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The purpose of this paper is to extend and sharpen a
result of Grothendieck concerning dual properties of complete
locally convex topological vector spaces. Among other things,
this leads to a rough dual characterization of sequential com-
pleteness and to the definition of a new type of completeness,
which is studied briefly.

A dual characterization of completeness has been obtained in
various forms, The first such was obtained by Grothendieck [3], who
showed that the completion E of E is the set of all linear functionals
< on the dual E’ of £ whose restriction to each equicontinuous subset
@ of E' is continuous in the the topology induced on @ by the weak-*
topology. Ptak [8] and Collins [1] have proven essentially equivalent
results to the effect that ~ is in E if and only if its null-space is
relatively closed in every Q. Both of these approaches raise the fol-
lowing question: the open and closed sets required for ~ in the various
@’s are given by a relatively small subset X of E, and we should
expect some relationship to exist between this subset and ~, Luxemburg
[7] has exhibited a partial answer (- is in the closure in & of the linear
span of X) using the Grothehdieck approach. It is one of our main
purposes to improve this result; in fact, using the approach of [8]
and [1] we will show (Theorem 2.4) that if X is suitably normalized,
then ~is in the closure in £ of X, and we will be able to identify
with precision those parts of X which are “close” to ~. In addition
we will generalize the dual notion of completeness to include weaker
types, one of which appears to be new.

The material is divided up as follows: after a brief resume of
our notation and terminology in §1, we define the notion of («, 8)-
closure on the dual space in §2 and prove most of our fundamental
results., In §3 we use these concepts to define («, 5)-completeness and
derive the existence of completions. In §4 we identify the various
types of (a, B)-completeness by their properties on the original space
and in §5 we present some suggestions for a dual theory of net
convergence,

1. Notation and terminology. Throughout, ¥ will be a Haus-
dorff locally convex topological vector space (les) over the real numbers
R, with (topological) dual space E’ and completion E. When we use
topological terms with regard to E’, this will refer to the weak-*
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topology (in most circumstances any topology compatible with the
duality <K, E"> will do). If ASE,

A ={ueckl:|ux)| =1, all xe A},

(if ASE’, A°C FE is formed similarly.) @ < E’ is equicontinuous if @°
is a neighborhood of 0 in E. For @ equicontinuous we let p, be the
pseudo-norm whose unit ball is Q°, and if p is an arbitrary pseudo-
norm on F, we set

Q,={ucE" | ux)| = p(x), all xe A}
={xeckE:px) =1}

P is the unique extension of p to*E. A hyperspace is a subspace of
codimension 1.

Let ASE. A is absolutely convex (ac) if it is convex and cir-
cled, i.e., if A + r,A S A whenever |7, |+ |7, | =1, 7, r.€ R. I'(4)
is the absolutely convex hull of 4, 2(A) the linear span of A4, card A
the cardinality of A4, and ¢lA (or ¢lzA when the space is to emphasized)
is the closure of A, If BS E, A ~ B is the set theoretic difference
(=A~((ANB)). If f: E— R, then f+ ={xeckE: flx) = O}

We will be quite free with our use of notation, If .o is a set
of subsets of EH, ASE, ackE, we will write 2(.%7 A, a) for
U UAU{a}). Note also that if xe E, xS E'.

2. (W, B)-closure. We will be interested in the order properties
of cardinal numbers for notational purposes. As a convenience we
will add to the class of cardinals the symbols “¥}, —’, where a = W, —
if and only if @ < W, and “V”, where a« = V for all cardinals «.
The reader may well wonder why we do not include “a —” for any
cardinal «. This is because we are able to show the equivalence of
Y, — and V to ordinary cardinal numbers for our purposes, while
this may not be true for @« —, a > W, and could cause difficulties in
the proof of Corollary 3.3. Throughout we will use «, 8, v, and 0 to
represent elements of this extended class.

NOTATION, Let E be a lcs, z€ E, and e = 0, A slice in E’ is a
set of the form
Sz, e) ={uecE" |u(x)| = ¢} .
Note that if ¢ > 0, then Sl(z, ¢) = (I'(xz/¢))° and that Sl(z, 0) = zL.
DEFINITION, Let E be a les, XS E, MS E’, and @ an equicon-

tinuous subset of E’. Then we say that M s an tntersection of
slices of X on Q if for all x € X, there is an ¢, = 0 such that
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MHQ:D Sl(z,e,) N Q.
r€X

A subset M of E' is («, B)-closed if there is a subset X of E with
card X = « such that for every equicontinuous Q & £’ there is a set
Y< X with card Y =< B such that M is an intersection of slices of Y on
Q. we will summarize this by writing

XM or X— M.

REMARKS., If Mis («, B)-closed, it is necessarily ac, and if a =< v,
B =< 0, then M is (v, d)-closed. Also, if M is an intersection of slices
of X on Q, then M is an intersection of slices on @', for any Q' < Q.

NotaTioN, For fixed MS E’ and for X € F any Q any equicon-
tinuous subset of E’, we define

€, o = inf {e = 0: Sl(zx, ¢) 2 M NQ} .

