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This paper is mainly concerned with generalisations of
Hormander’s results on multipliers from L? (R*) to L¢(R") (see
Hormander [6]). Our principal results are that Hormander’s
Theorem 1,12 and Corollary 1.5 continue to hold for any LCA
group with an infinite discrete subgroup. In order to establish
and formulate our results, we define the Fourier transform of
functions in L?(G) where 1 < p < « and G is any LCA group.
Here we use the author’s work on quasimeasures in ‘‘Quasi-
measures and operators commuting with convolution’’ [4].

The notation throughout is the same as that of Gaudry [4]. We
shall use without comment the notions of pseudomeasure and quasi-
measure and their properties studied in [4]. We define the singular
support of a quasimeasure as the complement of the largest open set
on which it is a measure. In the sequel we shall abbreviate “locally
compact Abelian Hausdorff group” to “LCA group”.

Let G be an LCA group with character group X and suppose p,
qgell, o] with p =< q. We make the following definition.

DEFINITION. If p # o, denote by L¢ the space of bounded linear
operators mapping L”(G) into L(G) and commuting with the transla-
tion operators:

Tz, =7, T (ye@).

Denote by L2 the space of linear operators, commuting with transla-
tion, which map L*(G) into L=(G), and which are continuous for the
weak (o(L~, L')) topology on L~(G).

The elements of ¢ are called multipliers of type (p, q). If p =~ o, L
will be given the usual operator norm: in this case L? is a Banach space,
Note that in the case where G = R", our definition of L} is equivalent
to Hormander’s definition of L? as given in 1.2 of [6].

Already much work has been done on characterising L¢ for various
values of p and q (see for example Figa-Talamanca [2], Hormander
[6], Gaudry [4], Wendel [9]). Hormander [6] studies L¢ for G = R™,
We are largely concerned here with generalisations of Hormander’s
Theorem 1.12 and Corollary 1.5 and with other related results.

All the interest resides im the case where G is noncompact, so we
shall assume this throughout. In order to establish our results, we
define the Fourier transform of functions in any L? — space (1 = p = o).
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478 G. I. GAUDRY

These generalised Fourier transforms are also useful in the study of
spans of translates,.

Theorem 2.3 establishes the interesting result that for any LCA
group (G, we have three conditions, one of which is Hormander’s
Corollary 1,5, each being equivalent to his Theorem 1.12. Our main
results are that for every LCA group G containing an infinite discrete
subgroup, Hormander’s Theorem 1.12 and Corollary 1.5 hold, the latter
even in the strengthened form that there exist functions in N.,., L*(G)
whose Fourier transforms are not measures. If such a group is second
countable, Hormander’s Corollary 1.5 can be strengthened to the result
that there exist functions in V..., L?(G) whose Fourier transforms
have singular support the whole of X,

1. Fourier transforms of functions in L*(G)(1 =< p = ), It is
well-known that for 1 =< p < 2, the Fourier transform of functions in
L?(G) can be defined. Schwartz [8] has already defined the Fourier
trangform of functions in LP(R" x T™) for all p in {1, =], We show
here how to define the IFourier transform of functions in L?(G) where
G is any LCA group and 1 = p = o, We use the quasimeasures of
Gaudry [4] and define the transform via Plancherel’s formula.

We assume known the definition and simple properties of the
Fourier transform of integrable functions, so we restrict p to the range
1 < p < oo; then p’, the conjugate index, is in the range 1 < p’ < oo,
Throughout this paper f will denote the Fourier transform (resp.
inverse Fourier transform) of f whenever feC¢ (resp. C*) and f is
defined.

1.1. For fe L*(G), 1< p = o, we define f as the continuous linear
form on D(X) (t.e., the quasimeasure on X) given by

F@) =r@. (9 € D(X))

(D(X) is defined in [4]). §, is the reflection of the inverse Fourier
transform of ¢ (D(X)c L(X)). Moreover, since D(X)C A(X), we
have by the inversion theorem that (§,) = g,. We show that f is
indeed a quasimeasure.

