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Theorem 1 contains an abstract characterization and unitary
invariants of operators 7T which are finite direct sums of =
Volterra operators (o;Vf)(x) = ajix flydy with real nonzero
«; defined on a Hilbert space 57 %Vhi(:h is a direct sum of n»
&(I,) spaces on the unit interval I;,. This is done by de-
manding that the dimension of (T + T%*) 57 be n; that the
subspaces &7; of 57 generated by T and the eigenvectors e;
of T+ T* be orthogonal to all e, for k + 7; and that the
spectrum of 7 be 0. Theorem 2 contains an abstract charac-
terization and unitary invariants of finite commuting sets
{W;} of Volterra operators which are real nonzero multiples
of integration in the various coordinate axis directions on a
Hilbert space ©2° which is the .~ space on the unit cube in
n real dimensions. The characterization is given by demand-
ing that the W; commute with all W, and W3 for & + j; that
I W, + W))OZ = & have dimension 1; that 57 be spanned
by the W;’s and &; and that the W;’s have spectrum 0,

The simplest bounded Hermitian operators are the stmple or cyclic
operators which are defined as ‘‘multiplication by the independent
variable on a suitable .5 (y) space’” where p is a Borel measure with
compact support on the real line. The simplest bounded Volterra operators
are of the form aV for real nonzero « defined on &4(I)). In general, we
mean by Volterra operator a linear transformation T, defined on a

space of functions so that (T, f)x) = SxF(x, ) fy)dy. It is a remarka-

ble fact that the simple Hermitian operators depend unitarily on the
measure p, that is, two such operators are unitarily equivalent if and
only if the corresponding measures y are equivalent, while two Volterra
operators V defined on different Z%(p) spaces are unitarily equivalent
so long as both measures g are nonatomic and have the same total
mass. Thus there is no loss of generality in our paper if we confine
ourselves to the Lebesgue spaces .&5(l,), ete. The presence of atoms
brings our different phenomena which we hope to develop in the future.

The most general Hermitian operators are direct sums of the simple
ones., This motivates our aim to characterize direct sums of real
multiples of the simplest Volterra operators. This work follows the
spirit of [3] in that we seek to establish concrete analytic represen-
tations, Our Theorem 1 is a first steps in this direction. While these
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operators fall into the class of operators considered in Livsic’s theory
[1, 4], the conclusions of our theorem have to be deduced from that
theory in approximately the same way we proceed, namely by basing
it upon the characterization of V itself [3].

Another representation theorem for Hermitian operators says that
commuting families can be simultaneously represented as families of
multiplication operators by functions on some suitable .&3(x) space with
Borel measure g of finite mass in I;; see for example [3]. This
motivates our interest in the corresponding situation for Volterra oper-
ators which is explored in our Theorem 2. The proof is again based
on the characterization of V itself [3]; in addition it uses a lemma due
to Livsic in the form stated on p. 354 of [3] and referred to here as
“Livsic’s Lemma’’., The proof then proceeds by establishing explicit
formulas for two analytic functions in » and 2n variables respectively
determined by products of the resolvents of the W'’s; one of these
functions is the joint characteristic function of the set {W;} [3].

We write I, for the unit cube in the space R, of n real dimen-
sions and ¢4(I,) for the Lebesgue &5 space on I,. We define the
operator V; on (L) as (Vif)(@y, -+, x,) = Sojf(xl, e &gy e, w)dEs
We say that the Hilbert space 57 is generated by the set {T;} of
operators and the subset & C 57 if 57 is the least closed subspace of
S# containing & and invariant under each 7;. We say that the set
{S;} of operators on the Hilbert space 57 is isomorphic (more precisely
1sometrically t1somorphic) with the set {7';} of operators on the Hilbert
space 97 if there is an isometry U of 57 onto .9 such that US; =
T;U for all j.