Note that since @ is weakly bounded, ¢,, < - for all  and Q.
If Q< @ then ¢,,=c¢,,. Finally, if M is an intersection of slices
of X on @, then

MnQE = DX Sl(z, e,,0) N Q.
We begin our study by relating the above concepts to the T
topology on E’ (see [6, Section 21, 8.-10., pp. 269ff]). <7 is also

often called the ¢ — w* topology.), the weakest topology on E’ agree-
ing with the weak-* topology on equicontinuous subsets of E’,

ProprosiTioN 2.1. An ac subset M of E’ is I7/-closed if and
only if it is (V, ¥)-closed.

Proof. Clearly if M is (V, V)-closed, then M N Q is a weakly
closed subset of @ for every equicontinuous @, so M is T'-closed.

Now suppose M is ZI7-closed and let @ be a clossd ac equicon-
tinuous subset of E’, If we B’ ~ M, then since M N Q is closed and
convex in E’, there is an ¢ E such that

sup{v(x):ve QN M} = e < u(x) ,
by [6, §20, 7.(5), p. 246]. Since @ N M is ac we have
sup{—v(x):veQ@N M} =¢,
and therefore ¢ = ¢, and u¢ Sl(z, ¢,,,). Hence we have

QNM=/N Slz,¢,, ¢ .

z€EE
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Since every equicontinuous @ is contained in a closed ac equicontinuous
subset, we are done.

Note that to get M < @, we need intersect the slices with @ only
if @ is not ac and closed. While this is true for X = E, it is of
course not true for X in general,

COROLLARY 2.2. A les E 1is B-complete |[B,-complete] if and
only if every (V, V)-closed subspace [(V, V)-closed dense subspace] of
B’ is closed.

(For definitions, see [8].)

Proof. By [8, (3.3), p. 49 and (4.1), p. 54].

COROLLARY. 2.8. M 1is a (V, V)-closed hyperspace tf and only if
M =zt for some xe E.

Proof. By [6, Section 21, 9.(1), p. 271].

Henceforth we will make the blanket assumption that M is a
hyperspace in E’, E a les. We now state our fundamental theorem,
the proof of which will occupy the rest of this section. In the pro-
cess, we will develop several subsidiary results which will aid us in
later work,

THEOREM 2.4. Suppose X = K and X—ﬁ» M, and let we E' ~M,

Set
Y = {z/u(x): x € X, u(x) = 0} .

Then Y——ﬁ—>M and M = x+ for some xecly Y.

We begin by proving a series of lemmas.
LemMA 2.5, Let M = f+ where f is a linear functional on E'
which is bounded on equicontinuous subsets of E', and let ue B’ ~ M.

Then if Q is any ac equicontinuous subset of E' containing wu, we
have

Qs 6l'((r, +1)Q@NM,rmu)
where

ry = sup{|f(v) : ve QY| f(w) |},
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and if & 1s a fundamental system of equicontinuwous subset of K’
in the sense that every equicontinuous subset of E' is contained in
some member of &, then so is

&'={RQnNMru):Qeca,r>0}.
In particular, the above results hold if M is (V, V)-closed.
Proof. If veQ, then |fw)/r.flw)| =<1 and since 2t/(t — 1) =

2 + 2/(t — 1) is strictly decreasing for ¢t < 1, we can find a te[—1, 1/3]
such that

2t/(t — 1) = flv)[rpflu) .
Then f[2tr;u + (1 — t)v] = 0 so
2r,u + (L —thw=meft=M,
and since
12rt |+ |1 —t| =2, +2, te|—1,1/3],
we have m e (2r; + 2)Q. We write
v =[2/(1 — OI[A/2)m — (¢/2)2rw)] ,

and since for te[—1,1/3], 1/2+[¢}/2 <1 and |2/(1 — ©)] < 2(3/2) = 3,
we have

ved3l((2r, + 2)Q N M, 2rm) = 6I{(r; + DN M, reu) .

The remaining statements follow easily, the last resulting from M = z+
for some xe & by Corollary 2.3 and the fact that any xe £ is con-
tinuous on any equicontinuous @ [6, Section, 21, 4. (5), p. 263].

The principal use of this lemma will be to conclude that whenever
M is (V, V)-closed and we ' ~ M, then there is fundamental system
of equicontinuous @ such that each @ = 7(Q N M, ru) for some r > 0,

COROLLARY 2.6, Let XL M, suppose that we ' ~ M, and
let ¥ ={zeX:u()=0). Then Y — M.

Proof. If Q is equicontinuous then Q € Q' = I'(Q' N M, ru), r > 0,
Any ve@ is of the form v=sm + tru, |s|+ [t| =1L, me@Q@ NM
and for any xe X ~ Y,

{’U(ix}]: lslim(x);égw&’y

so ve Sl(z, ¢,,) and hence Q' = Sl(z, ¢,,¢), 5o if M is an intersection
of slices of Z& X an @', it is on intersection of slices of ZN Y on
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@', and hence on @ by an earlier remark,

Our main lemma will be obtained by generalizing the proof of
Corollary 2.6, but first we need a more precise notion of when two
hyperspaces are “near” each other. For ze K and Q@ & E’ equicon-
tinuous, we define

bee=sup{|u(@)|:uc@} < .