The topology of Dy, K a fixed compact subset of X, is stronger
than that induced by LY(X). Forif f= S5°g;xh; where g;,h; e C, r and
Sl gille 1Al < oo, then

Il = 2 g llana Hhillne S M0 96l o[ i ]]

where M\, is a constant depending on K. Hence

1 sy = Ml F 1] e -
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Also, the topology induced on D, by A(X) is weaker than that of
Dy ([4] Theorem 2.5). Now ge D(X) implies §, € L'(G),L*(G) < L*”(G);
and if ¢g;—0 in Dy, then §,, — 0 in LX) and in L*(X) since the
topology of Dy is stronger than those induced by A(X) and by L(X).
This implies that if ¢g;,—0 in Dy, then §;, —0 in L?(G); hence
f(g,—) — 0 and, by the definition of the topology of D(X), f is a con-
tinuous linear form on D(X), i.e., a quasimeasure,

Note that in the case of L>(G), we have I?‘?G) C P(X) and that
if 1<p=2, G c LX)

We remark finally that the Fourier transformation f— f from
L*(G) into D’(X) is one-to-one. We need concern ourselves only with
the case where 1 < p = . Suppose then that fe L?(G) and that
F=0, i.e., that f(§,) = 0 (¢ge D(X)). In order to show that f= 0

e., it will suffice to show that <= {§: ge D(X)} is dense in L*(G).
Since p’ + oo, the set of functions he L'(G),L*(G) whose Fourier
transforms have compact supports is dense in L*(G). Suppose then
that he LY(G),Lp'(G) and that [h] is compact. Write (k;) for an ap-
proximate identity in L'(X) with k, e C.(X). Then k:h e L(G),L"(G) and
kih — h in L*(G). Further, kih e <7 since k; and h have compact sup-
ports. It follows that < is dense in L*(G), so that f=0 a.e,.

2. The principal results. With the definition of L7 given above,
it is easy to see that Hormander’s Theorems 1.3 and 1.4 continue to
hold for any noncompact LCA group G. In Theorem 5.1 of Gaudry
[4], the generalisation of Hormander’s Theorem 1.2 is established for
any LCA group G. The definition of L% adopted in [4] makes it
necessary to assume that p # o in the statement of Theorem 5.1;
our present definition of L¢ allows us to state the generalisation of
Hormander’s Theorem 1.2 without any restriction on p. We state the
result as Theorem 2.1. The proof is similar to that given for Theorem
5.1 of [4].

THEOREM 2.1. If Te L%, then there exists a quasimeasure s on
G with

(2.1.1.) Tf=sxf (feC/(Q).

Thus L% is isomorphic to a vector subspace of D'. (We shall often
identify L% with this vector subspace of D’.)

We show now how to define the Fourier transform of a quasi-
measure s on G corresponding to an element 7 of L!. Since we
know from the extended version of Hormander’s Theorem 1.4 that
Lz = L} = M, (G) and Ly = L*(G) if p < o, and since the Fourier
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transformations pt — f and f— f are defined and one-to-one if ¢e M (G)
and fe L*(G), we assume that p = o« and ¢ # . We define the
quasimeasure § by defining its local behaviour., Suppose then that £
is any open relatively compact subset of X, that fe C.(G) with F
nonvanishing on 2, and that ge LY(G) with f§ =1 on 2. We define
§12 by §|2=9-(s=f)"|2. (Note that (s f)" is already defined since
s* fe LYG).)

For this to be a valid definition, we need to show that §-(s=f)" |2
is independent of the choice of f and g. Suppose then that 7 e D(X)
and that [l c Q. If (k) is an approximate identity in L'(G) with
k;e C(G), then since fe C,(G) and s corresponds to a multiplier of type
(p, @) with g < oo, sx(fxk)=(s=f)=k, and s=f=lims= fxk; in
LY(@); so

[§+(s % £)10) = (s % F)lgy * ) = lim (s + £ k)(gy * b))
= lim (s * k)(fy * gy % By) .

Finally, (fv* gy *h,)" = (f§h), = h, and it follows that the definition
of §|2 is independent of the choice of f and g.

It is now clear that if 2, and 2, are any two open relatively
compact subsets of X whose intersection is nonvoid, then §[Q, = §| 2,
on 2,.2,, By using Lemma 1.2 of [4] and an argument similar to
that used by Schwartz in proving Théoréme IV, Chapitre I of [7],
we may establish the existence of a unique quasimeasure ¢ on X with
the property that ¢|2=g-(s=f)" |2 for each open relatively compact
subset 2 of X and corresponding functions f and g. It is this quasi-
measure that we denote by §.