The following two theorems state easily verified necessary conditions;
it is their suffictency we are concerned with here,

THEOREM 1. Let the operator T be defined on the Hilbert space
o7 such that

(i) dm(T+ T*)2F =n and (T + T*)e; = aje; forj =1, -, n
where {e;} is orthonormal and the a; are nonzero real numbers;

(i) <¢f SZ 1s the subspace of 57 generated by T and e; then
57 1 e, for all distinct 7 and k;

(iili) =7 s generated by T and the set {e;};

(iv) the spectrum of T = 0.
Then T on 27 is isomorphic with the direct sum >, D a;V defined
on the direct sum of n copies of <5(1). Two operators T as above
are unitartly equivalent vf and only if they have the same «’s as
defined tn (i) above.

REMARKS. (1) Our demanding that the a’s in (i) be real reflects
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the crucial role that the hypothesis that dim (V 4 V*).&4(L) = 1 plays
in the proof of the representation theorem for V [3]; it is in fact an
obvious necessary condition. A trivial extension of our theorem is of
course possible if there exists a complex number A such that AT
satisfies condition (i), The case for general complex «; does not fall
within the scope of our technique.

(2) Turning now to hypothesis (ii), the example S = 1V?* shows
that dim (S + S*)2# = dim & = 2 while any single nonzero vector ee &
has the property that the subspace (S;¢) of 57 generated by S and e
is all of 27 (see for example [2], Lemma 7). Thus S is certainly not
isomorphic with any operator of the form aV & BV.

Proof of Theorem 1. We base the proof on the case n =1, the
characterization of aV, found in [3]. We show below that for distinet
7 and k, we have 5% | S#,; then (iii) implies that =& = >\ P o7#.
The definition of 5% implies that T'2#; C £#; and the mutual orthogonality
of the 275 implies that T*27; C 2#;. Therefore the restriction T; of
T to =7 has the property (7,)* = (T%); so that T; satisfies the
hypotheses of our theorem for n =1 and T; on 57} is isomorphic with
a;V on (1) by [3]; thus the proof is complete. It remains to show
that 27 | 27 for distinet 7 and k. Note first that (i) implies that
for all x€ 57 we have (T + T*)x = 3 a,(%, ¢;)¢; and hence (ii) implies
that (T + T*)Te; = T*"e; + T*T"e; = a(T"e;, e;)e; so that, still by
(i), we have T*Tre;e 57 for all nonnegative integers =, whence
T 27 c 27 and T* 27 < 27 for all nonnegative integers n. But then
(ii) implies that e, | T*"57, i.e., T"e, | 57;, which implies that 27 | 2
as desired. The fact that the set {«,} determines T unitarily is then
an immediate consequence of our representation.

THEOREM 2. Let a finite set of n operators {W;} be defined on
the Hilbert space 57 such that

(1) (i (W; 4+ WiNSF has dimension one and ts spanned by
the element e of norm one;

(i) all W; commute with all W, and W} for all k =+ 7;

(ili) &7 ts generated by the set {W,;} and e;

(iv) the spectrum of every W; is zero.
Then the set {W;} on S# s isomorphic with the set {a;V;} on S45(1,)
where the nonzero real numbers a; are related to {W,} by

(1) (W; + WHe = aje .
Two sets of operators {W,} as above are unitarily equivalent if and

only +f they have the same a’s as defined above in (1).

Proof. The proof is based on the following formulas:
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(2) <ﬁ AW; = =), ”>:j:[1(1~exp(ozjz}1)),

(2) (Mot — ) te,¢) = TL (AL — exp ez,

(3) ﬁgzh@;)(ﬁlam 207, 1L a(W) — 2,)7%0)

(exp (a2 + 23) — 1),

u:]:

where the 2’s are arbitrary nonzero complex numbers and we write
W — z instead of W — zI with the identity operator I; where Z; is
either W; or W}; and where the left side of (2) is the joint charac-
teristic function of the sets {W;} (see [3]). These formulas and the
isomorphism of the sets {W;} and {a;V;} will be proved by induction
on n. The case » = 1 is again, as in Theorem 1, the characterization
of «V and may be found in [3].

