algebras, such as J^(A), are dual; see [10], Theorem 6, p. 693).
But these conditions insure that A is a dual algebra (see [10], Theorem 7,
p. 694 for this). Since A is a Banach algebra its radical is a closed
two-sided ideal, so its radical is either zero or contains one of the
minimal two-sided ideals in Eβ (due to density of J^o in A); the latter
situation is impossible, since it would imply that there is a nonzero
idempotent in the radical (see Rickart [14], p. 56).

Parts (2), (3), (4), and (7) of 2.2.1 give the converse of 2.1.4.
The following characterization of QCG algebras is immediate.

THEOREM 2.2.2. A Banach algebra A with minimal two-sided
approximate identity is a QCG algebra *=> A satisfies axioms {AI/)
and (CA/).

THEOREM 2.2.3. A Banach algebra A is a QCG algebra <=> it
is a semi-simple dual algebra, with central minimal approximate
identity, which satisfies axiom {CA/).

Proof. The verification (=>) is in 2.2.1, while (<=) is given in 2.1.7.

The following observations are also clear from 2.2.1.
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COROLLARY 2.2.4. If A is a QCG algebra then A can be repre-
sented as A — φ(L\G/)) in M(G/)/N, where G/{A) is taken with the
(so) topology, N is some (σ) closed two-sided ideal in M{G/), and
φ: M(G/) —> M(G/)jN is the canonical homomorphism.

REMARK. If H is a compact group and N is a (σ) closed two-

sided ideal in M(H), then the norm closed subalgebra A =
in M(H)/N, where φ: M(H)—*M(H)/N is the canonical homomorphism,
is a typical QCG algebra. Generally Nql&iH), so it is somewhat
surprising that φ{U{H)) itself is actually norm closed in M(H)/N, so
that A = φ(U(H)). In 2.1.4 this means that every QCG algebra can
actually be represented as A = φ{L\G/)) in M(G/)jN for some (σ)
closed two-sided ideal N (zM{G/); in the definition of QCG algebras
(1.4.1) we can replace φ{L\H)) with φ{U{H)).

PROPOSITION 2.2.5. In the above scheme, the norm closure of
φ(ΣLmn) coincides with ΣΔ and if ε > 0 then φ((l + ε) ΣLι{H)) ID ΣA.
Thus φ{L\H)) is norm closed in M(H)/N.

Proof. We have remarked in proving part (4) of 2.2.1, that
{φβj: j eJ} is a minimal two-sided approximate identity in A if {e5}
is one in L^H); we also showed that φ(ΣM{H)) = ΣM{H)ίN, and clearly
φ^iH)) is a norm dense subalgebra in A. Given ae A and ε > 0
there exists fzL\H) such that | | / | | ^ | | α | | and | | < p / - α | | < ε ; in
fact, we can write a — φμ for some μeM(H) with | | μ | | = |[α| | and

we have φ{eό*μ) = φ{e5)φ(μ) — φ{eό) a • α, while || eά*μ \\ ̂  \\μ\\ =
| | α | | , so we can take / = es*μ for some index jeJ. Now for ε > 0,
ae A, || a \\ = 1 take f^L\H) such that \\f \\ S 1 and \\φf - α | | < ε/2.
Then (φf-a)eA and there exists f2eU{H) such that | | / 2 | | ^
II φfi — & II < e/2 and || φ/8 — (a — φf) \\ < ε/4. Continuing, we see
that (a - Σii=ϊ<Pfi)eA a n d t h e r e e x i s t s fn^L\H) such that | | / n | | ^
II a - Σ?=ί φfΛ\< Φn~" and || 9,/Λ - (α - Σ & 1 φfi) II < e/2*. Hence
/ = ΣΓ-iΛe LX(H), | | / | | < 1 + ε, and ^ / = Σ -i9>Λ = α is uniformly
convergent in A.

2*3* QCG algebras which are not group algebras* As an
example we construct a class of commutative, semi-simple QCG algebras
which have all properties of a group algebra listed in Section 1 and
nevertheless fail to be group algebras.

EXAMPLE 1. Noncommutative QCG algebras which are not group
algebras. If H is a finite, noncommutative group and NaM(H) is
any proper two-sided ideal which includes all one dimensional two-sided
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ideals, then A = M(H)/N is a QCG algebra without multiplicative
linear functionals and cannot be a group algebra.

EXAMPLE 2. Let S be the circle group and Z the additive integers

(the character group of S if we take (n, s> = s%), and define £P(S) =

iμ e M(S): μA(n) = \e~ίnθ dμ(θ) = 0 for all n > θ}. Then ίΓ = ίP(S) is

clearly a (^)-closed two-sided ideal in Λf(S) which actually lies within
L\S) (see Hoffman [9], p. 47).

If K is any (#) closed two-sided ideal in M(S) such that KaL\S),
then A = L\S)/K is a commutative QCG algebra. But A is a group
algebra only if K has the following very special properties, and is
certainly not a group algebra when K is finite dimensional or K = H\S).

PROPOSITION 2.3.1. A is a group algebra <=> the cospectrum
cosp(iί) = {ne Z: μA(n) — 0, all μeK} is a coset of some subgroup
in Z.

Proof. Let . ^ be the maximal modular ideal space of A and
let α —»<[α, My be the multiplicative linear functional associated with

/ 4 . These extend uniquely to multiplicative functionals F—>
, ikf> on Am if we require <Lα, ikί> = <α, Λf> for a e A (see Birtel

[1]). Let GczAm be the group of translations on A; it is clear that
the functions <xM:g—>ζg, My obtained by restricting these extended
functionals to G are (so) continuous multiplicative characters on G.
Let R — {aM: Me ^^CJ, a subset of GA when G is given the (so)
topology.