Finally, we note that the mapping s — § of L? into D’(X) is one-
to-one, For suppose that s € L? and that § = 0. Let 2 be any open rela-
tively compact subset of X and suppose that fe C,(G) with f nonvanish-
ing on 2. Then clearly, (s * )" |2 = 0. Write (k;) for an approximate
identity in LYG) with k;e C(G); since k; — 1 uniformly on compact
subsets of X, there exists 4, such that if ¢ = 1, l@- is nonvanishing
on 2. If geC,(G) and he D(X) with [h] < 2, then

(s % g% k) MR) = (s % k) @h) = 0 if 5= 4, .

Since g+ k;— g in L*?(G), it follows that (s*¢)~|Q2=0; but 2 is
arbitrary, so (s*g)” =0 (g€ C,(G)). We noted in 1.1 that the Fourier

transformation L*G) —»Lq/(C?) is one-to-one. From this we deduce that
s*g =0 (geC,(G)). Theorem 3.2 of [4] together with the note follow-
ing the proof of the theorem, then implies that s = 0.

Following Hormander, we make the following definition.

DEFINITION 2,2, Denote by M¢ the space of Fourier transforms
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of quasimeasures defined by elements of L.

M4 is thus isomorphic to L2. We shall often identify M{ alge-
braically and topologically with L2, Thus if » # «, M{ is a Banach
space.

It is now clear that if se L? and f e C.(G), then (s f)" = f§. Further,
if §e M7, the multiplier 7T corresponding to § is defined by Tf = (F§)"
(fe C(G)) where (f8)" is the “inverse” Fourier transform of f§.

With definition 2.2 and our definition of L¢, it is now easy to see
that Theorems 1.5, 1.6, and 1.7 and Corollaries 1.1, 1.2, 1.3 and 1.4
of Hormander [6] continue to hold for any noncompact LCA group G.

Throughout the remainder of section 2, we shall assume for
stmplicity, that p # oo,

For G = R*, Hormander has established the existence of functions
in L°(G) whose transform are not measures ([6], Corollary 1.5) and
has shown that if F' = 0 is a nonnegligible measurable function with
the property that f measurable, | f| = F implies fe M{, thenp £2 = ¢
(Theorem 1,12). We proceed to show, using the Fourier transform
defined in 1.1 and 2.1 that in any LCA group G, Hormander’s Theorem
1.12 and Corollary 1.5 are each equivalent to each of two other con-
ditions. We assume ¢ > 1. In the case ¢ = 1, the characterisation
of L!is already well-known so there is no loss in excluding this case.

THEOREM 2.3. The following four conditions are equivalent for
any LCA group G with character group X :

(i) Given p > 2, there exists a compact subset K of X and «
function @e L™(X) vanishing outside K with ¢ mnot the Fourier
transform of a function in LY(G).

(il) If there exists F' = (o which is a nonnegligible measurable
function on X such that |f| = F, f measurable, implies fe MY, then
Pp=2=4q.

(iii) Grven p > 2, there exist functions tn LP(G) whose transforms
are not measures,

(iv) Given p > 2, there exist sequences in CG), bounded in
Lx(G), whose transforms, restricted to K, are unbounded in Lk for
some compact subset K of X.

Proof. (i)= (ii). For, under the hypothesis F' =0, F non-
negligible and measurable, | f| < F', f measurable, implies fe M}, we
have, as in the proof of Hormander’s Theorem 1,12, that for any
compact K C X,

SKm(x)ldx < const. || u|l, weC,) .

For any compact K © X, and ¢ e L*(X), @(K’) = 0, we then have
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L [ p(AX) | dx = const. |[u ]|, (wedC).
Write @ = 7, o€ P(G), Then ¢iie LNX), o xue L>(G) and
o+ %l = || G, = const. |ju ], (we C,).

This means e Ly = L* since p < o and 6 = pe ﬁ’. So from (i) we
get p = 2. Since M? = M?,, we have similarly ¢’ <2 (note ¢’ < o).
Thus p =2 < q.