For a given M, the ratio 4,,, = ¢,,0/b,,¢ can be considered as a measure
of the difference between x1 and M on @ (conventionally, we set 4,,, =1
when b,,,=0); in fact 0 < 4,,=<1, 4,,=1 implies that @ = 2+ and
hence that ! and M are unrelated on @, and 4,, = 0 implies that
MnN@=2NQ, as we will digress to prove in the following lemma,

LEMMA 2.7, If Q is an equicontinuous subset of B', xc K, then
d40 =0 tmplies that x- NQ = MnN Q.

Proof. First assume that @ is ac, Since 4., =0 we have ¢,, =0
and @ £ z+, so choose u,€Q ~z+, If 2t NQ+*=MNE, then since
rNR2MNQ, w,¢ M and we may choose a wu,c(xtNQ)~ M.
E = %M, u,) so u, = m + ru,, me M and

m= (14 [r /(1 + |7r]) — ru/(L + [r]))
e+ |rDMNQRS A+ |retnQ,

and therefore
0 = m(x) = u(x) — rux) = ulx) ,

S0 u, € 1, a contradiction, If @ is arbitrary, let @ = I'Q. Clearly
€oer = oy Upr = Dyygy 80 Ao = 4o =0and 21 N Q' = M N Q. There-
fore x-NQ = MnNQ.

Note also that if xi = y&, then 4,4, = 4, The notion of 4,,
as a measure of difference will be brought out more fully as this
section progresses.

LEMMA 2.8. Let Q be an ac equicontinuous subset of E' and
suppose that M is am intersection of slices of X S K on Q. Then
if YE X and inf{d,q:ye Y} >0, M is an intersection of slices of
Y on Q. In particular, @ £ M implies that

inf{4,,:2€X}=0.

Proof. Let 0 <e=1. Then
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(L@) nm=1(Q81w e.000) = 08w, o) 110

z€X

Q= (1/e)Q since e =1, so

QNM :«Qz Sl(z, €.,0/6) N Q,

and if we set X, = {xe X:4,,,<c¢}, we have
QmM = anXE Sl(%, ax,Q/a) mQ ’

since if xe X~ X,, then ¢,,e=0,, so Sl(z, ¢,0/c) 2 @ and is thus
superfluous in the intersection. By definition of e,,,

QmMggSI(xyez,Q)ﬂQgQSK“;!SJG:Q/S)HQ:QQM'

Therefore M is an intersection of slices of X, on Q. For Y & X, set
e=1inf{4,:y¢ Y}. If ¢ >0, then the first statement of the lemma
follows from the above and the fact that Y2 X,. If inf {4, s 2¢€ X} >0,
then

QNM= Sz, NQ=E"NE=Q,

2€QD

so Q@ & M, a contradiction,

Our final lemma is a series of computations which further
demonstrate the relation between 4,, and the “difference” between
xzt and M.

LEMMA 2.9, Let MS E', vel’' ~ M, and let xcE be such
that u{z) = 1. Suppose that Q@ = I'(Q N M, ru), r > 0, s an equicon-
tinuous subset of E’'. Then we have

(2.10) If 4,, <1, then &, = rd, /(1 — 4,,0). In particular, if
Ax:Q g 8/(7‘ + 8)9 € g 09 the% Ex:Q é €.

(2.11) If M =&+ for some & ¢ K with w(F) = 1, then e — &) = ¢,,.
Proof. If v is any element of Q,

v = sm + tru , [s|+it|=1, meMn@,
we have
(@) | = |s|m(@) ] + [¢]r]u(2)]
=[sleo+ [t]r
=&t 7,
80 b, < &, + r and

Ea0 =ubare = 4uyq? + diyua s
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from which (2.10) follows immediately.
To prove (2.11), let ve@ be as above. Then |[v(z —%)| =
[s]]m(x)] so

Do'w — &) = sup,eq | (% — &) | = sup|s||m(x)| = &, .

We will say that X & E is normalized by we E’ if u(x) =1 for
all xe X. We now proceed to the proof of Theorem 2.4,

Proof of Theorem 2,4, We assume that X is normalized by u,
e., that X is the Y of the statement of the theorem. We may do
this by Corollary 2.6 and the fact that for + # 0, Sl(z/r, ¢) = Sl(z, | r | ¢).
Choose # € E such that M = &L and (%) = 1. Let & be the set of
all equicontinuous subsets @ of £’ with the property that @ =
' QN M, ru) for some » > 0, and let &7 = {KQ, e>: Qe &, ¢ > 0} with
ordering given by <@, s> =<Q,¢> if Q= Q and ¢ =¢. By Lemma
2.8, for every <Q, ez there is an @ = x,.€ X with

Ao = &l(r + €) (@ =I(QN M, ru),
and hence
Dolg,. — X)) =¢€,0= ¢

by (2.10) and (2.11). If<Q', ¢>e & and <@, &> =<Q, &>, then @' 2 Q
S0 Py = o and hence

Dol .. — &) = Po — )
4

(x
\
g €.