In the following we fix one Mo e ^/ίA and make use of the internal
direct product factorization G — SI x Γo, where SI = {al: | a \ — 1} and
.Γo = {# e G: <g, Moy — 1} (a (so) closed normal subgroup in G). Consider
the functions in R restricted to Γo: Ro = {βM — aM\Γ0: Me _^} c Γ f l

Λ

and the subgroup A a ΓA generated by ϋ?0. In C(Γ0) the linear span
l.s. [z/] is a subalgebra of functions on Γo which contains all constants
(βMo = 1), is closed under complex conjugation, and separates points
(since <7i, M> = <τ2, My all Me ^fίA <=>y, = j 2 in Γo). If Ro itself is

a subgroup in Γ0

Λ, then Δ ~ R^ and α e (Γ0

Λ)\JS0=> Iα(τ)/β(τ)rf7 = 0, all

βeRQ-=> [a(7J¥ζγ)dy = 0, all f e l.s.[J] = l.s. [i?0] (sup norm dense in

C(ΓΌ)). This means a = 0, so J20 = ^ if i?0 is a subgroup.
We assert: if Ro is defined as above, A is a group algebra *=> there

exists an Moe ^y£A such that Ro is a subgroup in Γ£. The implication
(=>) follows from the well known identification of ^/ίA for group algebras
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(see also 1.3.3). Conversely we have MQ such that RQ — ΓQ; as in
2.1.6 we can construct a representation T: M(Γ0) —> Am which realizes
Am ~ M(Γ0)/N and A ~ L'iΓ^/N. But

N = Ker (T) = ίμe M(Γ0) : Tμ{a) = ί Ί(a)dμ(i) = 0, all α

so μ e N =>

0 - <7>(α),

for Me ^Ci, α e i ; i.e., //Λ(/β) = 0 for βeR0 = Γ0

Λ, so μ = 0. Then
iSΓ = (0) and ^ - L'CΛ).

Let >̂: L^S)—> A = L1(S)/K be the quotient map. The multiplicative
functional α—><α, M> induces a multiplicative functional /—><φ>/, M>
on L^S), so there is a unique wecosp (IT) such that ζφf, My = fA(n);
conversely if wecosp(i£) then f-+fA(ri) annihilates K and induces a
nonzero multiplicative functional a —> <α, M(n)y for some Jlf(w) e ^Ci.
Clearly this correspondence n—> M{n) maps cosp(iί) biuniquely onto

Let ^: M(S)—*M(S)/K be the quotient map and define Loφ(μ) e ̂ 4m

so Loφ(μ): a-+φ(μ) a. Then Lo^:M(S)-^Am and Loφ: g^ ĵ—> G
are onto homomorphisms (see 2.2.1). For w e cosp (iί), ilf(w) e ^Ci gives
a functional F-><F, ilf(w)> on Am such that <Lα, Jlί(w)> = <α,
it is evident that

<L*φ(f), M(n)y = <&(f), M(n)y = fA(n) all fe L\S) .

One can easily verify that we have:

for ne cosp (K), μeM(S). The characters aMeR induced on G by
the Me ^/ίA are thus computed via the formula

<L<sφ(aδz), M{n)y = aδ£(n) = α<^, 2> = α^-% ,

for a, z G S.
If MQ = il%>) e ^Ci is fixed (p 6 cosp (K)), it is clear from these

computations that ΓQ = {ge G : <#, ikίo> = 1} = Loφ{zpδt: ze S} and the
characters j3MeR0(z Γ£ are given by
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for ne cosp(iΓ), ze S. We have seen A is a group algebra *=> there
exists an Mo e ^/£A for which the set of characters Roc:Γ£ is a subgroup.
It is easy to verify using the preceding computations, that Ro is a
subgroup for MQ = M(p)f pe cosp (K) <=>{n — p:ne cosp (K)} is a sub-
group in Z. Obviously there exists p e cosp (K) for which this happens
<=> cosp (K) is a coset of a subgroup in Z.

3* Characterization of QCG algebras which are group algebras*

3*1* The regular representations of G/(A). The representation
theory of a compact group H is assumed. Our notation conforms to
Chevalley [6], We consider the class R(H) of continuous represen-
tations (V, E) on finite dimensional complex vector spaces E (continu-
ous means h —><(Vh(x), x*y is continuous for x e E, x* e E*). Given
(V,E),(W9F)eR(H) we are interested in the related representations
(V®W,E@F),(V®W,L(E,F)) where L(E,F) is the space of
linear mappings, and (F*,i?*). If representations (V, E) and (W, F)
in R(H) are equivalent we write (V, E) ~ (W, F).

REMARK. Recall that (V, E), {W,F)e R(H) are equivalent <=> the
trace functions tτ{Vtm(h) = tr{w>F)(h) on JBΓ; we also have (1) trVΘW(h) =
trF(λ) + tiv(Λ), (2) trF<g)TΓ(λ) = trv(h) tr^ίΛ), and (3) trF (Λ) = trF(A)
on H.

If A is a normed algebra we consider the class R(A) of finite
dimensional representations (V, E) which are bounded (sup{|<Fα(x),α;*>|:
II a || ^ 1} < °° for any x e E, x* e E*) and have dense range, so that

Let A be a QCG algebra. Consider the representation (V,E) of
G/(A) obtained by letting G/ act on a finite dimensional left ideal E
in A (explicitly, Vg: x—>g(x) for xeE); we denote such representations
as (V,E) = {G/\E). Clearly (G/\E) is (so) continuous on G/. Define
RQ{G/) to be the smallest set in R(G/) which is closed under direct
sums and equivalences and contains all representations (G/ \ E) for finite
dimensional left ideals E in A. Our characterization of group algebras
among QCG algebras is based on the algebraic structure of R0(Gs).