We begin by justifying (1). Define the commuting set of nonzero
Hermitian operators {E,} by E; =W, -+ W} and set E = [[", FE,.
Assumption (i) implies that for all x€ 2% we have

(4) Er = a(x, e)e
for some real nonzero «. This implies that E,e = (E,e, ¢) = a,e and so

(5) E .-

i, Eie=a; - a;e

so that « = [[7-, «; and the «; are not zero.

In order to simplify the exposition, we replace the W,’s by a;'W;
and then establish the theorem and the relevant formulas (1)-(3) for
the special case where all the «’s are 1. The results for the original
W’s are then obtained by replacing the z’s by the corresponding a—'2’s.

The induction hypothesis uses the conclusions of the theorem and
the formulas (1)-(3) for all j < n. We first establish (2), then (8), then
the isomorphism of the sets {W,} and {V}}, and then (2').

We apply the identity

(zl + 22)(W* - Ez)_l(W - zl)ﬁl
(6) = —(W—z)" —(W* —2)"
+ (W = 2) (W + WH(W — 2)"

to the left side L of (3) and obtain

b=
(0

| =75 =z — (W =2 (W =) B W= 20 e )

i Ry B

[ A, — B, +BEA] )ER
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where A; = (W; — 2;,)~" and B; = (W} — z;)~". In the expansion of R
" we separate out the last factor so that

_ ([’E(_A,. — B, + BjEjAj)](—An — B, + B,E,A,)e, e)

and we write R = 3>, X + Y where the terms designated by X are of
the form

X = (_~1)n—f<(:jf;1j cj>AnF1 ... F.D,--- Dy, e)

+ (=D t<<ﬁ1 ) 1---FtD1---Dte,e>

=1

(=1 tﬂ((“ﬁ \B,F, ... F.E.D, --- D,A,e, e>

Whel‘e: Cj is either Aj or .BJ; Fk — Ej(k) and Dk = Cj(k) fOI' j(k) a
suitable permutation of a subset 7" of {1, - -+, » — 1} containing { <n —2
elements (or the F’s and D’s are absent and we set ¢ = 0); and where

- ([I;Ij (BjEjAj)](—A% ~ B,+ BE,Ae,¢) .

Now (4) and (5) imply that

(7) F,---FD, -+« De=ED, --«-De=(D,--- D, ee
and similarly

(8) F,... "ED ---DAe= (D, ---DA,e,ee.

We now wish to use our induction hypothesis in order to calculate the
right sides of (7) and (8). Relabel the indices so that T' = {1, - - -, ¢} with
t <mn—1 for our present purpose and set ¥ = K, --+- E,.,.57. As-
sumption (ii) implies that 27 is invariant under W; and W/ for all
je T and clearly ec 2#. In 2% we consider the closed linear subspace
97" generated by {Wj};er and e. Clearly .97 is invariant under {W},e,.
We wish to show that this set of operators restricted to .9 satisfies
the hypotheses of our theorem; it clearly suffices to establish (ii): to
that end we show that .97 is invariant with respect to all W}, je T.
We observe that .27, the orthogonal complement of .9 in 5%, is
invariant under all E;: take 2'€ .9, then («/, Wi ... Wpte) = 0 for
all nonnegative integral exponents p and (E;o', W... Wrte) =
@, Wi oo WP WHE;Wrie) = (&, Wrt oo WP oo Wrt)(Wie, e) = 0
since E;Wrie = EW?ie = (WPie, e)e by (4) and (5); we have used the
convention W° = I, the identity operator. Thus .2’ and hence .57 is
invariant under E; and hence .9 is invariant under W}: take x e .5,
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then Wz = (E; — W;xe o7, Thus all our formulas are applicable and
we have in particular for the right side of (7)

(D, -+ Dye, ¢) = 11 (1 — exp (w) = P

=1

where w; is z,, or z;, depending on whether the corresponding D, is an
A; or a B,; note that we have made use of (2). In order to calculate
the right side of (8) note that since ¢ < » — 2, our induction hypothesis
is applicable and we obtain

(D, --- D,A,e, ) = (1 — exp (z:))P .
Hence (7) and (8) imply that

X =(=1)P [(C[:[z Cj>Ane, e> + exp (2 (Cﬁi Cj>Bne, e>] .