A 1IA

Since by Lemma 2.5 {p,:Qe«&’} is a basic set of pseudonorms,
{,.:<Q,e>€ &} is a net in X converging to .

As Corollary, we can show that we obtain all («, 8)-closed
hyperspaces by restricting £ to 1 =< 8= W,. To be precise, we have

COROLLARY 2,12, Let M be a hyperspace in E’'., Then M 1is
(a, V)-closed if and only if M s (a, W,)-closed.

Proof. Necessity is obvious, Part of the proof of sufficiency is
contained in the following lemma, which is a partial converse of
Lemma 2.8,

LEMMA 2.13. Let Q be an equicontinuous subset of E' with
Q=rQnNM, ru),ue M,r >0, and suppose that for some X & K,
we have inf{d, p:xe X} =0. Then M 1is an intersection of slices

of x on Q.
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Proof. Assume that X is normalized by u#. Then by (2.10),
infl{e, g2 X} =0. If

vVE n Sl(x, sx,Q) n Q ,
z€X

then v = tru + sm, |s|+|t| =1, me M N Q, so we have

Eao = | tru(z) + sm(zx) |
= [tir —|s|[m(x)]

= [t|r — s,

So [t]| = (1 + |s)|)e,,o/r for all ze X and hence ¢t = 0 and ve M. This
gives us one of the required inclusions, the other being obvious.

Each Q@ < E’ is contained in some Q = I'(Q N M, ru), and for
each n > 0, there is an »,€ X such that 4, ,=1/n by Lemma 2.8,
Hence by the above lemma, M is an intersection of slices of {x,} on
Q, and hence the same is true of @', which completes the proof of
the Corollary,

It is convenient to note here that the £’s considered may be
still further restricted.

PrOPOSITION 2.14. Let @ be an ac equicontinuous subset of E’,
Q £ M, and suppose that for X = {x,,---,x,} a subset of £, M is an
intersection of slices of X on @. Then there is an ¢ with 4, = 0.

Proof. Let ¢; =¢,,q,b;i = b, for all 4. Suppose that the Pro-
position is false, i.e., &, = 0 only if b, =0. Let ueQ ~ M and let

r = min {1, {&;/| w(x;) |: &; # 0, u(x;) = O} .

Then 0 <7 =<1 so ruc@ and |ru(x;)| =¢; for all ¢+ with ¢ # 0,
u(x;) = 0. But this inequality certainly holds if u(x;) =0, and if
g =0, b,=0 and hence ru(x;)=0=-¢; since ruc@. Therefore
| ru(x;) | = €; for all 4, so rue M N Q and we M, a contradiction.

COROLLARY 2.15. A hyperspace in E' is (R —, Wo —)-closed if
and only tf it is closed (3. e., (1,1)-closed).

Proof. Suppose {x,,---,x,} — M. If Qisac and Q £ M, then there
isan 7 such that ¢, ,=4,,0=0. If @ 2@, then ¢, o = ¢, b0, =
b, >0, so in fact there must be an ¢ such that e, o= 4,,,=10 for
all ac @ £ M. Hence by Lemma 2.7,

rrNR=MNQ

for all ac @ £ M and therefore x; = M, which gives us the result.
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COROLLARY 2.16. A hyperspace in E' s (a, YW, —)-closed tf and
only if it 1s («, 1)-closed,

Proof. Sufficiency is obvious and necessity follows immediately
from Proposition 2.14 and Lemma 2.7,

Hence we have shown that we do not really need the symbols
Y, — and V as we promised we would at the beginning of this sec-
tion (we can always assume that a, 8 = card E). However we will
continue to use V¥V as a convenient notation.

3. (a, B)-completeness, Completions.

DEFINITION. An le space E is (a, B)-complete if and only if every
(a, B)-closed hyperspace in E’ is closed.

If follows immediately from the results of §2 that we need only
consider («, 8)-completeness for a = W,, 8 =1 or W,. We will devote
this section to the study of (a, 8)-completions using the methods of
§2 and will defer until §4 characterizations of («, B)-completeness
wholly in terms of the original space E.

Our basic result is the following:

THEOREM 3.1. Let Fec E,uc E' ~ &L, and let Q = I'(F- N Q, ru),
r >0, be an equicontinuous subset of E'. Suppose that for some
X < E, (= 8S1(%, 0)) is an intersection of slices of X on Q. Then
Jor all e = 0, Sl (%, ¢) is an intersection of slices of X on Q.

Proof. The proof is clear when contemplated geometrically, E’ ~
SI(#, &) = A. U B. where A, and B, are half-spaces. If ve @ ~ SI(Z%, ¢),
say ve A, then, A.NQ is similar to A,NQ, v corresponding to
7eA4,NQ. ¢ some Sl(z,e¢,,o) and running the similarity backwards
we get v¢ Sl(x,v,) 2 81(F, ¢) N Q for suitable v,. The proof is now
merely a matter of computation, which we proceed to perform.