LEMMA 3.1.1. The set RQ(G/) contains every irreducible represen-
tation in R{G/) which belongs to one of its representations. Each
irreducible representation in RQ(G^) is equivalent to {G/ \ E) for
some (finite dimensional) minimal left ideal in A.

Proof. Every (V, E) e R{G/) is semi-simple, since G/ is compact;
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thus if (F, E) e RQ{G/) there exist irreducible representations {(V\ E{):
i = 1, 2 . n} in R(Gs) such that (F, E) ~ (F 1, ̂ ) 0 . 0 (F% # n ) .
It suffices to consider representations of the form (V, E) — {G/ \ E)
for finite dimensional left ideals Ea A, since any (V,E)e R0(G/) is
equivalent to a direct sum of these. If S: E —> E± 0 0 En is the
isomorphism which gives the equivalence, then Ik = S " 1 ^ ) is a finite
dimensional (?/ invariant subspace of A (indeed, giS^iy)) ~ F^S"1^)) =
S~\Vg

k(y)) for yeEk), so IΛ is a left ideal; furthermore IdΓιIk = (0) if
i =£ & because S is 1:1 and Iό Γ\Ik = S^Ej) Π S"1^-) = S"1^- Π ^ ) =
(0). Clearly Sk — S \ Ik is an isomorphism of Ik onto Ek which gives
the equivalence (G/\ Ik) - (V\ Ek). If {V,E)eRQ{G/) is irreducible,
then (F, £7) ~ (G/l J) for some finite dimensional left ideal JaA; but
J must be minimal, because any proper subideal J ' c J corresponds to
a proper G^ invariant subspace in E, contradicting irreducibility of

COROLLARY 3.1.2. We obtain RQ(G/) by taking all representations
in RiG/) equivalent to direct sums (G/ \ Eλ) 0 0 {G/ \ En) where
the Ik are minimal left ideals in A.

We can now state the characterization theorem; the rest of Section
3 is devoted to the proof of this result.

THEOREM 3.1.3. // A is a QCG algebra then A is the group
algebra of some compact group <=> there is a nonzero multiplicative
linear functional on A and R0(G/) contains V1 ® (F2)* ® 2̂ whenever
Vu •••, F3 are in R,{G/).

COROLLARY 3.1.4. If A is a QCG algebra then A is a group
algebra <=> there exists a nonzero multiplicative linear functional on
A and the collection of trace functions TQ(G/) = {tr(F>iJ): (V,E) e

is closed under formation of the pointwise products trF l trF 2 trF s

whenever trΓ l, , trF s are in TQ(G/).

COROLLARY 3.1.5. If A is a QCG algebra then A is a group
algebra <=> there exists a nonzero multiplicative linear functional on
A and every trace function trF i trΓj} trF s is a sum, with positive
integer coefficients, of the primitive trace functions tY{G^{E) where E
are minimal left ideals in A.

Proof of 3.1.3. First we develop some general facts, valid for
all QCG algebras. If λ is a multiplicative linear functional on A we
must have | |λ | | = 1. Let No be the closed linear span of all minimal
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two-sided ideals in A not contained in Ker λ; then dim No — 1 and
(F°, Eo) = (G/1 No) is irreducible. Now λ has a unique extension to a
multiplicative functional λ on A™, in the sense that <α, λ> = <Lα, λ)>
for α e A (see A.3.2), and this functional completely describes the
action of the representation (F°, Eo) on G/ since we can easily verify
that V°9(x) = ζg, λ> a? for xeE0 = No. If (V, #) e R(G/) is equivalent
to (F°, E°) under an isomorphism S:E0-+E, then V°g = S-'oVgoS,
which means F°(a;) = O, λ> α? = S-^F^Sα?)), so that F°(?/) = <#, λ> y
for all 2/ 6 E. Notice in particular that any representation (F, E) ~
(F°, Eo) acts on the subgroup Γ/ — {ge G/: <#, λ> = 1} in G/ as the
one dimensional identity representation; this will be important later on.

If ί 1 / = {βf 6 G/: <βf, λ) = 1} then Γ/ is a (so) closed normal sub-
group in G/ and we have an internal direct product factorization
G/ — SI x />, where SJ = {al: | α | = 1} and I is the identity map
on A (see A.3.3 for detail). The behavior of (V,E)eR0(G^) when
restricted to Γ/ is of particular interest in proving 3.1.3. Denote the
restriction of (V, E) to / > as p(V, E) = (pV, E). It is easy to see
that the restriction map p carries R{G/) into R(Γ/), preserving
equivalences and the operations 0 , ®, and *. Define R0{Γ/) to be all
representations in R{Γ/) equivalent to direct sums of representations
(Γs\E), where E is a finite dimensional left ideal in A. Since a
subspace of A is G/ invariant <=> it is Γ/ invariant, the proofs of
3.1.1 and 3.1.2 apply verbatim if we substitute Γ/ for G/ there.

LEMMA 3.1.6. On the set RIG/) = {(F, E) e R(G/): V{ag) = aVg

for I a I = 1, g e G/} the map p is 1:1 and carries RJfi/) onto R{Γ/),
and the inverse (p \ R^G/))"1 preserves equivalences. Furthermore,
R^G/jdR^G/}, and RQ(Γ/) has the properties

(1) Representation (F, E) e R(Γ/) is in RQ{Γ/) <=> (F, E) =
p(W, F) for some (W,F)e R0(G^); hence (ψjίfis)) - 22O(/V).