If in (6) we set —z, =2z, = 2z;, and W = W;, we obtain (W; — z;)" =
(Wi + 2;) B W; — z;) — (W} + z;,)7" so that after a little calcula-
tion and using F;A,e = (Ae, e)e = (1 — exp (2;))e we have

(Dy++- D, AiDjyy -+ Dye, )

9
) = —exp @)Dy + -+ Dy W+ 24)7 Dy +++ Dyeye)

In a similar way, if we set in (6) —Z, = 2, = z,, and W = W}, we ob-
tain

(D, --+ D, B;D,,, --- B,e, ¢)

(9) - —
= —exp 2, WD, +++ D;_(W; + 2;)7'D;,, + -+ D,e, e)

so that if we set —=z,, = 2,,, then X is seen to be identically 0. We
now turn to Y. A little calculation shows that

Y= _(Al e An—ley e)[(Bl te Bn—lAner 6) + (Bl cet Bney 6)] + ab

where a = (4, --- A,e,e) and b = (B, --- B,e,e). We now use (9), set
—2,. = Zn, and use our induction hypothesis to conclude that

Y = b[a, — :LI:Ii (1 — exp (7)1 — exp (z;f))] .

Since now L = R = 5, X + Y, the substitution —z,, = z,, implies that
L and R are identically zero; X is also identically zero and therefore
Y must be identically zero and therefore Y must be identically zero.
Since, however, b is not identically zero, we can conclude that
a — II%., (1 — exp (7)) must be identically zero. Thus (2) is established.

To prove (3), we turn once againto L = R = > X + Y; (9) shows
that in the expansion of R we can successively replace B’s by A’s
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(and exponentials), so that finally L can be expressed entirely in terms
of exponentials and terms like the right side R’ of (2). Now the
set {V;} on <5(I,) satisfies the hypotheses of our theorem (all the a’s
still being 1); therefore (2) is true if we replace {W;} by {V;}. The
left side of (3) equals >, X + Y; these terms can be expressed entirely
in terms of A’s and other exponentials. The way these A’s and other
exponentials oceur is based only on the hypotheses (i)—(iii) of the theorem
which are satisfled by {W;} as well as {V;}. Hence, since the A’s are
the same for these two sets, i.e., since (2) with all the a’s equal to 1
is true for both sets, the left side of (3) (with the a’s equal to 1) is
also the same for both sets. Thus if we calculate L for {V;}, we
must get same thing as if we do it for {I¥;}; the former -calculation
is elementary and yields the desired right side of (3) which is thus
established for {W,}.

In order to prove the isomorphism of the sets {W,} and {V,} we
observe that (3) is valid and equal for both sets. Thus the infinite
power series expansion deduced from (3) implies that for all nonnegative
exponents, we have

(Wit eoo Wing W2 oo Wrng) = (VL oo Vinlg V2 oo Vinzg) |

Since ¢ and {W,} generate 5# and the function identically equal to 1
and the set {V;} generate <4;(I,), we can apply Livsic’s Lemma and
conclude the desired isomorphism,

The last step is to check (2’). In view of the isomorphism of { W}
and {V;}, it suffices to verify it for this latter set. If w is the funetion
identically equal to 1, it is easy to verify by induction that

I (V; — 2w = (~1)* 11 27" exp (257,) -

We now rewrite the left side of (2') and obtain after eventual relabelling
of indices and still keeping the a’s equal to 1 the expression
(M5 (V; — 257, 5= (V; — Z,)7'w). A simple calculation then shows
that this equals the right side of (2'); in view of the preceding para-
graph w and e are identified.

Just as was the case in Theorem 1, the fact that the set {a;}
determines {W,} unitarily is an immediate consequence of our represen-
tation., This completes the proof of the theorem.
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