Assume Q &£ Sl(x,¢,,0) for all xe X, that X is normalized by u,
that w(®) = 1, and that e < (if » < ¢, then ruc Sl(z,¢) 2 Q N M so
Q < Sl(x,¢) and the result is trivial. For each xe¢ X, set vy, =
(r —e)k,o/r +e. IfveQNSI(F,e¢), thenv =tm + sru, [s|+ [t| <1,
meQNM and ¢ = |v(&)| = |s|r. Therefore |s| < ¢/r and

lv@) | = [t]|m(@)|+ |s|r
é(l_lsl)sx&—*—[s“ﬂ
=[8](r — €,0) + €up.

Since @ & Sl(w, ¢,,4), ru ¢ Sl(z, ¢, so r>¢,, and the right hand
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quantity above is largest when |s| is largest, i.e., when |s| = ¢/7, so

l'U(.’/U)( é 8(7. - sx,Q) + Ex,Q
= (r — &), o/r + =Y, ,

and therefore S (%,c) = Q N Sl(z, v,).

Now suppose that ve @ ~ S1(%, ¢). Then |v(T)]| > ¢, say (&) > e.
v =sm + tru and since @ N M is ac, we may assume that s = 0,
s+ ti=1. v@)=tr>e s0o v=sm+ (1 —syru and (1 — s)r > ¢,
i.e.,, sr <r —e. Set

r -— (v — eu)
r—e

v =

=1 —(rsm + [(1 = 9)r — elru) .
l—syr>cand rs +[1 —s)r —¢e]=1r —¢c so T Q.

B(E) = r(w(&E) — e)f(r — &) >0
so ¢ M and there is an ¢ € X such that 7¢ Sl (2, ¢,,9), i.e., | 9(x) | > ¢, 0.

1
r—¢€

o(x) = (rsm(z) + [(L — s)r — &]r)

rsm(x)
r—e¢

so if ¥(x) < 0, then m(z) < 0 and

rsm(x)
r—¢

m(x) < < B@) < — £

so me Sl(x,¢,,), a contradiction, Henee 7{x) > ¢,,, and

v, = (r — 8)&,,o/7 + €
< (r — e)¥(x)/r + eu(x)
= (),
and v¢ Sl(x,v,). The case v(&) < —e follows from the above by

symmetry, so we are done.
By Lemma 2.5 and oUr usual argument we obtain

COROLLARY 3.2. Let X &' C E', e E. Then for all ¢ = 0,
x -2 81, o).

Notice that we do mot claim that if Zt is intersection of slices
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of Y(< X) on Q for arbitrary Q, then Sl1(%, ¢) is an intersection of
slices from Y on Q. For the latter we must use a Y’ which is
perhaps larger than Y and which is such that %+ is an intersection of
slices of Y’ on @ for some @ = [(Q N &, ru) 2 Q.

COROLLARY 83.3. Let E be the set of all Fc E for which &t is
(o, B)-closed on E, and suppose that M @s (a', B")-closed on E, i.e.,

for some X < E, card X < o and X——>M Then M s (a”, ")~
closed on E where o' = max (a, «') and B’ = max (B, £).

Proof. We may assume that a, ' = W, and that 8 and S8 are
either 1 or W,. For each xze X, there is a subset X, of E such that

X, —# % and card X,=a. Let X=U.,exX,< E. Then we have
card X =< card X-sup,(card X,) = «&-a=a”. For each equicon-
tinuous Q@ = E' we may choose Y < X with card Y = ' such that
M is an intersection of slices of Y on Q. By Corollary 3.2, for each
ye Y there is a Y, = X, with card Y, < 8 such that Sl(y,¢,,) is an
intersection of slices of Y, on Q. Then clearly M is an intersection
of slices of Y= U,er Y, on @ and card Y < B.8 = B”, so we are
done.

DerINITION. The («, B)-completion E~*f of K is the set of all
Te K with %+ (a, 8)-closed on K.

Note, 0+ = E’' is not a hyperspace, but is trivially («, 8)-closed
and hence in E~**,

COROLLARY 3.4. E~*f is (a, B)-complete and is the smallest
(@, B)-complete subspace of E containing E.

Proof. If %+ is (a, B)-closed over E~*Ff then ¥ e E~*# by Corol-
lary 3.8 so E~** is (a, B)-complete, Clearly E~*# is the minimal
(a, B)-complete set containing FE, so we are done if we can show that
E~*f is a subspace. Given the results of §4 this is easily ob-
tained, but we feel that it is instructive to continue in the spirit
of §2,

Since K ~*# obviously contains rx whenever it contains z ((rx)* =
xt or E’), we are done if we can prove that whenever #, ¢ E, &+,
FJ(a, B)-closed, we have M = (T + %)+ is («, B)-closed. We may assume
that % = 0 == % and that & == »¥ for all re R. Let X——ﬁ—w”&, Y—ﬁegi
and choose ue T+ ~ 7L, veyt ~ F+ so that w(y) = v(&) = 1. Clearly
M = &u — v, T+ N ¥1). Finally, we assume that X and Y are normalized
by v and u respectively., Let @ be ac and equicontinuous with wu,
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ve@ and choose X' & X, Y' & Y so that card X', card Y’ < 8 and
EH[F ] is an intersection of slices of X’ [Y'] on Q. We will show
that (Z -+ %)t is an intersection of slices of X’ + Y’ on Q.