(2) RQ(Γ/) contains all representations equivalent to the n
dimensional identity representation, for n = 1, 2, .

Proof. If (F, S) e 22(/», define (V, E) e R(G/) such that V[ay) =
αFy for I α: I = 1 and jeΓ^; then if g — ayeG/ and | β | = l we
have F('β,) = F('αβγ) = α/9Fy = βV'g, so (F', JS) e ^(G^), and clearly
/o(F', # ) = (F, £;). The map p is 1:1 because if doF)Y = (ρW)y for
7€ Γ^ and F, We RJίβs), then F ( α y ) = a(pV)y = α(/θFΓ)y = TΓ(α7) so that
F = T F . If ( 7 , J S ) and (W, F) are equivalent in R{Γ,) under an
isomorphism S: E-+ F, their inverse images in R^G/) under ^ are
just (V',E) and (W, ί7) as above. Then we have (V',E)~(W',F)
since V\ay) = α F 7 = ^(S" 1 o TΓγo S) - S"1 o α TF7β S = S"1 β

Consider (F, E) = (G^ |^)e JB0(G )̂ for some left ideal £7 in A;
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clearly V{ag)(x) — ag(x) = aVg(x) for gzG/ and \a\ — l, so t h a t

(V,E)eRί(G/). It is easy to see that the same is true for all
representations equivalent to direct sums of these, so R^G/jdR^G/).
Since ρ{G/\E) — {Γ/\E) for finite dimensional left ideals in A it is now
obvious that ρ{RQ{G/))c:R,(Γ/). If (F, E) is irreducible in Rϋ{Γ/) then
(F, E) ~ (W, F) — (/> I F) for some finite dimensional minimal left ideal
Fez A, in view of (modified) 3.1.1, and (W, F) = p(G/\ F) e ρ(R0(G/)).
But (p I R^G/))"1 preserves equivalences, so p(RQ(G/)) is an equivalence
closed subset of R{Γ/), and (F, E) e p{R«{G/)). Any (F, E) e R^Γ/)
is equivalent to a sum of irreducible representations in R0(Γ^)f as
shown in (modified) 3.1,1, so it is a trivial matter to verify that
R*(Γs)(zp(R0(Gs)); hence R,(Γ/) = p(R,(G/)). Finally, if (U, No) =
(Γ/1 No) (No was defined earlier) then Uy(x) — x for all x e No, so U
is the one dimensional identity representation of Γ/ and, clearly,
(*7, No) e RIΓ/). This proves (2).

LEMMA 3.1.7. If RQ{G/) is closed under the formation of
^ i ® ( ^ Γ 0 ^ 3 for VU- ',V3 in RQ(G/)y then R0{Γ/) is closed under
the operations 0 , 0 , and *.

Proof. Closure under 0 is part of the definition of R0(Γ^). Let
(U, NQ) = (Γs\NQ), the one dimensional identity representation, let
(V, E)e RQ(Γ/), and consider the inverse images in R0(G/) under p:
(U',N0) and (V',E). Then we have W = U' <g) {V')* <g) U' e Λ0(G^),
which => ̂ (TΓ) = (/oίΓ) ® (ί>F')* ® (/o^) = C/(g) F* 0 C/G R0(Γs); by
looking at trace functions it is clear that pW — V*, since tr(D ,^o) = 1,
so that (V*,E*)eR0(Γs). Similarly if (S,F),(T,E)eR0(Γs), with
inverse images (Sf, F)f (T', E)e R0(G/), under p, we have

W = S' (g) (f/')* ® T ' e

which => ρ( W) = S(g) ?7* <g) Γ - S(g) Γ is in i20(Γ^), so S®Te R,{Γ/).

Now we resume the proof of 3.1.3, beginning with (<=), by showing
that -Ro(/V) = R(Γs), a n d that this implies triviality of ΛΓ= Ker T in
the representation scheme for A* devised in 2.1.8 (recall T: M(Γ/) —>

A^ was defined so Tμ(a) = ί y(a)dμ(y)). Since A — ψ(L\Γ/)) in the

quotient algebra M(Γs)/N, it will follow that A^L^/V), as required.
A representation function on a compact group H is any function of the
form /(Ff.,β ,(Λ) = <y*(a?), ̂ *> where xeE,x*eE*, and (F, # ) 6 JB(JBΓ);

we let &{H) indicate all representation functions and on Γ/ we define
&IΓ,) = {/(TΓ,.,.*, : (F, E) e R0(Γs), xeE,x*e E*} within ^ ( / » . If
we can prove that &0(Γ/) is a sup norm dense subalgebra of C(Γ/),
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it is not hard to show RQ(Γ/) — R(Γ /) by using well-known orthog-
onality relations between functions in &(Γ/). In fact if R{Γ/) Φ RJJP/)
there is a nonzero irreducible (V, E)e R(Γ^) which is not equivalent
to any irreducible representation in RQ{Γ/) (see 3.1.1), and so if / is

a representation function arising from (F, E). we get I f(h)g(h)dh — 0

for all ge &\{Γ/), which contradicts density of

LEMMA 3.1.8. ^?0(/V) is a sup norm dense subalgebra of C(Γ/).

