SETS OF CONSTANT WIDTH

GULBANK D. CHAKERIAN
SETS OF CONSTANT WIDTH
G. D. CHAKERIAN

A lower bound, better than those previously known, is given for the volume of a 3-dimensional body of constant width 1. Bounds are also given in the case of n-dimensional bodies of constant width 1, $n \geq 4$. Short proofs of the known sharp bounds for such bodies in the Euclidean and Minkowskian planes are given using properties of mixed areas. An application is made to a measure of outer symmetry of sets of constant width in 2 and 3 dimensions.

Let K be a convex body in n-dimensional Euclidean space E_n. For each point u on the unit sphere S centered at the origin, let $b(u)$ be the distance between the two parallel supporting hyperplanes of K orthogonal to the direction. The function $b(u)$ is the “width function” of K. If $b(u)$ is constant on S, then we say K is a body of constant width.

If K_1 and K_2 are convex bodies, then $K_1 + K_2$ is the “Minkowski sum” or “vector sum” of K_1 and K_2 [5, p. 79]. The following useful theorem is well-known.

Theorem 1. A convex body K has constant width b if and only if $K + (-K)$ is a spherical ball of radius b.

In the case of E_2, a number of special properties of sets of constant width are known—for example, the following theorem of Pâl (see [5, p. 127]).

Theorem 2. Any plane convex body B of constant width admits a circumscribed regular hexagon H.

We shall be concerned with the following type of result, due to Blaschke and Lebesgue (see [1], [3], [4], [5, p. 128], [9]).

Theorem 3. Any plane convex body B of constant width 1 has area not less than $(\pi - \sqrt{3})/2$, the area of a Reuleaux triangle of width 1.

The following short proof of Theorem 3 will set the stage for some later arguments.

Proof of Theorem 3. Let $A(K)$ denote the area of K. The “mixed area” of the plane convex bodies K_1 and K_2, $A(K_1, K_2)$, can be
defined by the fundamental relation [5, p. 48],

\[A(K_i + K_j) = A(K_i) + 2A(K_i, K_j) + A(K_j) \].

The mixed area is monotonic in each argument [5, p. 86]. That is, if \(K_i \subseteq K_j \), then

\[A(K_i, K) \leq A(K_j, K) \].

It follows from (1), setting \(K_i = K_j = K \), that

\[A(K, K) = A(K) \].

Now let \(H \) be a regular hexagon circumscribed about \(B \) (Theorem 2). Assume the center of \(H \) is the origin, so \(H = -H \). Then, using (2) and (3), we obtain

\[A(B, -B) \leq A(H, -H) = A(H, H) = A(H) \].

Thus, by (4), (1), and Theorem 1, we have

\[\pi = A(B + (-B)) = 2A(B, -B) \leq 2A(B) + 2A(H) = 2A(B) + \sqrt{3}, \]

from which the theorem follows.

It has long been conjectured that in \(E_3 \) any convex body of constant width 1 has volume at least that of a certain “tetrahedron of constant width” \(T \) (see [12, p. 81] for the construction of \(T \)). A computation of the volume of \(T \) leads to the conjecture,

Conjecture 1. Any 3-dimensional convex body of constant width 1 has volume not less than

\[\frac{2\pi}{3} - \frac{\pi \sqrt{3}}{4} \cos^{-1}(1/3) \approx .42. \]

In §2 we shall prove that if \(B_3 \) is a 3-dimensional body of constant width 1, with volume \(V(B_3) \), then

\[V(B_3) \geq \beta = \frac{\pi}{3} (3\sqrt{6} - 7) \approx .365. \]

Our proof of (6) will depend upon the following theorem of Blaschke [2].

Theorem 4. If a 3-dimensional convex body of constant width \(b \) has volume \(V \) and surface area \(S \), then

\[2V = bS - \frac{2\pi}{3} b^3. \]
It follows from (7) that Conjecture 1 is equivalent to:

Conjecture 1'. Any 3-dimensional convex body of constant width 1 has surface area not less than

$$2\pi - \frac{\pi \sqrt{3}}{2} \cos^{-1}(1/3).$$

Conjecture 1 can be transformed into still another form using the concept of "mixed surface area." Let $S(K)$ denote the surface area of K. If K_1 and K_2 are 3-dimensional convex bodies, then the surface area of $K_1 + K_2$ can be written in the form

$$S(K_1 + K_2) = S(K_1) + 2S(K_1, K_2) + S(K_2),$$

where $S(K_1, K_2)$ is the mixed surface area. Thus, if K has constant width 1, $4\pi = S(K + (-K)) = 2S(K) + 2S(K, -K)$. Hence Conjectures 1 and 1' are equivalent to:

Conjecture 1''. Any 3-dimensional convex body of constant width 1 has mixed surface area not greater than

$$\frac{\pi \sqrt{3}}{2} \cos^{-1}(1/3).$$

Firey [6] has proved that the volume V of an n-dimensional convex body of constant width 1 satisfies

$$V \geq \frac{\pi - \sqrt{3}}{n!}, \quad n \geq 2.$$ \hspace{1cm} (8)

In §2 we give the generally better lower bound,

$$V \geq \lambda \omega_n \prod_{k=3}^n \left(1 - \sqrt{\frac{k}{2k + 2}}\right), \quad n \geq 3,$$ \hspace{1cm} (9)

where ω_n is the volume of the unit ball in E_n, and

$$\lambda = \frac{\pi - \sqrt{3}}{2\pi}.$$

Let C be a centrally symmetric convex body centered at the origin in E_n. Then C is the unit sphere for a Minkowskian geometry. We say that a body K has "constant width relative to $C" if $K + (-K)$ is homothetic to C. In particular, one says that K and C are "equivalent in width" in case $K + (-K) = 2C$, since the condition implies that K and C have the same width function. When C is the ordinary unit sphere we obtain the ordinary sets of constant width. Results about
plane sets of relative constant width analogous to Theorem 2 and 3 are known (see [8], [10], and [11]). In § 3 we give a proof of the analogue of Theorem 3 in the Minkowski plane, using the same method as in our proof of Theorem 3.

Section 4 is devoted to some results on measures of outer symmetry for sets of constant width.

2. Proof of (6). Let B_3 be a 3-dimensional convex body of constant width 1. Then the inscribed sphere of B_3 has radius $\geq 1 - \sqrt{3/8}$ (see [5, p. 125]). Assume that the center of the inscribed sphere is the origin. If $p(u)$ is the supporting function of B_3, then we have $p(u) \geq 1 - \sqrt{3/8}$. Hence,

$$ 3V(B_3) = \int_{S_3} p(u)dS(u) \geq \left(1 - \sqrt{3/8}\right)S(B_3), $$

where $S(B_3)$ is the surface area of B_3. Using Theorem 4 in (10), we obtain

$$ 3V(B_3) \geq \left(1 - \sqrt{3/8}\right)\left(2V(B_3) + \frac{2\pi}{3}\right), $$

and (6) follows upon solving (11) for $V(B_3)$. This completes the proof.

Proof of (9). Define

$$ \chi_\alpha = \inf V(K), $$

as K ranges over all bodies of constant width 1 in E_α, and $V(K)$ is the volume of K. The Blaschke selection principle implies that there exist bodies of constant width 1 having volume χ_α. Let B be such a body, and let $p(u)$ be the support function of B with the center of its inscribed sphere as origin. Then, by [5, p. 125],

$$ p(u) \geq 1 - \sqrt{\frac{n}{2n + 2}}. $$

Denoting the area element of B by $dS(u)$, we have,

$$ n\chi_\alpha = nV(B) = \int_B p(u)dS(u) \geq \left(1 - \sqrt{\frac{n}{2n + 2}}\right)S(B), $$

where $S(B)$ is the surface area of B. If we denote by B_u the projection of B onto a hyperplane orthogonal to u, then (see [5, p. 89])

$$ S(B) = \frac{1}{\omega_n} \int V(B_u)du, $$

(14)
where $V(B_u)$ is the $(n - 1)$-dimensional volume of B_u and the integration is over the surface of the unit sphere in E_n. Since B_u is an $(n - 1)$-dimensional body of constant width 1, we have by (12) that $V(B_u) \geq \lambda_{n-1}$. Hence

\begin{equation}
S(B) \geq \frac{n\omega_n \lambda_{n-1}}{\omega_{n-1}} .
\end{equation}

Combined with (13), this yields

\begin{equation}
\lambda_n \geq \left(1 - \sqrt{\frac{n}{2n+2}} \right) \frac{\omega_n}{\omega_{n-1}} \lambda_{n-1} ,
\end{equation}

from which (9) follows. This completes the proof.