Every element w of E’ is of the form »u — sv + m, meZ+ N F*+,
and we M if and only if » =s. Then for xe X', ye Y’,

w(@ + y) = (r — 8) + ru(x) — sv(y) + m(@ + y)
{(u(y) = v(x) = 1), Set
p=sup{|r],|s|:ru=sv+ me@Q for some meZ- Ny'}.

¥ i1s weakly continuous on @, whose weak closure is compact, and
(ru — sv + m)(y) = r (and similarly for #), so ¢ < . Now suppose
that w, = ru — s + m€ Q, r,#s,, i.e., w,g¢ M, We may choose
xe X', ye Y’ so that

€oy €0 < |70 — 8o l/8(1 + 2pt)

by (2.10) and the fact that if QS @, ¢, ,=¢6,0. u€ZE-NQ and
veyt NQ, and

My =W, — U + sl + |7+ [5)QE (1 + 21)Q
S0

lwo(@ + y) | = [ (1, — 8,) + rou(x) + s0(y) + mo(x + ¥y) |

Z |7y — 8| — [7ro] (@) — |8 [v(y) ]
— [myx) | — [my) |

Z [ 70— So| — M0 — M0 — Eutrizme
— &y im0

> 7y — 8| — 2([ 1 — 8 |/8) — (1 + 2p)e, 4
— (1 + 2¢)ey,

> 17'0_ So' - 4( M‘o - SOI/S)

= |1y~ 8l/2.

If we@nN M, w=ru— rv+ m, then similarly we have

fw@ +y) | = 7| {u@)] + [r] o) + [m@)] + [m(y) |
§4(17"0_‘30i/8): 7o — 80/2,

80 wog Sl(x + vy, |7 —5|/2) and QN ME Sl(x + ¥, |, — $1/2), from
which the result follows.

Note that we cannot conclude from X — %+ and Y — 7+ that
X+ Y— &+ 9*'. X and Y must first be suitably normalized.

Our final result in this section follows immediately from Corollary
3.3.
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COROLLARY 3.5. Let " = max (a, a’). Then
(E~a,ﬂ)~a',ﬁ — (E~a’,B)~a,B — EN‘I”’B )

There is much we do not know about various relations of this
type. For instance, we do not known if any of the equalities in

(E~a,1)~a,)ro — (E'~a,}zo)~a,1 — E~a,x0

is true in general.

4. Characterizations in F. In this section we will determine
necessary and sufficient conditions for E to be («, 8)-complete which
involve only E itself. There are two cases, («, W,)-completeness and
(a, 1)-completeness, which will be studied in turn. First we will
show that the former is equivalent to a-completeness, as defined
below.

DEFINITION. A les E is a-complete if whenever X & K and card
X = a, then ¢l; X S E.

A few remarks are in order concerning the relationship between
W ,-completeness and sequential completeness. Clearly the former im-
plies the latter, but the converse is false, as is demonstrated by the
space H[Z,] of [4] which is sequentially complete (in fact, quasi-com-
plete) and separable but not complete. Also ¥,-completeness does
not imply quasi-completeness, for let S be the topological space of
[2, Ex, 4N, p 64], i.e., an uncountable set all of whose points are
open except for a single exceptional point whose neighborhcods are
complements of countable sets. The space of all continuous R-valued
functions on S is then easily seen to be Y,-complete but not gquasi-com-
plete in the topology induced by the product topology on RS.

Our first equivalence theorem is

THEOREM 4.1. The following conditions on a les K are equivalent:

(a) E is (a, V)-complete
(b) E is (a, Y,)-complete
(¢c) E 1s a-complete .

Proof. (b)= (a) follows immediately from Corollary 2.12 but we
will obtain a second proof by showing (b)= (c)=(a) ((a)= (b)
trivially) and simultaneously develop some results which will prove
useful in later work.

(b) = (c) follows immediately from:
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LEMMA 4.2, Let {x,} be a net in E, limx, = xc E, let p be a
continuous pseudo-norm on E, and let \, be chosen for each n >0
so that play —x,) = 1/m if N, £ >1,. Then

2t 1Q, = Sl (,, /) N Q, .

Proof. If uex*NQ,, then u(x) = 0and |u| < p. % is continuous
on E so

lw(ay,) | = [w(e — 2y,) | = limy [ w(, — 2,,) |
= lim, p(wy — xxn) =1/n

so ue Sl(x,,,1/n) for all m. Conversely, if uwe Sl(x,,1/n) for all
n, fix n and choose » =\, so that |u(x) — u(x, )| = 1/n. Then

u() | = [uw(@ — 2) | + [w@y — ) |+ [u@,) |
= 1n + p(xy — @) + 1/n = 3/n.