Proof, By Stone-Weierstrass, we only have to show that
separates points and is a conjugate closed subalgebra which contains
all constant functions. But if Σ c R(H) for a compact group H, then
&Σ(H) — {f(V,x,x*): (V, E) e Σ} is a conjugate closed subalgebra of C(H)
if Σ is closed under equivalences and the operations 0 , 0 , and *
(see Chevalley [6], Ch. 6.7 and 6.8). The constant functions are the
representation functions arising from the one dimensional identity
representation in RQ(Γ/) so we only have to show &Q{Γ/) separates
points. For this it is clearly sufficient to show that A = {y e Γ/: Vy =
IE for all (F, E) e R0(Γ^)} consists of just the unit IeΓ^. Suppose
yeJ then for every finite dimensional left ideal E in A we have
Vy = IE for (V,E) = (/> \E), which means y(x) = x for all x e E, and
hence for all x G j>f(A). Since <S^(A) is norm dense we get 7 = 1, as
required.

We show that N = (0) if Rϋ(Γ/) = R(Γ/) to complete the (*=) part
of 3.1.3. If H is a compact group and (V,E)e R(H), we can induce a
representation (F, E) on M(H) with the property V^h) — Vh by taking

<V^(xV), x*> - ( <Vh(x), x*ydμ{h) for xeE,x*e E*. The induced rep-

resentation is bounded, has dense range, and is (σ) continuous on
norm bounded sets in M(H) in the sense that

< F μ » , x * > ><Vμ(x)x*> if μ ^ μ

and if || μά \\ ^ M < oo. (See Loomis [11], Section 32). Now if N Φ
(0) it must contain a nonzero minimal left ideal Eo in U(Γ'/) because
it is (σ) closed. Consider (F, Eo) — (Γ/\E0); this representation is
irreducible, and is known to be faithful on Eo, when extended to
M(Γ/) (for this standard result see [11], 40 B and 40 C). Obviously
(F, Eo) e R{Γ/)\ however, if (F, Eo) e R0{rJ) it is equivalent to (W, J) =
(Γ/\J) for some finite dimensional minimal left ideal J in A. Thus
there is a linear isomorphism S:E0-*J such that y(a) = Wy(a) =
So VyoS-^a) for a e J. If μ e N, a e /, and x = S~'(α) then
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0 = Tμ(a) = \r 7(α)dju(7)

A= j

so that V annihilates N when extended to M(Γ/), a contradiction..
Thus JV = (0) and (<=) is proved.

For the converse proof we must show V1 ® (F2)* ® F3G RQ(G/)
whenever F l y , F 3 e RQ(G/), if A = L1(H) for some compact group
H. Let us identify A^ ~ Λf(ίf) and define the nonzero multiplicative

functional λ on A (and A^) by taking <Lμ, λ> = 1 <Zμ. Clearly G^ =

{αL(δ,): I a | = 1, A e i ϊ } and / > - {g e G/: <</, λ> = 1} is just {L(δh) :heH};
thus G/ — SI x Γ/ and the discussion which preceeds the (<=) proof
applies to R0(Γ/) and RQ(G^). We assert that R0(Γ/) = R{Γ/)\ the
reader can easily verify this by using the well known fact that any
continuous irreducible representation of H is equivalent to the action
of H by left translation on some minimal left ideal in A = U(H).
Notice that r\ h —> L(dh) is a topological isomorphism between H and

(/V, (so)).
Applying 3.1.6 we see that R{Γ/) = R,{Γ/) = p(RQ(G^)) where p is

the map restricting representations of G/ to Γ/m In 3.1.6 we showed
RX(G/) =) i?0(G^) and that p carries i?χ(G^) and RQ{G/) 1:1 onto R{Γ/)
and R0(Γ/) respectively; since R0{Γ/) = R{Γ/) we see that R0(G/) —
RIG/). Thus (V,E)e R0(G/) « F ( α J ) - α 7 z = ^ , all | a \ = 1.

It is easy to see that V{aI) — a Vx for | α: | = 1 *=> t r Γ (αl) = a dim [£7]
for all I a \ = 1; hence this is necessary and sufficient condition for
(F, E) e R0(G/). If (TΓ, E) e J20(G^) then we have
since

x, (W*)ayx*> - <a?, (TΓ(βy)-i)*a?*> = <μW^(x), x*>

= <άx,

for all xe E, x* e E*. This implies that, in particular, (W*)ar =
ά(W*)z — CLIE whenever \a\ = 1, so t h a t tr{w*)(al) = adim[E]. Now

if (F% E,) are in JB0(G^) for i = 1, 2, 3 and if | α: | = 1 we have

= trvi(al) - tγiV

— α: dim [E^ α dim [^2]
 a dim

= a dim [J^J dim [£72] dim [E3]

and dim [J57J dim [E«] dim [2?3] is just the dimension of the represen-
tation space of V1 ® (F 2 )* (g) F 3 . Thus F 1 (g) (F 2 )* (g) F 3 e Λ0(G^), as
required to prove (==>) in 3.1.3.
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If A is a commutative QCG algebra it has many nonzero multi-
plicative f unctionals (A is semi-simple) and all irreducible representations
of G(A) are one dimensional. It is easy to identify the traces of these
representations in R0(G) with the set of (so) continuous multiplicative
characters aM(g) = <j7, My obtained when we extend the nonzero mul-
tiplicative functionals on A, corresponding to Me ^?fΛ, to Am. This
proves:

COROLLARY 3.1.9. A is a commutative QCG algebra then A is a
group algebra <=> the set R = {aM : Me ^CJ c GA contains all functions
Md) = aMl(g)aM2(g)aMs(g) whenever aMl, . , α^3 e JB.

Evidently R has this property <=> it is a coset of some subgroup
in GA. This should be compared with the results of Section 2.3.