3. In this section, C is a centrally symmetric plane convex body centered at the origin 0. C admits an inscribed affine regular hexagon H (i.e., the affine image of a regular hexagon) having a side parallel to any specified direction [10]. Let the vertices of H be labelled P_1, P_2, \ldots, P_6 on the boundary of C traversed in the positive direction. A “relative Reuleaux triangle” is obtained by attaching arcs P_1P_2, P_2P_3, and P_5P_6 of the boundary of C to the respective sides $P_1P_2, P_2P_3, 0P_1$ of the triangle OP_1. With H as above, a centrally symmetric hexagon circumscribed about C and touching C at P_i, $1 \leq i \leq 6$, is called a “C-hexagon.” In fact, any hexagon homothetic to such a hexagon will be called a C-hexagon. Note that if case C is a circle, any C-hexagon is just a regular hexagon. One then sees that the following theorem from [10] is a Minkowskian geometry analogue of Theorem 2.

Theorem 2'. Let K be equivalent in width to C. Then K admits a circumscribed C-hexagon.

Let H be a C-hexagon circumscribed about C. Let H' be the corresponding affine regular hexagon inscribed in C with its vertices on H. Then we shall show that

\begin{equation}
A(H) \leq \frac{4}{3} A(H') .
\end{equation}

This follows from the following general lemma.

Lemma 1. Let H' be an affine regular hexagon inscribed in a centrally symmetric plane convex body K. Then

\begin{equation}
A(K) \leq \frac{4}{3} A(H') .
\end{equation}

Proof. By considering the support lines of K through the vertices of H', one sees that it suffices to prove (18) for K a centrally
symmetric hexagon H. Since the problem is affine invariant, one may even assume H' is a regular hexagon, although this does not really simplify matters. In Figure 1, P'_1, P'_2, P'_3, P'_4 are consecutive vertices of H', and P_1, P_2, P_3 are vertices of H. AD is drawn parallel to P'_1P_3, which is parallel to $P'_3P'_1$ (the degenerate cases, where $P_3 = P'_1$ or $P_1 = P'_1$ are easily disposed of and will not be dwelt upon here). B is the intersection of P_1P_2 with AD, and C is the intersection of P_3P_4 with AD. Triangle $P'_1P_3P'_2$ is congruent to P'_1CA, and $P'_1P_3P'_2$ is congruent to P'_1BA. Hence the area of the pentagon $P'_1P_3P_2P_4P'_1$ is not greater than the area of triangle $P'_1AP'_1$, so the area of H is not greater than twice the area of $P'_1AP'_1$, which is precisely $4/3 A(H')$. This completes the proof.

Theorem 3'. Any plane convex body K which is equivalent in width to C has area not less than that of some relative Reuleaux triangle equivalent in width to C.

Proof. It is easy to check that the area of any relative Reuleaux triangle T equivalent in width to C is given by

$$A(T) = 2A(C) - 4/3 A(H),$$

where H is the affine regular hexagon inscribed in C on which the construction of T is based. Let H' be a C-hexagon circumscribed about K (Theorem 2'), let H'' be the translate of H' circumscribed about C, and let H be the corresponding affine regular hexagon inscribed in C with its vertices on H''. Let the center of H' be at the origin (which can be assumed by translating K) so $H' = -H'$. Then,
proceeding as in the proof of Theorem 3, and using (17), we have
\[
4A(C) = A(K + (-K)) = 2A(K) + 2A(-K)
\]
\[
\leq 2A(K) + 2A(H', -H') = 2A(K) + 2A(H')
\]
\[
= 2A(K) + 2A(H'') \leq 2A(K) + 8/3 A(H).
\]
Hence,
\[
A(K) \geq 2A(C) - 4/3 A(H) = A(T).
\]
This completes the proof.

To prove that a relative Reuleaux triangle is the only body equivalent in width to \(C \) with minimum area requires a little more argument. A sketch of the proof is as follows. If \(K \) is such a body of minimum area, then equality must hold throughout (20). This means that \(A(K, -K) = A(H') \) for a \(C \)-hexagon \(H' \) circumscribed about \(K \). It follows that \(A(-K, K) = A(H', K) \). If we let \(p_i(\theta), p_o(\theta) \) be the support functions of \(K \) and \(H' \) respectively, with origin at the center of \(H' \), and let \(s_i \) denote arc length along \(K \), the last equation implies that
\[
\int p_i(\theta + \pi)ds_i = \int p_i(\theta)ds_i.
\]
Equation (22) implies that \(K \) must pass through 3 alternate vertices of \(H' \), from which readily follows the fact that \(K \) is a relative Reuleaux triangle.