Since % is arbitrary, w(z) =0 and wex" N Q,, proving the Lemma,

(e)=(a) is a trivial Corollary of Theorem 2.4, but it can also be
given a very simple direct proof as follows; We first show that if
XCE, X—at, 2cE, then wecl;¥X). If x¢cl3%(X) then there
is a we E’ such that u{¥(X)) = {0} and u(x) # 0. But then Q = I'{u}
is equicontinuous, z* NQ = {0} = @, and Q = Sl(y,0) for all ye X,
contradicting X — . Now assume (c) and let M be («, V)-closed,
X< E,X— M. By Corollary 2.3 and the above remarks M — x*
for some ¢ cl38(X). If X is finite then £(X) is closed in E, being
being finite dimensional, so xe F; if X is infinite the set Y of all
finite linear combinations of elements of X with rational coefficients
has the same cardinality as X and since Y is dense in X, zccl;Y < FE
by hypothesis. In either case, M = x* is closed and we are we are
done.

From Lemma 4.2 we obtain

COROLLARY 4.3, Let X S E and suppose that xeclyX. Then
X —atand xzt is (card X, W,)-closed.

By [7, Th 4.3, p. 310] and the proof of (c) = (a) we have

COROLLARY, 4.4, X— M = ' for some xc E if and only if
for all equicontinuous Q in E’', x, considered as a function on @, is
contrnuous 1n the topology of uniform convergence on finite subsets
of X.
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We now turn our attention to (&, 1)-completeness. We will need
notions of completeness and convergence which as far as we know
are original. Moreover, they have applications to other areas of
topological vector spaces (see [5]).

DEFINITION, Let E be a les, &7 a set of continuous pseudo-norms
on K, and {x,} a net in E. Then {x,} is O-convergent to x on 7 if
for any p e .27, there is a A, such that if » = A, then p(x — x,) = 0.
If &” is the set of all continuous pseudo-norms on E, we say that
{z,} is O-convergent to x. 0-Cauchy on &7 and 0-Cauchy are defined
in an analogous manner,

We collect some useful facts in the Proposition below. The
proofs are trivial,

ProrosiTiON 4.4, Let E, <7, and {x,} be as in the definition
above., Then

(a) If {x,} O-converges to x on &, then {x,} is 0-Cauchy on &
and {x,} converges to x, and conversely, if {x,} is 0-Cauchy on &7 and
converges to x, then {x,} is 0-convergent to x on ..

(b) If <7 defines the topology of E, then {x,} is 0-Cauchy [0-
convergent to x| if and only if it is 0-Cauchy on &7 [0-convergent to

x on ],

DEFINITION. Let E, <&” be as above, Then E is a-0-complete
[on <71 if and only if every net {x,} in E with card {x,} < a which
is 0-Cauchy [on £7] is O-convergent [on .&#]. If E is V-0-complete,
we say that E is 0-complete.

An immediate consequence of Proposition 4.4 is:

ProrosiTION 4.5,

(a) Every complete les is 0-complete.

(b) If <7 defines the topology of E then E is a-O-complete if
and only if E is a-0-complete on .27,

Proposition 4.5 (b) states that 0-completeness is independent of
the set of pseudo-norms defining a topology, a fact which is useful
in many proofs,

We may now characterize (a, 1)-completeness,

THEOREM 4.6. The following conditions on a les E are epuiva-
lent:
(a) E 1s (a, 1)-complete.
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(b) E is (a, W, —)-complete.
(¢) E is a-0-complete.

Proof. The equivalence of (a) and (b) follows from Corollary 2.16.

(a)=(c). Let {x,} be 0-Cauchy, hence 0-convergent to some x € E.
For any equicontinuous @ & E’ there is a A, such that , g =X,
implies that pe(®, — x,) = 0. Thus we may set \, =%, for all » in
Lemma 4.2, and we obtain

xJ_ n Q(pQ) — xl_ m QOO
= Sl (@, 1/n) N Q"
= 8l (z,, 0) N Q™

and hence z* N Q = Sl (x,, 0) N Q and «* is (card {x,}, 1)-closed.

(¢)=(a). Let M E’' be an (a,1)-closed hyperspace, X — M
for XS E. lLet ue B’ ~ M, let X be normalized by u, and let &
be the set of all equicontinuous @ S E’ such that Q = I'(Q N M, ru)
for some » > 0. Let xc K be such that * = M and u(x) =1. If
Qe &, there is an xz,€ X such that QN M = Sl (z,, exq,Q), and by
Proposition 2.14, ¢, ,=0. Hence by (2.11), Pe(x — mg) =0 and if
Qece, @ 20, then

Dol® —2g) = Po(x — @) = 0.

Therefore ordering «” by inclusion makes {x,} a net in £ which is 0-
convergent to x on {p,: Q<€ &}, and hence is 0-convergent by Lemma
2.5 and Proposition 4.4 (b). Moreover card {z, =card X =a so
x € E by assumption.

In the case of (V, 1)-completeness, we have some additional pro-
perties,

COROLLARY 4.7. The following conditions of a les E are equiva-
lent:

(a) E is 0-complete

(b) E s (V,1)-complete

(¢) E s (V, R, —)-complete

(d) If M is a hyperspace in E' such that for every equicon-
tinuous subset Q of E’ there is an x€ E such that MNQ = 2+ N Q,
then M s closed.