(iii) = (iv). Suppose fe L?(G) to be chosen so that f is not a meas-
ure, Then there exists an open relatively compact subset 2 of X
with 7|2 not a measure. Firstly, since p < o, C,(G) is dense in
IL»(@) and f=1limg, in L?(G)(9,€C, where of course (g,); is L?
bounded. Since g, — f weakly in D', we have (j,]|2) must be un-
bounded in Lj. For if (§|02) is bounded in L}, the sequence has a
vague limiting point in M (2) which must coincide on 2 with f since
§,— f weakly in D'(X).

(iv) = (iii). If L/”(E) C M(X) and 2 is any open relatively compact
set in X, the map f— f| 2 is continuous (by the Closed Graph Theo-
rem) from L?(G) into M,,(2):

I 121, y0 = comst. || fll,  (fe L.

Thus (iv) is not true since ||f|Q2], = ||f|Q|[Mbd for fe C,(G). Hence
(iv) = (iii).

(ii) = (i). If (i) is true and p > 2, then, for any nonnegative
nonnegligible measurable function F', there exists a measurable func-
tion @ with || = F and @ ¢ M?'. Choose any nonnegligible compact
subset K< X and F'= 0 with FelL*(X), F(K')=0 and F non-
negligible, Then there exists @€ L*(X) with |o| < F and p¢ M,

ie., peL”, which establishes (i).

We now have equivalence of (i) and (ii) and of (iii) and (iv).
To complete the proof, we show that (iv) = (ii) and (i) = (iv).

(iv) = (ii) is trivial since under the hypothesis ¥’ = 0, F' measurable,
|f| = F, f measurable = fe M?, we have, for any compact K C X,

[, 100 dx = const. ||ll, (ue C.;

and if (iv) holds, we must have p < 2. Similarly, ¢ = 2, since M7 =
Mz,

(i)=(iv). If (i) holds, then there exist a compact subset K of
X and a pseudomeasure oc P(G) with 6 =0 on K’, 6 ¢ M;>. This
means there exists a sequence (g,) in C,(G), bounded in L?(G), with
(0 *g,) unbounded in L=, A fortiori, therefore, the transforms
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(0 g, = 0§, are unbounded in L%. This implies that (§,|K) is
unbounded in L%. (For if (§,|K) is bounded in L}, so then is (34,)
since g e L~, 6(K') = 0.)

Having established the equivalence of conditions (i)— (iv), we
now show that for a large class of groups, we can establish even
more than the truth of condition (iii): we can prove that there exists
F€ Meospss LP(G) with f¢ M (X); and, if G is in addition second count-
able, 7 can be chosen to have singular support equal to X. In order
to do this we prove a lemma which establishes the connexion between
Fourier transforms of functions over an LCA group G and of functions
over a closed subgroup of G.

LEMMA 2.4, Let G be an LCA group and X its character
group. Suppose H is a closed subgroup of G and that Az is the Haar
measure on H, If C,(Q) is mapped onto C(G/H) by the mapping

f—f" where f' is the function xH-»S JAng (Hewttt and Ross |5],
~ " ) LA
(15.21)) then f coincides on H®, the annthilator of H, with f’.

Proof. Suppose feC,(G), xe H°. Then
Fo = ser@de = (1 dv

where Mgy is Haar measure on G/H. (This follows from the first
part of the proof of (15.22) of Hewitt and Ross [5].) But

2y @H) = | ey = feuyedy
=@ | fewr @i = 1 em| fendy

since € H® and x(y) =1 for ye H. So

(fx ) (@H) = " («H)f(xH)
and

Py =, areEr @H N = F'0).
The existence theorem now follows;

THEOREM 2.5, Suppose G is an LCA group containing an infinite
discrete subgroup. Then there exists fe Nwspss L?(G) with f not a
measure; further, if G is second countable, there exists f€ [Newspss LP(G)
with the singular support of f the whole of X.

REMARK. If G is an LCA group whose component of 0 is non-
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compact then G has an infinite discrete subgroup. The same is true
if G contains a noncompact, compactly generated subgroup (Hewitt
and Ross [5], (9.8)).

Proof. Suppose then that A is an infinite discrete subgroup of
G and that the mapping f— F maps MNesps:L?(G) into M(X). Define
on V = Naz,s. L7 the following countable family of norms. Let (r,)
be a sequence of real numbers, », > 2, r,— 2 as n — co; define

N, (f) =sap{[[fl,:rn=p =} (feV).