3*2* Involutions in QCG algebras* Since group algebras are
endowed with natural involutions, one might hope to reduce the com-
plexity of the preceding identification by trying instead to identify
group algebras as QCG algebras which have a "nice" involution. This
hope is unfounded: although the notion of involution never appears
in the definition and characterization of QCG algebras, every QCG
algebra A has a natural symmetric involution ( — α*α quasi-regular in
A for every aeA; see [14], 4.1 and 4.7). This involution has an
abstract characterization. We will only state these results and indicate
the general line of reasoning, since they are of secondary interest.

If A is QCG we have a concrete realization A ~ φ(U(H)) in
M{H)/N (and A7} ~ M(H)IN), where if is a compact group and N a
(o )-closed two-sided ideal in M(H). Then the natural involution (*)
on M(H) gives an involution on A (and on A™) because, as is easily
verified, N must be * self adjoint. Let us define the "natural invo-
lution" (*) on A and A} to be the involution obtained by considering
H = (G/, (so)) and the representation T: M(G/) —> A} defined in 2.1.4;
thus (7»* = T(μ*) for μeM(G/).

It is helpful to look into the relationship between involutions on
A and on Am

/t Let us say that (#) on A7} is an extension of (-&) on
A if (Laf — L(α*) for aeA. If A is commutative we get at least one
extension by taking F\a) = (F(a*))* for Fe A7}, aeA. Such extensions
are not easily constructed if A is noncommutative; they do exist
for QCG algebras because QCG algebras have the special property that
A/ c Ay is a two-sided ideal (rather than just a left ideal). This
follows since Lι(G/) is two-sided in M(G/).

THEOREM 3.2.1. If (^) is an isometric involution on QCG algebra
A, it has a unique isometric extension (-fe) to A1^.
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The proof uses the concrete representation theory. Evidently the
natural involutions (*) on A, A7^ are isometric and (*) on A^ is the
unique extension of (*) on A.

THEOREM 3.2.2. An isometric involution (^) on QCG algebra A
is the natural involution on A <=> its extension (^) to A^ is such
that g^ — g~ι for all g e G/.

Obviously the natural involution (*) on A^ has this property.
For (<=) one first proves that any isometric involution (<&) such that
git — g-i m u s t map A/ onto A/ (hence it is associated with an invo-
lution on A ~ A/). This fact can be used to show that any such
involution on A^ is (so) bicontinuous; since (^) = (*) on G/ the same

is true for co [(?/], and (so) density gives (*&) •= (*) on ΣA™ as required.

Now it is a fairly simple matter to prove:

THEOREM 3.2.3. The natural involution in any QCG algebra is-
symmetric.

It suffices to show αα* = 0 => a — 0 (see [14], 4.10.11).

REMARK. If we realize A ~ φ(L\H)), A} ~ M(H)/N where H
is any compact group, NaM(H) a (tf)-closed two-sided ideal, and
φ: M(H)—*M(H)fN the quotient map, then N is (<&) self-adjoint with
respect to the involution (^) in M(H). It is a fairly straightforward
matter to prove that the involution (-&) induced on A7} always has
the property g* = g"1; hence it coincides with the natural involution
(*) (which was defined in terms of a specific realization of A^; A).
Thus the natural involution is canonical in that it does not depend
on which concrete representation we look at.

Appendix

A*l* General facts about group and measure algebra* Let H
be a compact group and define the operator topology {so)/ in M(H)
as indicated in 1.2. The following results are equally valid for the
right-handed operator topology (so)r after a few simple alterations in
the proofs.

THEOREM A.1.1. Let (σ) be the weak * topology on M{H), then
the topologies {so)/ and {σ) coincide on norm bounded sets in M{H).

Proof. Let Sίf = gW> and ,9^0 = {δh: h e H}, then it is easy to see
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that these topologies coincide on £%f and Stf^, making them topologically
isomorphic to S x H and H respectively; in particular these sets are
compact. From [7], p. 511 we see that co \βί?: (so)/] must be (so)/
compact, as is co[<^: (σ)] = ΣM{H) in the (σ) topology. The identity
map j : (M(H)),(so)/)—>(M(H),(σ)) is continuous on norm bounded sets;
in fact, if Ψ e C(H) then there exists fe U(H) corresponding to e > 0

such that 11/11 = 1 and Ψ(st)f(t)dt - Ψ(s) <ε/3 for all seH. If

{μ3:j e J} is a net in Σmm with μ3-^μ, then |<X*/, Φ>-<βdf 5P>| < e/3
for all je J, and likewise for μ, so that (for larger') \ζμ3,Φy — (μ,ψy\ <e,
as required.

Now we see that co[<^: (so)/] is (σ) compact, and it obviously
contains c o [ ^ : (σ)] — ΣM{Ξ); but clearly μ e do\^f: (so)/] => \\μ || ^ 1,

which gives reverse containment. It is obvious that the topologies
coincide on Σmπ) since they are comparable and since ΣM{H) is compact
in each topology.

THEOREM A.1.2. Let H be a locally compact group and let
NdM(H) be a (σ) closed subspace. If φ: M(H)—* M(H)/N is the
canonical linear map, and M(H)/N is given the quotient norm, then

Proof. Since a = || φμ || = inf {|| μ + n || : n e N} it is clear that,
for n — 1, 2 there exist μn e μ + N such that || μn || ^ a + 1/n.
Now {|| μn ||: n = 1, 2 •} is bounded, so there is a (σ) convergent subnet

βn(k)——^^eM(H); clearly Xeμ + N, since JV is (σ) closed (hence

φ χ = φ μ ) 9 a n d || λ || ^ l i m s u p { | | μ n { k ) \\ : k e K } ^= a , w h i c h => \\X\\ =

|| φμ || as required.