4. For any \(n \)-dimensional convex body \(K \) we define a "coefficient of outer symmetry," \(\mu(K) \), as follows. Let \(S \) be a centrally symmetric convex body of minimum volume containing \(K \). Then
\[
\mu(K) = \frac{V(K)}{V(S)},
\]
Thus \(\mu(K) \leq 1 \), and \(\mu(K) = 1 \) if and only if \(K \) is centrally symmetric. Sharp lower bounds for \(\mu(K) \) are not known for \(n \geq 3 \); however, it is known that \(\mu(K) \geq 1/2 \) if \(K \) is 2-dimensional, with equality holding if and only if \(K \) is a triangle. A standing conjecture is that in \(E_n, n \geq 3, \mu(K) \geq \mu(T) \), where \(T \) is a simplex.

Theorem 5. Let \(B \) be a plane convex body of constant width 1. Then \(\mu(B) \geq \mu(R) \), where \(R \) is a Reuleaux triangle, and equality holds only if \(B \) is a Reuleaux triangle.

Proof. Let \(H \) be a regular hexagon circumscribed about \(B \).
Then, using Theorem 3, we have

\begin{equation}
\mu(B) \geq \frac{A(B)}{A(H)} \geq \frac{A(R)}{A(H)} = \frac{\pi - \sqrt{3}}{\sqrt{3}} = 0.81 \ldots .
\end{equation}

where \(R \) is a Reuleaux triangle of width 1. On the other hand, any centrally symmetric convex set \(S \) containing \(R \) must also contain an equilateral triangle \(T \) of side 1 and thus has area \(\geq 2A(T) = A(H) \). Hence

\begin{equation}
\frac{A(R)}{A(H)} = \mu(R).
\end{equation}

Equality can hold in (24) only if \(A(B) = A(R) \), which happens only if \(B \) is a Reuleaux triangle (see end of §3). This completes the proof.

It is known that any set \(K \) of constant width in \(E_3 \) admits a regular circumscribed octahedron \(J \) (see [7]). Suppose \(K \) has constant width 1, and let \(S \) be a centrally symmetric set of minimum volume containing \(K \). Then, using (6),

\begin{equation}
\mu(K) = \frac{V(K)}{V(S)} \geq \frac{\beta}{V(J)} = \frac{2\beta}{\sqrt{3}} \approx 0.42.
\end{equation}

Clearly one can obtain crude lower bounds, in this same fashion, in terms of \(\lambda \) and the volume of some centrally symmetric “covering body” \(J_n \) (one could, for example, use for \(J_n \) a sphere of radius \(\sqrt{n}/(2n+2) \)).

References

Received September 29, 1965.

University of California, Davis
A. R. Brodsky, *The existence of wave operators for nonlinear equations*. 1
Gulbank D. Chakerian, *Sets of constant width*. 13
Robert Ray Colby, *On indecomposable modules over rings with minimum condition*. 23
James Robert Dorroh, *Contraction semi-groups in a function space*. 35
Victor A. Dulock and Harold V. McIntosh, *On the degeneracy of the Kepler problem*. 39
N. S. Gopalakrishnan and Ramaiyengar Sridharan, *Homological dimension of Ore-extensions*. 67
Daniel E. Gorenstein, *On a theorem of Philip Hall*. 77
Stanley P. Gudder, *Uniqueness and existence properties of bounded observables*. 81
Ronald Joseph Miech, *An asymptotic property of the Euler function*. 95
Peter Alexander Rejto, *On the essential spectrum of the hydrogen energy and related operators*. 109
Duane Sather, *Maximum and monotonicity properties of initial boundary value problems for hyperbolic equations*. 141
Peggy Strait, *Sample function regularity for Gaussian processes with the parameter in a Hilbert space*. 159
Donald Reginald Traylor, *Metrizability in normal Moore spaces*. 175
Uppuluri V. Ramamohana Rao, *On a stronger version of Wallis’ formula*. 183
Adil Mohamed Yaqub, *Some classes of ring-logics*. 189