(e) If M vs a hyperspace in E' such that for every equicon-
tinuous subset @ of E', M N Q = [cl((M N Q)] N Q, then M is closed.

Proof. We have already shown the equivalence of (a) through
(¢) and their equivalence with (d) follows from Propositions 2.7 and
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2.14, Clearly (e) = (d) so we will be done if we can show that (d) =
(e). To this end, let M be a hyperspace in E’, @ an ac equicontinuous
subset of E', F=cl(}MNQK)), and MNQ=FNQEK. We wish to
find an xe€ Fsuch that 1 N Q = M N Q. If Q@ S M we may simply take
x =0, so assume there is a ueQ ~ M= Q ~ F. Define f: &(F,u)— R
by f(v+ru)y=r for veF. f is continuous (its null-space is
closed) and thus may be extended to a continuous f on E’. Choose
vc E such that f(v)=wv(x) for veE’. Clearly 2 NQ2FNQ=
MNQ and if vextNQ, v=w-+ ru for some weM,rec R(E' =
M, u)) so

w/L A+ |r])=ru/l + [r]) —v/Q+|r|)eQ M.

Since QNM=QNF,weF so 0=uv(x)+ rux)=ru(x). wulx)+*0
and hence » = 0 and ve M, completing the proof.

We complete our characterizations of («, 8)-completeness on £
itself by noting that every les is (¥, —, W, —)-complete by Corollary
2.15,

It is interesting to note that we have proven all of the implications
between (a, B)-and (v, d)-completeness for various «, G, v, 6. This
can be demonstrated by showing the independence of («, 1)-and (v, W.)-
completeness for a > v = W,. Since any noncomplete normed linear
space is clearly (V, 1)-complete but not (3}, V)-complete, we need only
find a (v, }R,)-complete space which isn’t (a, 1)-complete. Let 4 be an
index set of cardinality « and let E be the subspace of I1,¢,R( = R®)
consisting of all elements all but v of whose coordinates are 0. Let-
ting <{x,> be the element of E whose A th coordinate is z,, we set
a2 >) = |25]. Then {p,} defines the topology of E and clearly the
(¢, 1)-completion on {p,} of E'is R*. However if X & FE has cardinality
no greater than v, the number of coordinates in which some element
of X is nonzero has cardinality no greater than +* =, so E is (v,V)-
complete,

5. Nets of hyperspaces. We end our study with a brief outline
of a dual theory of net convergence. The theory is of necessity sketchy
and incomplete, but we will present some possibilities for further in-
vestigation. We begin in the spirit of the preceding sections and will
ultimately translate our ideas into notions concerning only the dual
space.

Let {x,} be a net in E and let M be a (V, V)-closed hyperspace
in E'. We say that {xi} converges to M if lim,4, =0 for all
equicontinuous @ = M in E’ (compare with Lemma 2,8), By Lemma
2.18, if {xf} converges to M, then {x,} — M and by Lemma 2.9, we
have immediately
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ProposITION 5.1. Let x¢ £ and let {x,} S E be normalized by u
for some we E’ with w(x) = 1. Then lim,z, = x if and only if {x}}
converges to ',

Notice that it is necessary to assume that M is (V, V)-closed (or
at least that M = f* where f is bounded on equicontinuous subsets)
in order to prove that {x,} — M, even though this hypothesis is not
necessary for Lemma 2.13. The reason is that the Lemma concerns
only those @ of the form @ = I'(Q N M, ru), and we know that this
class is sufficiently large only when Lemma 2.5 is applicable, This in
fact is one of the major problems of this study and one to which we
will return for further comment at the end of this section,

We now consider our notion entirely in terms of E’. Let S7[57]
be the set of all closed [(V, V)-closed] hyperspaces in E’, For any
H,Me 5 and Q an equicontinuous subset of E’, we define a number
Q(H, M) as follows:

First we assume that @ is ac and closed, Then there is a hyper-
plane of support of Q, H’, which is parallel to H, and a maximal r such
that 0 < » <1 and »H’' is a hyperplane of support to @ N M. We
define Q(H, M) = r. For arbitrary @ set

Q(H, M) = [clI(@)(H, M) .

It is easy to see that if H = a', then QH, M) = 4,, If we
define lim ,H, = M to mean lim ,Q(H,, M) = 0 for all @ N M, then by
Proposition 5.1 we have

PROPOSITION 5.2, Let {H,} be a net in 5 and Me 5#. Then
lim ,H, = M if and only if there are z, € F with #x = H, for each X
and an xec E with 2t = M such that lim,z, = =.

Unfortunately the above characterization introduces more problems
than it solves, It would be desirable to avoid the assumption that
Me 57 in Proposition 5.2 but as we mentioned above, we do not
know if this can be done. Moreover we have been able to obtain no
results at all on a Cauchy-type theory, with at least part of the
problem certainly due to the lack of knowledge mentioned above, We
are further bothered by the fact that Q(H, M) is not symmetric in
H and M, as the reader can demonstrate to himself by letting @ be a
square in R* with H parallel to a pair of sides and M not parallel to
either pair of sides. Nonetheless we feel that further study of these
concepts or modifications thereof could prove quite interesting.
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