Tn

We have
N, (f) s sup { || £ I fll7} < oo

Further, under the topology defined by this family of norms, V is
complete. This is evident from the completeness of L? under the
usual norm. Thus, V becomes a Fréchet space.

If 2 is any open relatively compact subset of X, then by the
Closed Graph Theorem, we have that the mapping f— f| 2 is continuous
from V to M,,(2). This means that there exists r > 2 and a constant
A > 0 such that

(2.5.1) |17 SN (Fe V),

The subgroup A is discrete; so there exists a symmetric neigh-
bourhood U of 0 in G such that the sets a + 2U, (a € A), are pairwise
disjoint. Suppose ()7 is any countably infinite subset of A and that
(e,)rel”. Choose f,e V,LNG) with [f,]cU and |f(x)| =1 on 2. We
then have

| 2 ent, folly = 1 ollp 28 el (r =p < e0)
and
I vacnfanfc [l = [l folleo * SUD1cnzr [ Cal .
Hence, by (2.5.1), > c.x(a.)fi(3) | 2 converges in L} and
[, | Sea@) i dx S ANLLIE ey

But | fi(x)| =1 for ye®, so it follows that ) ¢,x(a,) |2 converges in
L}y and

|, 1) 1z = V(S ey

Hence if ge L~(X) and g = 0 on &', it follows that
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[Zieda) | =N Te ) gl .

This means that §|Ae”"(4) whenever ge L7(X); in particular, if
g€ C(X) and |g]c @, then g|Ae7(A). The same is true of any
translate of g. Hence, since any function s e C(X) may be expressed
as a finite sum of translates of functions in C,,, we have that
hiAes1(A) for all heC,(X) and some ¢ < 2. By Lemma 2.4, this
implies that &’e #%(4) for all b’ e C(X/A®). Since A is infinite, there
exists pe #7(4) with p¢ ~*(4). Je.g. if (a,) is any countable infinite
subset of A, @ defined by

0 a # a,
a) =
(@) {l/n”2 a=a,

has the desired properties.] Therefore §'p e «'(4) for all g’ e C(X/A°),
which, by Theorem 2.1(e) of Edwards [1], would imply that ¢ e 7*(4),
a contradiction. (Observe that X/A° is a compact group.) We have
thus established the existence of fe V with f not a measure.

In order to establish the existence of fe V with the singular
support of f equal to X, in the case where G is second countable, we
use the Category Theorem, Second countability of G is equivalent to
second countability of X. Thus X has a countable base of open
relatively compact subsets, say (2,)7. Then for each ordered pair
(m, n) of positive integers, write

S = 1F€ Vi Fl 20 Mual@,), | F1 20 lluy, < m} .

Suppose that there does not exist fe V with the singular support of
7 equal to X. Then Uwr Sw.. = V. Further, each S,,, is a closed
subset of V. this follows immediately from the weak relative com-
pactness of bounded sets of measures and the continuity of the map
f—f from V into D'(X) (weak topology). By the Category Theorem,
there exists an ordered pair (m,, n,) with S, ,, having an interior
point. This is clearly impossible since it would imply that there exists
an open relatively compact subset 2 of X with V|QcM(?). However,
by the first part of the present theorem, there exists f,e V with 7,
not a measure, so that a suitable translate of 7, will be such that its
restriction to £ is not a measure. This contradiction completes the
proof,

Already, from 2.3 and 2.5, we have Hormander’s Theorem 1,12
established. However, starting from 2.5, R. E. Edwards has proved
a theorem which implies both Hormander’s Theorem 1.12 and a similar
result due to Figa-Talamanca. In a recent paper [3], Figa-Talamanca
has proved the following result, and noted that it is valid, with
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essentially the same proof, when R is replaced by any connected,
locally compact, noncompact, Hausdorff, Abelian group.

2.6. Let fe L?(R)(1 < p < 2) and fe L”(R) be its Fourier trans-
form, Suppose that for every econtinuous function h, there exists
ge L?(R) such that fh = § a.e.; then =0 a.e.

Figa-Talamanca notes that this implies Hormander’s result.

We now present the statement and proof of Edwards’ result.