It is well known that every group algebra has a minimal two-
sided approximate identity. The following stronger result holds for
compact groups.

THEOREM A. 1.3. If A is the group algebra of a compact group
H, then A has a minimal central approximate identity.

Proof. Since H is compact there is a neighborhood basis {Vά :jeJ}
of the unit e 6 H, such that y~λ V3-y = V5 = Vj-1 for all jeJ,yeH. If
we take any basis {Uό: jeJ} such that Uό — U3'\ we get the desired
basis as V3 = Π {v~ιU3y : #e iϊ} (see Montgomery-Zippin [12], Section
2.4). Take e3 — χvJwι(V3), where χE is the characteristic function of
E; it is easy to check that e3 is central in U(H), so {e0) is the
desired approximate identity.
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A*2* Dual algebras with approximate identities* As is well
known, a semisimple dual Banach algebra with an identity is finite
dimensional.

THEOREM A.2.I. If A is a semi-simple dual Banach algebra
with a central minimal approximate identity then the structure
theory of Kaplansky [10] applies and all minimal closed two-sided
ideals are finite dimensional.

Proof. If M is a minimal closed two-sided ideal in A and if
{ea : a e Q} is a maximal collection of minimal idempotents in M which
are pairwise orthogonal (eaeβ = eβea = 0 if a Φ β), then eaAeβ is always
a one dimensional subspace of A and we can find a collection of matrix
units in M, {eaβ e e eaA e β: a9 β e Q} such t h a t eaa = ea and eaβeμλ = δβfLeaλ.
The algebra Mo — {Σζaβeaβ (finite sums): ξaβ complex} is a two-sided
ideal of A, norm dense in M. If x e A is central then xy = X(x)y for
all yeM; in fact xeaa — eaaxeaa e eaAea, which implies that xeaa =
Xa(x)ea, since eaAea is one dimensional. But xeaβ — xeaaaβeβ for some
aaβ e A, so xeaβ = Xa(x)ea aaβ eβ — Xa(x)eaβ and also xeaβ — xeaaaβeβ —
eaaaβxeβ = Xβ(x)eaβ; hence Xa(x) — Xβ{x) = X(x) for all a, βeQ and this
implies that xy — X(x)y whenever yeM (Mo is dense in M). Now
there is at least one xeZ(A) (center of A) such that xM Φ (0), since
Z(A) contains an approximate identity for A. By properly scaling
xe Z(A) we can insure that xy — y for all yeM.

According to Kaplansky [10], Theorem 5, if {M^ .μeJ} are the
minimal closed two-sided ideals in A, we have MμMλ = MλMμ — (0)
if Mμ,φMλ and the algebraic (direct) sum X © {ilί̂  : μ e J} is a norm
dense two-sided ideal in A. With x e Z(A) chosen for (fixed) ideal M,
as above, we can find elements xn = fn + 2 {£ aβ(n)eaβ : a, βeQ} such
that || x - xn || -> 0, where / n G Σ © {Mμ : μ e J; Mμ Φ M) and Σ ςββ(w)eββ

is a finite sum in Mo. Let w be chosen such that \\x — xn\\ < 1/2.
If dim [Λf ] = cχ3 them dim [Mo] — oo and there exist indices {au , am}
in Q such that $αβ(w) = 0 for all βeQ if a Φ au , αm . For any
such index aeQ we have

But clearly, 0 = Σ {fαβ(Φ«β : ̂  e Q) a n d e««Λ = 0, so that 1/2 || eaa \\ ^
| |e α α | | ^ 1, a contradiction. Thus dim [ikf] < oo as required.

A 3 * Elementary properties of multipliers and translations on
Banach algebras* Consider an arbitrary Banach algebra A with group
of left translations G/ — G/(A), given the (so) topology. All of the
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following results have right-handed counterparts which we do not
state explicitly.

THEOREM A.3.I. The translations G/ form a Hausdorff topolo-
il group. The extreme points g5

these extreme points form a group.

gical group. The extreme points &Λ™ contain G/ and gf4™ = G/ if

REMARK. In [3] it is shown that, if a Banach algebra B has an
identity I with | | / | | = 1, then / is an extreme point in ΣB.

Proof. The Hausdorff property is obvious, and if {gd: jeJ} and
{hk:ke K) are nets in G/, both (so) convergent to J, then

\\Oj(hk(a)) - α | | ^ \\gό{hk(a)) - g3(a) || + \\gό{a) - a \\

for a G A, proving joint (so) continuity of multiplication. Inversion is
also (so) continuous since

gj\a) - α || = || gjsrj\a)) - 9j(a) || = || a - δj(a) || > 0 .

aFx + (1 - a)F2, with 0 < a < 1 and Flf F2 e ΣΛ™, then I = ag-'F, +

(1 - a^Fz; since || g~yF, \\ ^ 1 we get g-'F, = g^Ft and F, = Fu so
G / C ^ . If 8>* is a group (with unit I), then T(A) = A if

Γ e g 7 / and || Ta \\ = \\a \\ on A; otherwise || Γα| | < | | α | | for some

α e i a n d | | α || = || T~\Ta) \\ £ \\ Γ " 1 1 | . || Ta \\ - || Ta \\ < \\a \\ .