THEOREM 2.7. Suppose G is an LCA group which contains an
mfinite discrete subgroup, that F is a function on X with the prop-

erty that oF'c U@,QL{(&) for each pe Cy(X). Then F'=01[.a.e.

Proof. Suppose F'is not locally negligible. Then there exists F}
with compact support, F, not locally negligible and with F|, having
the same property as F. So we shall assume £ has compact support,

Now FeL”(X) for some p' > 2: for if pe C(X), o)) =1 on
[F'], we have pF e L*"(X) for some p’ > 2, But F has compact sup-
port; so FeIXX) also. Then for any @eCyX), oF =f with
fe L?(G) where 1 = p < 2. Also oF = f’ with 5’ e L¥G). So f= f
a.e., and we have that fe LY(G) for p < ¢ < 2.

Choose a sequence (p,);, 2> p, > 1, p, — 2. Then pFc U;;;IL/”\n,
We now apply the Category Theorem. Let

Coi={peC(X): pF = f a.e. for some fe L™, ||f], =Fk}.

Then C,,, is closed in C(X) and C(X) = Uy 4-:C,.x. So by the Category
Theorem, there exist n,, k, such that C,,, is a neighbourhood of 0.

Write p = p,,, so that 1 <p < 2. Then we have @Fei\p for all
P e Cy(X).
Consider the mapping T from C(X) into L?(G) defined by

(2.7.1) (Tp)” = Fop a. e, (pe Cy(X))

T is linear; and since F' is evidently finite a.e., T has a closed graph,
hence is continuous.

We shall now show that, without loss of generality, we may
assume F' is continuous. From (2.7.1), if y, x.€ X,

(X — X)E (X — %) = (0 Tp) (X) a.e.

and
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POF XL — %) = (LTor) (1) a.e.
where @), is the %, — translate of ¢. If pe C(X),

p0) | o~ wotdn = (| wTe00dn) 0

where the function x-—»S L@ T )(@)o()dx, is in L*(G) by virtue
P

of the compact support of p and the continuity of the map ¥, — To,,
from X into L*(G). So F = p has the same property as F'; and more-
over, since Fe L(X), FxpeC,(X). If F is nonnegligible, p can be
chosen so that "= p = 0, It therefore suffices to show that if Fe C (X)
satisfies the hypotheses of the theorem, then F = 0,

Consider the adjoint map T': L*'(G) — M,,(X). By the definition
of T', we have

(Te) = 9(0) = @« (T'0)(0)  (peC(X), ge L"(G)).

If peC,, then since Fe(C,(X), we have pF' ¢ L*(X) and so Te e L¥G)
by Plancherel’s Theorem. If ge L¥G),L*(G), Parseval’s formula gives

|, Teo.de = | (Torwaar = | @F)aitd
=|_ o= nF(~na(~ ndz
= | o= DT
and we deduce that
AT"9)(0) = F(~03( = 0dx (g€ L{G),L7(G)
and by the continuity of T’ that

(2.7.2) W Fg|l, = const. {[g]l .

If ge LY(G), g can be approximated in L*'(G) by a sequence (g,); of
functions in C,(G)c LXG),L*(G) with (| g, |l,)s bounded of necessity.
Then the measures (F§,) are bounded in M,,(X), by virtue of (2.7.2).
If F =0, then for some open relatively compact subset £ of X,
F(x)=0 on 2, and so |F| is bounded away from 0 on 2. This
means that (§,| Q)7 is bounded in M,,(2), and so must have a weak
limiting point in M,,(2). But since g,—g in LY(G), §.|2—§|Q
weakly in D', We should have then that 7|2 is a measure. But by
Theorem 2.5, for any open relatively compact subset 2 of X, there
exists ge L”(G) with §|2 not a measure, since p’ > 2. Hence we
must have F = 0,
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REMARK. If G is compact, the situation is known to be entirely
different. In this case a function F' on X has the property

@) @FeM(G)” (pec(X))

if and only if
(b) FeAX),

in which case, of course, it is evident that
© @FelXG)” (pes~(X)).

Indeed, it is easy to deduce from (a) that oF e M(G)" (pe€ s~(X)),
which is known to imply (b) (see e.g. Edwards [1], Theorem (1.1)).
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