If A is commutative and if ψ is a multiplicative linear functional
on A, then ψ extends uniquely to Ψ on Am in the sense that <Xα,?F)> =
<α, α/r> for all a e A; in fact if Fe Am we take <F, ?Γ> = <F(α), t>/<«, t >
for any α e i such that ψ(a) Φ 0 (τ/r = 0 extends trivially). Things
are not so easy if A fails to be commutative.

THEOREM A.3.2. If A has a two-sided approximate identity
{βj: j G J} then any multiplicative linear functional ψ on A extends
uniquely to A^>. The extension is given by the formula ζF, ψy —

ψy, where a G A is any element such that ψ(a) Φ 0.

Proof. Since

ψφ)ψ(Fa) = ψ(F(a) 6) = ψ(F(ab)) < ψ{F{eάab)) = ψ((Fed)ab)

= ψ{(Feά)ba) = ψ{F(eάba)) • ψ(F(ba)) = f(Fb)f(a)

we see that ?F is well defined. Now let Flf F2e Ay, if for some ae A
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we have <α, ψy Φ 0 and (F,(a), | > ^ 0 , then

<FXF2, ψy = [<FxF2(α), ^>/<F2α, ^>] [<F2α, ^>/<α, ^>] - <F2, ψy<JFu Ψ> .

However, if <F2α, ψy = 0 whenever <α, α/r> ̂  0 then <JF2, SF> = 0 and,
for any such ae A, we have

hence, <i^F2, ^> = 0 = <F2, ψy. <i^2, ?>, and JΓ is multiplicative, as
well as linear. Clearly <Lα, ?F> = <α, ^> if α e A. Uniqueness follows
since we must have

- <F, wy. <Lα, r> = <F, wy <α, ψy

for all α e i J e A ; ,

The usefulness of A.3.2 stems from the fact that existence of a
multiplicative functional in A^> which does not vanish on A/ implies
the existence of an internal direct product factorization of G/ —
SI x /V, where Γ/ is some (so) closed normal subgroup.

THEOREM A.3.3. Let ψ be a multiplicative functional on A^
which does not vanish on A/, and define ocψ{g) — ζjg, ψy on G/.
Then (Xψ is a (so) continuous multiplicative character on G/, the
subgroups Γ/ — {geG/: <g, ψy = 1} and SI = {al: | a \ — 1} are (so)
closed normal subgroups which generate G/, and SI D Γ/ — {/} so
that G/ — SI x Γ/. If G/ can be factored as an internal direct
product G/ — SI x Γ for some (so) closed normal subgroup Γ, then
the natural projections πΓ: g—±7 and π8I: g —> al (if g — (al, y) in
the direct product) are (so) continuous homomorphisms, and the
elements of Γ are pair wise linearly independent in A^% Further-
more if G/ — SI x Γi (i — 1, 2) are two such factorizations then the
map g—*7ΐ{SI)2(g) g is a topological automorphism of G/ which maps
Γλ onto Γ2; hence the decomposition G/ = SI x Γ is essentially unique.

Proof. The function aψ is clearly unimodular and multicative on

G/. If a e A with <Lα, ψy Φ 0, and if gά -^> g in G/, then

\\gjoLa - goLa\\ - \\9j(a) - g(a) \\ >0 ,

so that <£,., ψy <Lα, ψy = <g,.La, ψy -> (gLa, ψy = (g, ψy. <Lα, ψy, and
this in turn implies that ζjgh ψy —+ ζg, ψy. Thus it is clear that SI
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and Γ/ are (so) closed normal subgroups in G/. Furthermore, Sin /V =
{/}, since <μl, φ> = α</, ¥} = a, and it is clear that {SI} / > = (?/.

If Gs= SI x Γ, let {̂  = ar/y,.: jeJ} be a net in Gy- such that

gd —̂ -> # = 0:7. If β is any limit point of the net of scalars {a3) in
the circle, there is a subnet {a3ik)} such that | aj{k) — β \ --> 0 while

^•(fc)̂ i(fc)-—> α ^; hence 7jik)-^-+(a/β)je Γ. But if (a/β)yeΓ then

we must haveα = /?, so a5—*a and 7, >7, as required for continuity
of the projection homomorphisms in G/ — SI x Γ. If, in such a
factorization, we should have 7lfy2eΓ linearly dependent in A^, then
aπx = 72 for (unimodular) complex scalar a. Since 7i, 72 e Γ this means
α = 1. The verifications in the last part of A.3.3 are straightforward.

A*4* Strong operator topologies* Let A be a Banach space
and (so) the strong operator topology in B(A, A).

LEMMA A.4.I. With respect to the (so) topology, any closed bounded
subset EaB(A,A) is complete.

Proof. Set E is bounded in the (so) topology <=> {T(x): TeE} is
norm bounded in A for each xeA. If {T3:jeJ} is any (so)-Cauchy
net in E and xeA, then {T3(x):jeJ} is a bounded Cauchy net in

the Banach space A, so there exists T(x)e A such that T3 (x) >T(x).
Obviously T:A—>A is linear; since {T3(x):jeJ} is norm bounded for
each xeA we have 11 T11 < oo by uniform boundedness. Hence

T. J^L> T and TeE.

THEOREM A.4.2. The (so) closed convex hull of any (so) compact
set EaB(A,A) is (so) compact.

Proof. In the (so) topology we have: E compact => E bounded
=> co[E] bounded => c o ^ : (so)] bounded. Hence, by A.4.1, co[E: (so)]
is complete. But in any locally convex space, closed convex spans of
compact sets are totally bounded (precompact), as shown in [4], p. 80-
81. Hence co[E: (so)] is compact.

An alternative proof is sketched in [7], p. 511, exercises 1-3.
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